Skip to main content

Abstract

The Navier-Stokes equations did not yet exist when J. Fourier gave the explicit solution of the heat equation

$$\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} - \Delta u = f} \hfill \\ {u(0) = {{u}_{0}}.} \hfill \\ \end{array} } \right.$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann: On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 16–98.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Amann: Remarks on the strong solvability of the Navier-Stokes equations, preprint (2000), 1–6.

    Google Scholar 

  3. P. Auscher et P. Tchamitchian: Espaces critiques pour le Systeme des équations de Navier-Stokes incompressibles, preprint de l’Universite de Picardie Jules Verne (1999).

    Google Scholar 

  4. C. Bardos: Prom molecules to turbulence. An overview of multiscale analysis in fluid dynamics, Advances topics in theoretical fluid mechanics, J. Mälek, J. Nečas, M. Rokyta (eds), Pitman Research Notes in Mathematics Series, Longman 392 (1998).

    Google Scholar 

  5. C. Bardos, F. Golse and D. Lavermore: Fluid dynamical limits of kinetic equations, I: Formal derivation, J. Stat. Physics 63 (1991), 323–344.

    Article  Google Scholar 

  6. C. Bardos, F. Golse and D. Lavermore: Fluid dynamical limits of kinetic equations, II: Convergence Proofs, Comm. Pures et Appl. Math. 46 (1993), 667–753.

    Article  MATH  Google Scholar 

  7. C. Bardos, F. Golse and D. Lavermore: Acoustic and Stokes limits for the Boltzmann equation, C.R.A.S.P. 327 (1998), 323–328.

    MATH  Google Scholar 

  8. C. Bardos and S. Ukai: The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Mod. Meth. Appl. Sc. 1(2) (1991), 235–257.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. A. Barraza: Self-similar solutions in weak L p spaces of the Navier-Stokes equations, Rev. Mat. Iberoamericana 12 (1996), 411–439.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. A. Barraza: Regularity and stability for the solutions of the Navier-Stokes equations in Lorentz spaces, Nonlinear Anal. Ser. A: Theory Methods 35(6) (1999), 747–764.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ben-Artzi: Global solutions of two-dimensional Navier-Stokes and Euler equation, Arch. Rat. Mech. Anal. 128 (1994), 329–358.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. V. Besov: Investigation of a family of functional spaces connected with embedding and extension theorems, Trudy Mat. Inst. Steklov 60 (1961) (in Russian).

    Google Scholar 

  13. H. A. Biagioni, L. Cadeddu and T. Gramchev: Semilinear parabolic equations with singular initial data in anisotropic weighted spaces, Diff. and Integral Equations 12 (1999), 613–636.

    MathSciNet  MATH  Google Scholar 

  14. H. A. Biagioni and T. Gramchev: Evolution PDE with elliptic dissipative terms: critical index for singular initial data, self-similar solutions and analytic regularity, C. R. Acad. Sei. Paris Ser. I Math. 327(1) (1998), 41–46.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Biler: The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Mathematica 114 (1995), 181–205.

    MathSciNet  MATH  Google Scholar 

  16. P. Biler: Local and global solutions of a nonlinear nonlocal parabolic problem (Warsaw, 1994), Gakuto Internat. Ser. Math. Sei. Appl., 7, Gakkötosho, Tokyo (1996), 49–66.

    Google Scholar 

  17. J.-M. Bony: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sei. Ecole Norm. Sup. 14(4) (1981), 209–246.

    MathSciNet  MATH  Google Scholar 

  18. H. Brezis: Remarks on the preceding paper by M. Ben-Artzi, Arch. Rat. Mech. Anal. 128(4) (1994), 359–360.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Brezis and T. Cazenave: A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. P. Calderön: Existence of weak solutions for the Navier-Stokes equations with initial data in L p, Trans. Amer. Math. Soc. 318(1) (1990), 179–200. Addendum, ibid. 201-207.

    MathSciNet  Google Scholar 

  21. C. P. Calderön: Initial values of solutions of the Navier-Stokes equations, Proc. Amer. Math. Soc. 117(3) (1993), 761–766.

    MathSciNet  Google Scholar 

  22. M. Cannone: Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur (1995).

    Google Scholar 

  23. M. Cannone: A generalisation of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana 13(3) (1997), 515–541.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Cannone: Nombres de Reynolds, stabilite et Navier-Stokes, Evolution Equations: Existence and Singularities, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa 52 (2000).

    Google Scholar 

  25. M. Cannone and Y. Meyer: Littlewood-Paley decomposition and the Navier-Stokes equations, Meth. and Appl. of Anal. 2 (1995), 307–319.

    MathSciNet  MATH  Google Scholar 

  26. M. Cannone, Y. Meyer et F. Planchon: Solutions auto-similaires des équations de Navier-Stokes in ℝ3, Exposé n. VIII, Séminaire X-EDP, Ecole Polytech-nique, (1994).

    Google Scholar 

  27. M. Cannone and F. Planchon: Self-similar solutions of the Navier-Stokes equations in ℝ3, Comm. Part. Diff. Eq. 21 (1996), 179–193.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Cannone and F. Planchon: On the regularity of the bilinear term for solutions of the incompressible Navier-Stokes equations in ℝ3, Rev. Mat. Iberoamericana (to appear) (2000).

    Google Scholar 

  29. M. Cannone and F. Planchon: Maximal function inequalities and Navier-Stokes equations, Investigations on the structure of solutions to partial differential equations (Japanese) (KyŌto, 1997). Sūrikaisekikenkyūsho KŌkyūroku 1036 (1998), 139–159.

    MathSciNet  MATH  Google Scholar 

  30. M. Cannone and F. Planchon: On the non stationary Navier-Stokes equations with an external force, Adv. in Diff. Eq. 4(5) (1999), 697–730.

    MathSciNet  MATH  Google Scholar 

  31. M. Cannone et F. Planchon: Functions de Lyapunov pour les équations de Navier-Stokes, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique (2000), 1–7.

    Google Scholar 

  32. M. Cannone and F. Planchon: More Lyapunov functions for the Navier-Stokes equations, submitted (2000).

    Google Scholar 

  33. M. Cannone, F. Planchon and M. E. Schonbek: Navier-Stokes equations in the half space, Comm. Part. Diff. Equat. (to appear) (2000).

    Google Scholar 

  34. M. Cannone, F. Planchon and M. E. Schonbek: Navier-Stokes equations in an exterior domain, (in preparation) (2000).

    Google Scholar 

  35. T. Cazenave and F. B. Weissler: Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Zeit. 228(1) (1998), 83–120.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Cazenave and F. B. Weissler: More self-similar solutions of the nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl. 5(3) (1998), 355–365.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Cazenave and F. B. Weissler: Scattering theory and self-similar solutions for the nonlinear Schrödinger equation, SIAM J. Math. Anal. 31 (2000), no. 3, 625–650 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Cercignani: The Boltzmann equation and its applications, Springer-Verlag, Berlin (1988).

    Book  MATH  Google Scholar 

  39. J.-Y. Chemin: Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20–28.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.-Y. Chemin: About Navier-Stokes system, Publ. Lab. Anal. Num. (Univ. Paris 6) R 96023 (1996), 1–43.

    Google Scholar 

  41. J.-Y. Chemin: Sur l’unicité dans le système de Navier-Stokes tridimensionnel, Exposé n. XXIV, Séminaire X-EDP, Ecole Poly technique, (1996–1997).

    Google Scholar 

  42. J.-Y. Chemin: Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Jour. d’Anal. Math. 77 (1997), 27–50.

    Article  MathSciNet  Google Scholar 

  43. J.-Y. Chemin: Fluides parfaits incompressibles, Astérisque, 230 1995; Perfect incompressible fluids. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications, 14., The Clarendon Press, Oxford University Press, New York (1998).

    Google Scholar 

  44. Z.-M. Chen and Z. Xin: Homogeneity Criterion on the Navier-Stokes equations in the whole spaces, preprint (1999).

    Google Scholar 

  45. P. Constantin: A few results and open problems regarding incompressible fluids, Notices of the AMS 42(6), 658–663.

    Google Scholar 

  46. R. Danchin: Existence globale dans des espaces critiques pour le Systeme de Navier-Stokes compressible, C.R.A.S.P. 328(8) (1999), 649–652.

    MathSciNet  MATH  Google Scholar 

  47. N. Depauw: Solutions peu régulières des équations d’Euler et Navier-Stokes incompressibles sur un domaine à bord, Ph.D. Thesis, Université de Paris Nord (1998).

    Google Scholar 

  48. N. Depauw: Personal communication (1998).

    Google Scholar 

  49. R. J. DiPerna, P.-L. Lions and Y. Meyer: L p-regularity of velocity averages, Ann. I.H.P. Anal. Non Lin. 8 (1991), 271–287.

    MathSciNet  MATH  Google Scholar 

  50. P. Federbush: Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219–248.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Federbush: Navier and Stokes meet the wavelet. II, Mathematical quantum theory. I. Field theory and many-body theory (Vancouver, BC, 1993), CRM Proc. Lecture Notes, Amer. Math. Soc, Providence, RI 7 (1994), 163–169.

    MathSciNet  Google Scholar 

  52. C. Foias and R. Temam: Self-similar Universal Homogeneous Statistical Solutions of the Navier-Stokes Equations, Comm. Math. Phys. 90 (1983), 187–206.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Frazier, B. Jawerth and G. Weiss: Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, 79, AMS, Providence.

    Google Scholar 

  54. J. Fourier: Théorie analytique de la chaleur, 1822, published in Œuvres de Fourier 1 (1888) Gauthiers-Villar et fils, Paris.

    Google Scholar 

  55. H. Fujita and T. Kato: On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269–315.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Furioli: Applications de l’analyse harmonique reelle a l’etude des equa-tions de Navier-Stokes et de Schrödinger non lineaire, Ph.D. Thesis, Universite d’Orsay (1999).

    Google Scholar 

  57. G. Furioli: Solutions auto-similaires pour les équations de Schrödinger non lineaires, en préparation (1999).

    Google Scholar 

  58. G. Furioli, P.-G. Lemarié-Rieusset et E. Terraneo: Sur l’unicité dans L 3(ℝ3) des solutions mild des équations de Navier-Stokes, C. R. Acad. Séi. Paris Ser. I Math. 325(12) (1997), 1253–1256.

    Article  MATH  Google Scholar 

  59. G. Furioli, P.-G. Lemarié-Rieusset et E. Terraneo: Unicité dans L 3(ℝ3) et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana (to appear) (2000).

    Google Scholar 

  60. Y. Giga: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq. 62 (1986), 186–212.

    Article  MathSciNet  Google Scholar 

  61. Y. Giga: Review of the paper by H. Brezis, “Remarks on the preceding paper by M. Ben-Artzi” Mathematical Reviews 96h:35149 (1996) [see, for the revised form, at the address http://klymene.mpim-bonn.mpg.de:80/msnpr-html/re view.search, html].

    Google Scholar 

  62. Y. Giga and M.-H. Giga: Nonlinear Partial Differential Equations-Asymptotic Behaviour of Solutions and Self-Similar Solutions (in Japanese), Kyöritsu Shuppan, Tokyo, 1999.

    Google Scholar 

  63. Y. Giga and T. Miyakawa: Solutions in L r of the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 89 (1985), 267–281.

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Giga and T. Miyakawa: Navier-Stokes flows in ℝ3 with measures as initial vorticity and the Morrey spaces, Comm. PDE 14 (1989), 577–618.

    Article  MathSciNet  MATH  Google Scholar 

  65. Y. Giga, K. Inui and S. Matsui: On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quaderni di Matematica, vol. 4, Advances in Fluid Dynamics, edited by P. Maremonti (1999).

    Google Scholar 

  66. F. Golse: On the self-similar solutions of the Broadwell model for a discrete velocity gas, Comm. Part. Diff. Eq. 12 (1987), 315–326.

    Article  MathSciNet  MATH  Google Scholar 

  67. A. Haraux and F.B. Weissler: Non-uniqueness for a semi-linear initial value problem, Indiana Univ. Math. J. 31 (1985), 167–189.

    Article  MathSciNet  Google Scholar 

  68. D._D. Joseph: Stability of fluid motions (2 vols), Springer Tracts in Natural Philosophy, Berlin, Springer Verlag (1976).

    Google Scholar 

  69. G. Karch: Scaling in nonlinear parabolic equations, Jour, of Math. Anal. Appl. 234 (1999), 534–558.

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Kato: Strong L p solutions of the Navier-Stokes equations in ℝm with applications to weak solutions, Math. Zeit. 187 (1984), 471–480.

    Article  MATH  Google Scholar 

  71. T. Kato: Liapunov functions and monotonicity in the Navier-Stokes equation, Lecture Notes in Mathematics 1450 (1990), 53–63.

    Article  Google Scholar 

  72. T. Kato: Well-posedness nitsuite, (in Japanese), Sūgaku 48(3) (1996), 298–300.

    MATH  Google Scholar 

  73. T. Kato and H. Fujita: On the non-stationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243–260.

    MathSciNet  MATH  Google Scholar 

  74. T. Kato and G. Ponce: The Navier-Stokes equations with weak initial data, Int. Math. Res. Notes 10 (1994), 435–444.

    Article  MathSciNet  Google Scholar 

  75. T. Kawanago: Stability of global strong solutions of the Navier-Stokes equations, Nonlinear evolution equations and their applications, (Japanese) Sūrikaisekikenkyūsho KŌkyūroku 913 (1995), 141–147.

    MathSciNet  Google Scholar 

  76. T. Kawanago: Stability estimate of strong solutions for the Navier-Stokes system and its applications, Electron. J. Differential Equations (electronic) (see: http://ejde.math.swt.edu/Volumes/1998/15-Kawanago/abstr.html) 15 (1998), 1–23.

    MathSciNet  Google Scholar 

  77. H. Koch and D. Tataru: Well-posedness for the Navier-Stokes equations, preprint (see: http://www.math.nwu.edu/~tataru/nas.html) (1999), 1–14.

    Google Scholar 

  78. H. Kozono and M. Yamazaki: Semilinear heat equations and the Navier-Stokes equation with distributions as initial data, C. R. Acad. Sei. Paris Ser. I Math. 317 (1993), 1127–1132.

    MathSciNet  MATH  Google Scholar 

  79. H. Kozono and M. Yamazaki: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. P.D.E. 19 (1994), 959–1014.

    Article  MathSciNet  MATH  Google Scholar 

  80. H. Kozono and M. Yamazaki: The Navier-Stokes equation with distributions as initial data and application to self-similar solutions, New trends in microlocal analysis (Tokyo, 1995) (1997), 125–141.

    Google Scholar 

  81. H. Kozono and M. Yamazaki: The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Ind. Univ. Math. Journ. 44 (1995), 1307–1336.

    MathSciNet  MATH  Google Scholar 

  82. H. Kozono and M. Yamazaki: The exterior problem for the non-stationary Navier-Stokes equation with data in the space L n∞, C. R. Acad. Séi. Paris Ser. I Math. 320(6) (1995), 685–690.

    MathSciNet  MATH  Google Scholar 

  83. H. Kozono and M. Yamazaki: Exterior problem for the stationary NavierStokes equations in the Lorentz space, Math. Ann. 310(2) (1998), 279–305.

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Kozono and M. Yamazaki: On a larger class of stable solutions to the Navier-Stokes equations in exterior domains, Math. Z. 228 (1998), 751–785.

    Article  MathSciNet  MATH  Google Scholar 

  85. H. Kozono and Y. Taniuchi: Bilinear estimates in BMO and the Navier-Stokes equations, preprint (1999).

    Google Scholar 

  86. H. Kozono and Y. Taniuchi: Limiting case of the Sobolev inequality in BMO, with application to the Euler equation, preprint (1999).

    Google Scholar 

  87. L. D. Landau and E. M. Lifchitz: Fluid mechanics, Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. (1959).

    Google Scholar 

  88. Y. Le Jan et A. S. Sznitman: Cascades aleatoires et equations de NavierStokes, C. R. Acad. Sei. Paris 324(7) (1997), 823–826.

    Article  MATH  Google Scholar 

  89. Y. Le Jan and A. S. Sznitman: Stochastic cascades and 3-dimensional NavierStokes equations, Probab. Theory Related Fields 109(3) (1997), 343–366.

    Article  MathSciNet  MATH  Google Scholar 

  90. P.-G. Lemarie-Rieusset: Some remarks on the Navier-Stokes equations in ℝ3, J. Math. Phys 39(8) (1998), 4108–4118.

    Article  MathSciNet  MATH  Google Scholar 

  91. P.-G. Lemarie-Rieusset: Solutions faibles d’energie infinie pour les equations de Navier-Stokes dans ℝ3, C. R. Acad. Sei. Paris Ser. I 328(8) (1999), 1133–1138.

    Article  MathSciNet  MATH  Google Scholar 

  92. P.-G. Lemarie-Rieusset: Weak infinite-energy solutions for the Navier-Stokes equations in ℝ3, preprint (1999).

    Google Scholar 

  93. P.-G. Lemarie-Rieusset: Cinq petits theoremes d’unicite L 3 des solutions des equations de Navier-Stokes dans ℝ3, Notes distributes au Colloque Equations de Navier-Stokes et Analyse Microlocale, CIRM, Luminy, Marseille, (9–13 novembre 1999), 1–9.

    Google Scholar 

  94. J. Leray: Etudes de diverses equations integrales non lineaires et de quelques problemes que pose 1’hydrodynamique, J. Math. Pures et Appl. 12 (1933), 1–82.

    MATH  Google Scholar 

  95. J. Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248.

    Article  MathSciNet  MATH  Google Scholar 

  96. J. Leray: Aspects de la mecanique theorique des fluides, La Vie des Sciences, Comptes Rendus, Serie Generale, II, 11(4) (1994), 287–290.

    MathSciNet  MATH  Google Scholar 

  97. P.-L. Lions et N. Masmoudi: Unicite des solutions faibles de Navier-Stokes dans L N(ω), C. R. Acad. Sei. Paris Ser. I Math. 327 (1998), 491–496.

    Article  MathSciNet  MATH  Google Scholar 

  98. P.-L. Lions and N. Masmoudi: Prom Boltzmann equations to Fluid Mechanics equations, CIRM, Luminy, Marseille, (20–24, mars 2000).

    Google Scholar 

  99. J. Mälek, J. Neöas, M. Pokorny and M. E. Schonbek: On possible singular solutions to the Navier-Stokes equations, Math. Nachr. 199 (1999), 97–114.

    Article  MathSciNet  Google Scholar 

  100. R. May: These de Doctorat de l’Universite d’Evry Val d’Essonne (en preparation, 2000).

    Google Scholar 

  101. Y. Meyer: Large time behavior and self-similar solutions of some semilinear diffusion equations, Harmonic analysis and partial differential equations (Chicago, IL, 1996), 241–261, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, (1999).

    Google Scholar 

  102. Y. Meyer: New estimates for Navier-Stokes equations (manuscript), Colloque en l’honneur de J.-L. Lions ä l’occasion de son 70e anniversaire, Paris 26–27 mai 1998, Auditorium du CNRS, 3 rue Michel-Ange, Paris XVIe (1998).

    Google Scholar 

  103. Y. Meyer: Wavelets, paraproducts and Navier-Stokes equations, Current developments in Mathematics 1996, International Press, 105-212 Cambridge, MA 02238-2872 (1999).

    Google Scholar 

  104. T. Miyakawa: Hardy spaces of solenoidal vector fields, with applications to the Navier-Stokes equations, Kyushu J. Math. 50(1) (1996), 1–64.

    Article  MathSciNet  MATH  Google Scholar 

  105. T. Miyakawa: Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in ℝn, Funkcial. Ekvac. 41(3) (1998), 383–434.

    MathSciNet  MATH  Google Scholar 

  106. T. Miyakawa: On space-time decay properties of nonstationary incompressible Navier-Stokes Flows in ℝn, preprint (1999).

    Google Scholar 

  107. S. Monniaux: Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p-regularity, C. R. Acad. Sei. Paris Ser. I Math. 328(8) (1999), 663–668.

    Article  MathSciNet  MATH  Google Scholar 

  108. S. Montgomery-Smith: Finite time blow up for a Navier-Stokes like equation, preprint (see http://www.math.missouri.edu/~/stephen) (2000).

    Google Scholar 

  109. C. L. M. H. Navier: Memoire sur les lois du mouvement des fluides, Mem. Acad. Sei. Inst. France 6 (1822), 389–440.

    Google Scholar 

  110. J. Necas, M. Rüzicka et V. Sveräk: Sur une remarque de J. Leray concernant la construction de solutions singulieres des equations de Navier-Stokes, C. R. Acad. Sci. Paris Sär. I Math. 323(3) (1996), 245–249.

    MATH  Google Scholar 

  111. J. Necas, M. Rüzicka and V. Sveräk: On Leray self-similar solutions of the Navier-Stokes equations, Acta Math. 176(2) (1996), 283–294.

    Article  MathSciNet  MATH  Google Scholar 

  112. H. Okamoto: Exact solutions of the Navier-Stokes equations via Leray’s scheme, Proceedings of Miniconference of Partial Differential Equations and Applications. Seoul Nat. Univ., Seoul, 1997. Lecture Notes Ser. 38 (1997), 1–30.

    Google Scholar 

  113. H. Okamoto: Exact solutions of the Navier-Stokes equations via Leray’s scheme, Japan J. Indust. Appl. Math. 14(2) (1997), 169–197.

    Article  MathSciNet  Google Scholar 

  114. F. Oru: Role des oscillations dans quelques problemes d’analyse non lineaire, Ph.D. Thesis, ENS Cachan (1998).

    Google Scholar 

  115. H. Pecher: Self-similar and asymptotically self-similar solutions of nonlinear wave equations, Math. Ann. 316 (2000), no. 2, 259–281.

    Article  MathSciNet  MATH  Google Scholar 

  116. F. Planchon: Solutions Globales et Comportement Asymptotique pour les Equations de Navier-Stokes, Ph.D. Thesis, Ecole Poly technique, France (1996).

    Google Scholar 

  117. F. Planchon: Global strong solutions in Sobolev or Lebesgue spaces for the incompressible Navier-Stokes equations in ℝ3, Ann. Inst. H. Poinc. 13 (1996), 319–336.

    MathSciNet  MATH  Google Scholar 

  118. F. Planchon: Convergence de solutions des equations de Navier-Stokes vers des solutions auto-similaires, Expose n. III, Seminaire X-EDP, Ecole Polytechnique (1996).

    Google Scholar 

  119. F. Planchon: Asymptotic behavior of global solutions to the Navier-Stokes equations in ℝ3, Rev. Mat. Iberoamericana 14(1) (1998), 71–93.

    Article  MathSciNet  MATH  Google Scholar 

  120. F. Planchon: Solutions auto-similaires et espaces de donnees initiales pour l’equation de Schrödinger, C. R. Acad. Sci. Paris 328 (1999), 1157–1162.

    Article  MathSciNet  MATH  Google Scholar 

  121. F. Planchon: On the Cauchy problem in Besov space for a non-linear Schrödinger equation, preprint (1999).

    Google Scholar 

  122. F. Planchon: Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations. Journees “Equations aux Derivees Partielles” (Saint-Jean-de-Monts, 1999), Exp. No. IX, 11 pp., Univ. Nantes, Nantes (1999).

    Google Scholar 

  123. F. Planchon: Sur un inegalite de type Poincare, C. R. Acad. Sei. Paris Ser. I Math. 330 (2000), no. 1, 21–23.

    Article  MathSciNet  MATH  Google Scholar 

  124. F. Ribaud: Analyse de Littlewood-Paley pour la Resolution d’Equations Paraboliques Semi-lineaires, Ph.D. Thesis, Universite d’Orsay, France (1996).

    Google Scholar 

  125. F. Ribaud: Probleme de Cauchy pour les equations paraboliques semi-lineaires avec donnees dans H sp (ℝn), CR. Acad. Sci. Paris 322(1) (1996), 25–30.

    MathSciNet  MATH  Google Scholar 

  126. F. Ribaud: Semilinear parabolic equations with distributions as initial data, Discrete Contin. Dynam. Systems 3(3) (1997), 305–316.

    Article  MathSciNet  MATH  Google Scholar 

  127. F. Ribaud: Cauchy problem for semilinear parabolic equations with initial data in H sp (ℝn) spaces, Rev. Mat. Iberoamericana 14(1) (1998), 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  128. F. Ribaud and A. Youssfi: Regular and self-similar solutions of nonlinear Schrödinger equations, J. Math. Pures Appl. 77(10) (1998), 1065–1079.

    MathSciNet  MATH  Google Scholar 

  129. F. Ribaud et A. Youssfi: Solutions globales et solutions auto-similaires de l’equation des ondes non lineaire, C. R. Acad. Sci. Paris 329(1) (1999), 33–36.

    Article  MathSciNet  MATH  Google Scholar 

  130. F. Ribaud and A. Youssfi: Self-similar solutions of the nonlinear wave equation, (to appear) (1999).

    Google Scholar 

  131. F. Ribaud and A. Youssfi: Global solutions and self-similar solutions of nonlinear wave equation, preprint (1999).

    Google Scholar 

  132. G. Rosen: Navier-Stokes initial value problem for boundary-free incompressible fluid flow, Jour. Phys. Fluid 13 (1970), 2891–2903.

    Article  MATH  Google Scholar 

  133. S. Smale: Mathematical problems for the next century, The Mathematical Intelligencer 20(2) (1998), 7–15.

    Article  MathSciNet  MATH  Google Scholar 

  134. M. Taylor: Analysis on Morrey spaces and applications to the Navier-Stokes and other evolution equations, Comm. Part. Diff. Eq. 17 (1992), 1407–1456.

    Article  MATH  Google Scholar 

  135. R. Temam: Some developments on Navier-Stokes equations in the second half of the 20th century, Development of Mathematics 1950–2000, J.-P. Pier (ed.) (2000).

    Google Scholar 

  136. E. Terraneo: Applications de certains espaces fonctionnels de l’analyse harmonique reelle aux equations de Navier-Stokes et de la chaleur non-lineaire, Ph.D. Thesis, Universite d’Evry Val d’Essonne (1999).

    Google Scholar 

  137. E. Terraneo: Sur la non-unicite des solutions faibles de l’equation de la chaleur non lineaire avec non-linearite u 3, C. R. Acad. Sei. Paris Ser. I Math. 328(9) (1999), 759–762.

    Article  MathSciNet  MATH  Google Scholar 

  138. G. Tian and Z. Xin: One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal. 11(1) (1998), 135–145.

    MathSciNet  MATH  Google Scholar 

  139. T. P. Tsai: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rational Mech. Anal 143(1) (1998), 29–51. Erratum, ibid. 147 (1999), 363.

    Article  MathSciNet  MATH  Google Scholar 

  140. S. Tourville: An analysis of Numerical Methods for Solving the two-dimensional Navier-Stokes Equations, Ph. D. Thesis, Washington University of St. Louis, MO (1998).

    Google Scholar 

  141. S. Tourville: Existence and uniqueness of solutions for a modified NavierStokes equation in R 2, Comm. Partial Differential Equations 23(1–2) (1998), 97–121.

    MathSciNet  MATH  Google Scholar 

  142. S. Ukai: A solution formula for the Stokes equation in ℝ n+ , Comm. in Pure and Appl. Math. 15 (1987), 611–621.

    Article  MathSciNet  Google Scholar 

  143. W. von Wahl: The equations of Navier-Stokes and abstract parabolic equations, Aspect der Mathematik, Vieweg ⇐p; Sohn, Wiesbaden (1985).

    Google Scholar 

  144. K. A. Voss: Self-similar Solutions of the Navier-Stokes Equations, Ph.D. Thesis, Yale University (1996).

    Google Scholar 

  145. M. Vishik: Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal. 145 (1998), 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  146. M. Vishik: Incompressible flows of an ideal fluid with vorticity in bordeline spaces of Besov type, Ann. Sei. Ecole Norm. Sup. (4)32 (1999), no. 6, 769–812.

    MathSciNet  Google Scholar 

  147. M. Vishik: Incompressible flows of an ideal fluid with unbounded vorticity, preprint, IHES/M/98/75 (1998).

    Google Scholar 

  148. F. B. Weissler: The Navier-Stokes initial value problem in L p, Arch. Rat. Mech. Anal. 74 (1981), 219–230.

    Article  MathSciNet  Google Scholar 

  149. M. Wiegner: The Navier-Stokes equations — A neverending challenge?, Jahresber. Deutsch. Math.-Verein, 101 (1999), 1–25.

    MathSciNet  MATH  Google Scholar 

  150. M. Yamazaki: Shuju no kansükükan ni okeru Navier-Stokes houteishiki, (in Japanese) Sügaku 51(3) (1999), 291–308 (English translation to appear).

    Google Scholar 

  151. V. I. Yudovich: The Linearization Method in Hydro dynamical Stability Theory, Trans. Math. Mon. Amer. Math. Soc. Providence, RI 74 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cannone, M. (2000). Viscous Flows in Besov Spaces. In: Málek, J., Nečas, J., Rokyta, M. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57308-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57308-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67786-4

  • Online ISBN: 978-3-642-57308-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics