Skip to main content

Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations

  • Chapter
Advances in Mathematical Fluid Mechanics

Abstract

In this paper we describe adaptive wavelet-based solvers for the Navier-Stokes equations. Our approach employs a Petrov-Galerkin scheme with tensor products of Interpolet wavelets as ansatz functions. We present the fundamental algorithms for the adaptive evaluation of differential operators and non-linear terms. Furthermore, a simple but efficient preconditioning technique for the resulting linear systems is introduced. For the Navier-Stokes equations a Chorin-type projection method with a stabilized pressure discretization is used. Numerical examples demonstrate the efficiency of our approach.

Research supported by the Deutsche Forschungsgemeinschaft, GR 1144/7-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angot P., Bruneau C., Fabrie P.: A penalization method to take into account obstacles in incompressible flows; Preprint No. 97017, Mathematiques Appliquees, University Bordeaux (1997).

    Google Scholar 

  2. Barinka A., Barsch T., Charton P., Cohen A., Dahlke S., Dahmen W., Urban K.: Adaptive wavelet schemes for elliptic problems — implementation and numerical experiments; Institut für Geometrie und praktische Math., RWTH Aachen (1999), preprint.

    Google Scholar 

  3. Battle G., Federbush P.: Divergencefree vector wavelets; Michigan Math. J., 40 (1993) pp. 181–195.

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker R., Rannacher R.: Weighted a posteriori error control in FE methods; in ENUMATH-95 in Proc. ENUMATH-97, World Scientific Publ., Singapore (1998).

    Google Scholar 

  5. Becker R.: Weighted a posteriori error estimators for FE approximations of the incompressible Navier-Stokes equations; Universität Heidelberg, IWR, SFB 359, Preprint 48 (1999).

    Google Scholar 

  6. Burie J.M, Marion M.: Multilevel Methods in Space and Time for the Navier-Stokes Equations; SIAM J. Num. Anal. 34 No. 4 (1997), pp. 1574–1599.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble J.H., Pasciak J.E., Xu J.: Parallel multilevel preconditioned; Math. Comp. 55 (1990), pp. 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi F., Pitkäranta J.: On the Stabilization of Finite Element Approximations of the Stokes Problem; in Efficient Solutions of the Stokes Problem, Hackbusch W. (Eds.), Vieweg (1984).

    Google Scholar 

  9. Bank R., Weiser A.: Some a posteriori error estimators for elliptic PDEs; Math. Comp. 44 (1985), pp. 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertoluzza S.: An adaptive collocation method based on interpolating wavelets; Istituto di analisi numerica del consiglio nazionale delle ricerche, Pavia (1997)

    Google Scholar 

  11. Beylkin G., Keiser J.M.: An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear Partial Differential Equations; in Multi Scale Wavelet Methods for Partial Differential Equations, Vol. 6 in the Wavelet Analysis and Applications series, Academic Press.

    Google Scholar 

  12. Canuto C, Hussaini M., Quarteroni A., Zang T.: Spectral Methods in Fluid Dynamics; Springer Verlag (1987).

    Google Scholar 

  13. Carnicer J.M., Dahmen W., Pena J.M.: Local decomposition of refinable spaces; Appl. Comp. Harm. Anal. 3 (1996), pp. 127–153.

    Article  MathSciNet  MATH  Google Scholar 

  14. Charton P., Perrier V.: A Pseudo-Wavelet Scheme for the two-dimensional Navier-Stokes Equations; Matematica Aplicada e Computacional (1996)

    Google Scholar 

  15. Cohen A., Dahmen W., DeVore R.: Adaptive wavelet methods for elliptic operator equations — convergence rates; IGPM-Report, (1998), RWTH Aachen.

    Google Scholar 

  16. Cohen A., Daubechies I., Feauveau J.-C.: Biorthogonal bases of compactly supported wavelets; Comm. pure and Appl. Math. 45 (1992), pp.485–560.

    Article  MathSciNet  MATH  Google Scholar 

  17. Chorin A.: Vorticity and Turbulence; Springer Verlag (1998).

    Google Scholar 

  18. Dahmen W., Schneider R., Xu Y.: Nonlinear Functional of Wavelet Expansions — Adaptive Reconstruction and Fast Evaluation; IGPM-Report 160, (1998), RWTH Aachen, to appear in Numerische Mathematik.

    Google Scholar 

  19. Daubechies I.: Orthonormal Bases of compactly supported Wavelets I; Comm. Pure Appl. Math. (1988).

    Google Scholar 

  20. Daubechies I.: Orthonormal Bases of compactly supported Wavelets I; SIAM J. Math. Anal. 24 (1993).

    Google Scholar 

  21. Daubechies I.: Ten lectures on wavelets; CBMS-NSF Regional Conference Series in Appl. Math. 61 (1992).

    Google Scholar 

  22. Deslauriers G., Dubuc S.: Symmetric iterative interpolation processes; Constr. Approx. 5 (1989), pp. 49–68.

    Article  MathSciNet  MATH  Google Scholar 

  23. DeVore R.: Nonlinear Approximation; Acta Numerica, 7 (1998), pp. 51–150.

    Article  MathSciNet  Google Scholar 

  24. DeVore R., Konyagin S.V., Temlyakov V.N.: Hyperbolic wavelet approximation; Constr. Approx. 14 (1998), pp. 1–26.

    Article  MathSciNet  Google Scholar 

  25. Dongarra J., Duff I., Sorensen D., van der Vorst H.: Numerical Linear Algebra for High-Performance Computers; SI AM (1998).

    Google Scholar 

  26. Donoho D.: Interpolating wavelet transform; Stanford University (1992), preprint.

    Google Scholar 

  27. Donoho D., Yu P.: Deslauriers-Dubuc: Ten Years After; in Deslauriers G., Dubuc S. (Eds), CRM Proceedings and Lecture Notes Vol. 18 (1999).

    Google Scholar 

  28. Frisch U.: Turbulence; Cambridge University press (1995).

    Google Scholar 

  29. Fröhlich J., Schneider K.: An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs; J. Comput. Physics 130 (1997), pp. 174–190.

    Article  MATH  Google Scholar 

  30. Gresho P., Chan S.: On the theory of semiimplicit projection methods; Int. J. Numer. Meth. Fluids 11(5) (1990).

    Google Scholar 

  31. Gresho P., Sani R.: Incompressible Flow and the Finite Element Method; Wiley (1998).

    Google Scholar 

  32. Griebel M.: Multilevelmethoden als Iterationsverfahren ueber Erzeugendensystemen; Teubner Verlag (1994).

    Google Scholar 

  33. Griebel M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences; Computing 61 No. 2 (1998), pp. 151–180.

    Article  MathSciNet  MATH  Google Scholar 

  34. Griebel M., Knapek M.: Optimized tensor-product approximation spaces; Constr. Approx., in print.

    Google Scholar 

  35. Griebel M., Oswald P.: Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems; Adv. Comp. Math. 4 (1995), pp. 171–206.

    Article  MathSciNet  MATH  Google Scholar 

  36. Griebel M., Zumbusch G.: Adaptive Sparse Grids for Hyperbolic Conservation Laws.; Proceedings of Seventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications, ISNM 129, Birkh” user (1999), Vol. 1, pp. 411–421.

    MathSciNet  Google Scholar 

  37. Griebel M., Zumbusch G.: Parallel Adaptive Subspace Correction Schemes with Applications to Elasticity; accepted for Computer Methods in Applied Mechanics and Engineering, Elsevier, (1999).

    Google Scholar 

  38. Gunzburger M., Mundt M., Peterson P.: Experiences with FEM for the velocityvorticity formulation of 3D viscous incompressible flows; in Computational methods for viscous flows Vol 4. Brebbia C. (Eds.) (1990).

    Google Scholar 

  39. Hafez M., Dacles J., Soliman M.: A velocity/vorticity method for viscous in-compressible flow calculations; in Lecture Notes in Physics Vol. 323 Dwoyer D., Hussaini M. (Eds.) (1989).

    Google Scholar 

  40. Holmstroem M.: Solving Hyperbolic PDEs Using Interpolating Waveiets; SI AM J. Sc. Comp. 21/2 (1999) pp. 405–420.

    Article  MATH  Google Scholar 

  41. Horn R., Johnson C.: Topics in Matrix Analysis; Cambridge Univ. press (1989).

    Google Scholar 

  42. Hughes T., Franca L.: A new finite element formulation for computational fluid dynamics: VII; Comput. Meth. Appl. Mech. Eng. Vol 65 (1987) pp. 85–96.

    Article  MathSciNet  MATH  Google Scholar 

  43. Karniadakis G., Sherwin S.: Spectral/hp Element Methods for CFD; Oxford University Press (1999).

    Google Scholar 

  44. Koster F.: A Proof of the Consistency of the Finite Difference Technique on Sparse Grids University Bonn, (2000) SFB-Report No. 642.

    Google Scholar 

  45. Koster F., Griebel M.: Orthogonal wavelets on the interval University Bonn, (1998) preprint No. 576.

    Google Scholar 

  46. Koster F., Griebel M.: Efficient Preconditioning of Linear Systems for the Finite Difference and the Collocation Method on Sparse Grids; University Bonn, (2000), in preparation.

    Google Scholar 

  47. Kunoth A.: Fast Iterative Solution of Saddle Point Problems in Optimal Control Based on Wavelets; University Bonn, (2000) SFB-Report.

    Google Scholar 

  48. Lippert R., Arias T., Edelman A.: Multi Scale Computation with Interpolating Wavelets; J. Comp. Physics 140 (1998), pp. 278–310.

    Article  MathSciNet  MATH  Google Scholar 

  49. Metais O., Lesieur M.: Turbulence and Coherent Structures; Kluwer (1991).

    Google Scholar 

  50. Michalke A.: On the inviscid instability of the hyperbolic tangent velocity profile; J. Fluid Mech. 19 (1964) 543–556.

    Article  MathSciNet  MATH  Google Scholar 

  51. Monzon L., Beylkin G., Hereman W.: Compactly supported wavelets based on almost interpolating and nearly linear phase filters (Coiflets); Appl. Comp. Harm. Anal., 7, (1999), pp. 184–210.

    Article  MathSciNet  MATH  Google Scholar 

  52. Marion M., Temam R.: Nonlinear Galerkin Methods; SIAM J. Num. Anal. 26 (1989), pp. 1139–1157.

    Article  MathSciNet  MATH  Google Scholar 

  53. Oswald P.: Multilevel Finite Element Approximation; Teubner Verlag (1994).

    Google Scholar 

  54. Prohl A.: Projection and Quasi-Compressibility Methods for Solving the In-compressible Navier-Stokes Equations; Teubner Verlag (1997).

    Google Scholar 

  55. Peyret R., Taylor T.: Computational Methods for Fluid Flow; Springer (1983).

    Google Scholar 

  56. Schiekofer T.: Die Methode der üniten Differenzen auf dünnen Gittern zur Lösung elliptischer und parabolischer PDEs; PhD thesis, Bonn (1998).

    Google Scholar 

  57. Schneider K., Farge M.: Numerical simulation of a temporally growing mixing layer in an adaptive wavelet basis; C.R.A.S. Paris, Ser. IIb, (2000)

    Google Scholar 

  58. Schneider K., Kevlahan N., Farge M.: Comparison of an Adaptive Wavelet Method and Nonlinearly Filtered Pseudospectral Methods for Two-Dimensional Turbulence; Theor. Comput. Fluid Dyn. 9, (1997), pp. 191–206

    Article  MATH  Google Scholar 

  59. Schneider R.: Multiskalen-und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme; Advances in Numerical Mathematics, Teubner Stuttgart (1998).

    Google Scholar 

  60. Sweldens W.: The lifting scheme: a construction of second generation wavelets; SIAM J. Math. Anal. 29,2 (1997), pp. 511–546.

    Article  MathSciNet  Google Scholar 

  61. Sweldens W., Piessens R: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions; SIAM J. Num. Anal. 36,3 (1994), pp. 377–412.

    MathSciNet  MATH  Google Scholar 

  62. Temlyakov V.: Approximation of periodic functions; Nova Science Publ. New York (1994).

    Google Scholar 

  63. Urban K.: On Divergence-free Wavelets; Adv. Comp. Math. Vol. 4 (1995).

    Google Scholar 

  64. Vasilyev O., Paolucci S.: Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs ; J. Comp. Phys. 138/1 (1997) pp. 16–56.

    Article  MathSciNet  MATH  Google Scholar 

  65. Verfurth R.: A Review of a Posteriori Error Estimation and Adaptive MeshRefinement Techniques; Teubner Verlag (1996).

    Google Scholar 

  66. Vreugdenhil C.B., Koren B.: Numerical methods for Advection-Diffusion Problems; Notes on Numerical Fluid Mechanics Vol. 45, Vieweg Verlag (1993).

    Google Scholar 

  67. Zienkiewicz O., Wu J.: Incompressibility without tears — how to avoid restrictions of mixed formulations; Int. J. Numer. Meth. Eng. Vol 32 (1991), pp. 1189–1203.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griebel, M., Koster, F. (2000). Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations. In: Málek, J., Nečas, J., Rokyta, M. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57308-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57308-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67786-4

  • Online ISBN: 978-3-642-57308-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics