Skip to main content

The Dynamical Systems Approach to the Navier-Stokes Equations of Compressible Fluids

  • Chapter
Advances in Mathematical Fluid Mechanics

Abstract

We develop a dynamical system theory for the Navier-Stokes equations of isentropic compressible fluid flows in three space dimensions. Such a theory is based on a priori estimates, asymptotic compactness of solutions and an exact description of propagation of oscillations in the density component. The abstract theory yields several results concerning the long-time behaviour of solutions, in particular, the convergence towards a stationary state of a potential flow is proved.

. . . what we call objective reality is, in the last analysis, that which is common to several thinking beings, and could be common to all; this common part, we will see, can be nothing but the harmony expressed by mathematical laws. H. Poincare, La valeur de la science, p. 9.

The work was supported by Great 201/98/1450 GA ČR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. N. Antontsev, A. V. Kazhikhov, and V. N. Monachov: Krajevyje zadaci mechaniki neodnorodnych zidkostej. Novosibirsk, 1983.

    Google Scholar 

  2. A. V. Babin and M. I. Vishik: Attractors of evolution equations. North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  3. J. M. Ball: Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sei., 7:475–502, 1997.

    Article  MATH  Google Scholar 

  4. M. E. Bogovskii: Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev, 80(1):5–40, 1980.

    MathSciNet  Google Scholar 

  5. W. Borchers and H. Sohr: On the equation rotv = g and divu = f with zero boundary conditions. Hokkaido Math. J., 19:67–87, 1990.

    MathSciNet  MATH  Google Scholar 

  6. R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes: Compensated compactness and Hardy spaces. J. Math. Pures Appl., 72:247–286, 1993.

    MathSciNet  MATH  Google Scholar 

  7. R. Coifman and Y. Meyer: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212:315–331, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Constantin, C. Foias, and R. Temam: Attractors representing turbulent flows. Mem. Amer. Math. Soc. 53, Providence, 1985.

    Google Scholar 

  9. R. J. DiPerna and P.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98:511–547, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Feireisl: Global attractors for the Navier-Stokes equations of three-dimensional compressible flow. C. R. Acad. Sei. Paris, Sér. I, 1999. Submitted.

    Google Scholar 

  11. E. Feireisl: Propagation of oscillations, complete trajectories and attractors for compressible flows. Archive Rational Mech. Anal., 2000. Submitted.

    Google Scholar 

  12. E. Feireisl and H. Petzeltová: Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of compressible fluid. J. Differential Equations, 1999. Submitted.

    Google Scholar 

  13. E. Feireisl and H. Petzeltová: Bounded absorbing sets for the Navier-Stokes equations of compressible fluid. Commun. Partial Differential Equations, 1999. To appear.

    Google Scholar 

  14. E. Feireisl and H. Petzeltová: Zero-velocity-limit solutions to the Navier-Stokes equations of compressible fluid revisited. Navier-Stokes equations and applications, Proceedings, Ferrara, 1999. Submitted.

    Google Scholar 

  15. E. Feireisl and H. Petzeltová: On compactness of solutions to the Navier-Stokes equations of compressible flow. J. Differential Equations, 163(l):57–74, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Feireisl and H. Petzeltová: On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations, 25(3–4):755–767, 2000.

    Article  MATH  Google Scholar 

  17. C. Foias and R. Temam: The connection between the Navier-Stokes equa-tions, dynamical systems and turbulence. In Directions in Partial Differential Equations, Academic Press, New York, pages 55–73, 1987.

    Google Scholar 

  18. G. P. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations, I. Springer-Verlag, New York, 1994.

    Book  Google Scholar 

  19. J. K. Hale: Asymptotic behavior of dissipative systems. Amer. Math. Soc, 1988.

    Google Scholar 

  20. D. Hoff: Global existence for ID compressible, isentropic Navier-Stokes equa-tions with large initial data. Trans. Amer. Math. Soc., 303:169–181, 1987.

    MathSciNet  MATH  Google Scholar 

  21. D. HofF: Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differential Equations, 120:215–254, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Hoff and M. Ziane: Compact attractors for the Navier-Stokes equations of one-dimensional compressible flow. CR. Acad. Sei. Paris, Sér I., 328:239–244, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. A. Ladyzhenskaya: The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, 1969.

    MATH  Google Scholar 

  24. C. Li, A. Mcintosh, K. Zhang, and Z. Wu: Compensated compactness, para-commutators and Hardy spaces. J. Fund. Anal., 150:289–306, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.-L. Lions: Compacité des solutions des équations de Navier-Stokes compressible isentropiques. C.R. Acad. Sei. Paris, Ser I., 317:115–120, 1993.

    MATH  Google Scholar 

  26. P.-L. Lions: Mathematical topics in fluid dynamics, Vol.1, Incompressible models. Oxford Science Publication, Oxford, 1996.

    Google Scholar 

  27. P.-L. Lions: Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford, 1998.

    Google Scholar 

  28. P.-L. Lions: Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet. C.R. Acad. Sei. Paris, Ser I., 328:659–662, 1999.

    Article  MATH  Google Scholar 

  29. J. Málek and J. Nečas: A finite-dimensional attractor for the three dimensional flow of incompressible fluid. J. Differential Equations, 127:498–518, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Málek and D. Pražák: Large time behavior via the method of 1-trajectories. J. Differential Equations, 2000. Submitted.

    Google Scholar 

  31. A. Matsumura and T. Nishida: The initial value problem for the equations of motion of compressible and heat conductive fluids. Comm. Math. Phys., 89:445–464, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. R. Sell: Global attractors for the three-dimensional Navier-Stokes equations. J. Dynamics Differential Equations, 8(l):1–33, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Serre: Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. CR. Acad. Sei. Paris, 303:639–642, 1986.

    MATH  Google Scholar 

  34. D. Serre: Variation de grande amplitude pour la densité d’un fluid viscueux compressible. Physica D, 48:113–128, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Temam: Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feireisl, E. (2000). The Dynamical Systems Approach to the Navier-Stokes Equations of Compressible Fluids. In: Málek, J., Nečas, J., Rokyta, M. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57308-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57308-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67786-4

  • Online ISBN: 978-3-642-57308-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics