Skip to main content

Immunology of Cancer

  • Chapter
Surgery
  • 779 Accesses

Abstract

Acentral hypothesis in tumor immunology is that the progression of cancer represents, in some measure, a failure of the host immune system to control tumor growth. The belief that immunological control of cancer is possible is commonly accepted among the lay community, but it has not been fully accepted within the medical community. Increasingly, however, host-tumor interactions that affect the progression of cancer are being defined, and clinical trials are providing evidence for the benefit of immunologic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burnet FM. The concept of immunological surveillance. Progr Exp Tumor Res 1970; 13: 1–27.

    PubMed  CAS  Google Scholar 

  2. Ehrlich P. Uber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneesk 1909; 5: 273–290.

    Google Scholar 

  3. Fagerherg J, Ragnhammar P, Liljefors M, Hjelm AL, Mellstedt H, Frodin JE. Humoral anti-idiotypic and anti-anti-idiotypic immune response in cancer patients treated with monoclonal antibody 17-1A. Cancer Immunol Immunother 1996; 42: 81–87.

    Article  Google Scholar 

  4. Scott AM, Welt S. Antibody-based immunological therapies. Curr Opin Immunol 1997; 9: 717–722.

    Article  PubMed  CAS  Google Scholar 

  5. Delaloye AB, Delaloye B. Radiolabelled monoclonal antibodies in tumour imaging and therapy: out of fashion? Eur J Nucl Med 1995; 22: 571–580.

    Article  PubMed  CAS  Google Scholar 

  6. Zuckier LS, DeNardo GL. Trials and tribulations: ontological antibody imaging comes to the fore. Semin Nucl Med 1997; 27: 10–29.

    Article  PubMed  CAS  Google Scholar 

  7. Sirisriro R, Podoloff DA, Patt YZ, et al. 99Tcm-IMMU4 imaging in recurrent colorectal cancer: efficacy and impact on surgical management. Nucl Med Commun 1996; 17: 568–576.

    Article  PubMed  CAS  Google Scholar 

  8. LaValle GJ, Martinez DA, Sobel D, DeYoung B, Martin EW Jr. Assessment of disseminated pancreatic cancer: a comparison of traditional exploratory laparotomy and radioimmunoguided surgery. Surgery 1997; 122: 867–871.

    Article  PubMed  CAS  Google Scholar 

  9. Schneebaum S, Papo J, Graif M, Baratz M, Baron J, Skornik Y. Radioimmunoguided surgery benefits for recurrent colorectal cancer. Ann Surg Oncol 1997; 4: 371–376.

    Article  PubMed  CAS  Google Scholar 

  10. Stigbrand T, Ullen A, Sandstrom P, et al. Twenty years with monoclonal antibodies: state of the art—where do we go? Acta Oncol 1996; 35: 259–265.

    Article  PubMed  CAS  Google Scholar 

  11. Gamble AR, Bell JA, Ronan JE, Pearson D, Ellis IO. Use of tumour marker immunoreactivity to identify primary site of metastatic cancer. BMJ 1993; 306: 295–298.

    Article  PubMed  CAS  Google Scholar 

  12. Mottolese M, Venturo I, Donnorso RP, Curcio CG, Rinaldi M, Natali PG. Use of selected combinations of monoclonal antibodies to tumor associated antigens in the diagnosis of neo-plastic effusions of unknown origin. Eur J Cancer Clin Oncol 1988; 24: 1277–1284.

    Article  PubMed  CAS  Google Scholar 

  13. Gold DV, Cardillo T, Vardi Y, Blumenthal R. Radioimmunotherapy of experimental pancreatic cancer with 131I-labeled monoclonal antibody PAM4. Int J Cancer 1997; 71: 660–667.

    Article  PubMed  CAS  Google Scholar 

  14. Riethmuller G, Holz E, Schlimok G, et al. Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998; 16: 1788–1794.

    PubMed  CAS  Google Scholar 

  15. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xeno-grafts. Cancer Res 1998; 58: 2825–2831.

    PubMed  CAS  Google Scholar 

  16. McNeil C. Herceptin raises its sights beyond advanced breast cancer. J Natl Cancer Inst 1998; 90: 882–883.

    Article  PubMed  CAS  Google Scholar 

  17. Arteaga CL, Winnier AR, Poirier MC, et al. P185c-erbB-2 signaling enhances cisplatin-induced cytotoxicity in human breast carcinoma cells: association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res 1994; 54: 3758–3765.

    PubMed  CAS  Google Scholar 

  18. Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1993; 85: 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  19. Baselga J, Norton L, Coplan K, Shalaby R, Mendelsohn J. Antitumor activity of paclitaxel in combination with anti-growth factor receptor monoclonal antibodies in breast cancer xeno-grafts. Proc Am Assoc Cancer Res 1994; 35: 2262.

    Google Scholar 

  20. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–2833.

    PubMed  CAS  Google Scholar 

  21. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 1997; 94: 1914–1918.

    Article  PubMed  CAS  Google Scholar 

  22. Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol 1997; 9: 684–693.

    Article  PubMed  Google Scholar 

  23. Jager E, Chen YT, Drijfhout JW, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NYESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998; 187: 265–270.

    Article  PubMed  CAS  Google Scholar 

  24. Tureci O, Sahin U, Schobert I, et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996; 56: 4766–4772.

    PubMed  CAS  Google Scholar 

  25. Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol 1987; 138: 1657–1659.

    PubMed  CAS  Google Scholar 

  26. Kageshita T, Wang Z, Calorini L, et al. Selective loss of human leukocyte class I allospecificities and staining of melanoma cells by monoclonal antibodies recognizing monomorphic determinants of class I human leukocyte antigens. Cancer Res 1993; 53: 3349–3354.

    PubMed  CAS  Google Scholar 

  27. Khanna R. Tumor surveillance: missing peptides and MHC molecules Immunol Cell Biol 1998; 76: 20–26.

    Article  PubMed  CAS  Google Scholar 

  28. Steffens U, Vyas Y, Dupont B, Selvakumar A. Nucleotide and amino acid sequence alignment for human killer cell inhibitory receptors (KIR), 1998. Tissue Antigens 1998; 51: 398–413.

    Article  PubMed  CAS  Google Scholar 

  29. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997; 7: 753–763.

    Article  PubMed  CAS  Google Scholar 

  30. Bakker AB, Phillips JH, Figdor CG, Lanier LL. Killer cell in-hibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL. J Immunol 1998; 160: 5239–5245.

    PubMed  CAS  Google Scholar 

  31. Mingari MC, Moretta A, Moretta L. Regulation of KIR expression in human T cells: a safety mechanism that may impair protective T-cell responses. Immunol Today 1998; 19: 153–157.

    Article  PubMed  CAS  Google Scholar 

  32. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6: 199–208.

    Article  PubMed  CAS  Google Scholar 

  33. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrow. Science 1976; 193: 1007–1008.

    Article  PubMed  CAS  Google Scholar 

  34. Kedar E, Ikejiri BL, Gorelik E, Herbermann RB. Natural cell-mediated cytotoxicity in vitro and inhibition of tumor growth in vivo by murine lymphoid cells cultured with T cell growth factor (TCGF). Cancer Immunol Immunother 1982; 13: 14–23.

    Article  PubMed  CAS  Google Scholar 

  35. Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985; 161: 1169–1188.

    Article  PubMed  CAS  Google Scholar 

  36. Eberlein TJ, Rosenstein M, Rosenberg SA. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 1982; 156: 385–397.

    Article  PubMed  CAS  Google Scholar 

  37. Fisher RI, Coltman CA Jr, Doroshow JH, et al. Metastatic renal cell cancer treated with interleukin-2 and lymphokine-activated killer cells: a phase II clinical trial. Ann Intern Med 1988; 108: 518–523.

    Article  PubMed  CAS  Google Scholar 

  38. Dutcher JP, Creekmore S, Weiss GR, et al. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol 1989; 7: 477–485.

    PubMed  CAS  Google Scholar 

  39. Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994; 271: 907–913.

    Article  PubMed  CAS  Google Scholar 

  40. Gross L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 1943; 3: 326–333.

    Google Scholar 

  41. Klarnet JP, Matis LA, Kern DE, et al. Antigen-driven T cell clones can proliferate in vivo, eradicate disseminated leukemia, and provide specific immunologic memory. J Immunol 1987; 138: 4012–4017.

    PubMed  CAS  Google Scholar 

  42. Vose BM, Bonnard GD. Human tumor antigens defined by cytotoxicity and proliferative responses of cultured lymphoid cells. Nature 1982; 296: 359–361.

    Article  PubMed  CAS  Google Scholar 

  43. Slingluff CL, Darrow TL, Vervaert C, Quinn-Allen MA, Seigler HF. Human cytotoxic T-cells specific for autologous melanoma successfully generated from lymph node cells in seven consecutive cases. J Natl Cancer Inst 1988; 80: 1016–1026.

    Article  PubMed  Google Scholar 

  44. Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86: 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  45. Darrow TL, Slingluff CL, Seigler HF. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes: evidence for shared tumor antigens. J Immunol 1989; 142: 3329–3335.

    PubMed  CAS  Google Scholar 

  46. Slovin SF, Lackman RD, Ferrone S, et al. Cellular immune response to human sarcomas: cytotoxic T cell clones reactivity with autologous sarcomas, I: Development, phenotype, and specificity J Immunol 1986; 137: 3042–3048.

    CAS  Google Scholar 

  47. Van Bieck GM, Nathenson SG. Isolation of endogenously processed immunodominant viral peptides from the class I H-2Kb molecule. Nature 1990; 348: 213.

    Article  Google Scholar 

  48. Falk K, Rotzschke O, Deres K, Metzgar J, Jung G, Rammensee HG. Identification of naturally processed viral nonapeptides allows their quantitation in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 1991; 174: 425.

    Article  PubMed  CAS  Google Scholar 

  49. Udaka K, Tsomides TJ, Eisen HN. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 1992; 69: 989.

    Article  PubMed  CAS  Google Scholar 

  50. Slingluff CL Jr. Tumor antigens and tumor vaccines: peptides as immunogens. Seminars in Surgical Oncology, Semin Surg Oncology 1996; 12: 446–453.

    Article  Google Scholar 

  51. Kittlesen DJ, Thompson LW, Gulden PH, et al. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J Immunol 1998; 160: 2099–2106.

    PubMed  CAS  Google Scholar 

  52. Van den Eynde B, Gaugler B, van der Bruggen P, et al. Human tumour antigens recognized by T-cells: perspectives for new cancer vaccines. Biochem Soc Trans 1995; 23: 681–686.

    PubMed  Google Scholar 

  53. Kawashima I, Tsai V, Southwood S, Takesako K, Celis E, Sette A. Identification of gp100-derived, melanoma-specific cytotoxic T lymphocyte epitopes restricted by HLA-A3 supertype molecules by primary in vitro immunization with peptide-pulsed dendritic cells. Int J Cancer 1998; 78: 518–524.

    Article  PubMed  CAS  Google Scholar 

  54. Schneider J, Brichard V, Boon T, Meyer zum Buschenfelde KH, Wolfel T. Overlapping peptides of melanocyte differentiation antigen Melan-A/MART-1 recognized by autologous cytolytic T lymphocytes in association with HLA-B45.1 and HLA-A2.1. Int J Cancer 1998; 75: 451–458.

    Article  PubMed  CAS  Google Scholar 

  55. Visseren MJ, van der Burg SH, van der Voort EI, et al. Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specific MAGE-2 gene product. Int J Cancer 1997; 73: 125–130.

    Article  PubMed  CAS  Google Scholar 

  56. Herman J, van der Bruggen P, Luescher IF, et al. A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 1996; 43: 377–383.

    Article  PubMed  CAS  Google Scholar 

  57. Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol 1998; 161: 3598–3606.

    PubMed  CAS  Google Scholar 

  58. Tjoa BA, Erickson SJ, Bowes VA, et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate 1997; 32: 272–278.

    Article  PubMed  CAS  Google Scholar 

  59. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997; 186: 785–793.

    Article  PubMed  CAS  Google Scholar 

  60. Hogan KT, Eisinger DP, Cupp SB III, et al. The peptide recognized by HLA-A68.2-restricted squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res 1998; 58: 5144–5150.

    PubMed  CAS  Google Scholar 

  61. Bystryn JC, Rigel D, Friedman RJ, Kopf A. Prognostic significance of hypopigmentation in malignant melanoma. Arch Dermatol 1987; 123: 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  62. Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis on Tumor Immunol 1996; 19: 81–84.

    Article  CAS  Google Scholar 

  63. Gregor RT. Vitiligo and malignant melanoma: a significant association? S Afr Med J 1976; 50: 1447–1479.

    PubMed  CAS  Google Scholar 

  64. Wagner SN, Wagner C, Schultcwolter T, Goos M. Analysis of Pme117/gp100 expression in primary human tissue specimens: implications for melanoma immuno-and gene-therapy. Cancer Immunol Immunother 1997; 44: 239–247.

    Article  PubMed  CAS  Google Scholar 

  65. Multhoff G, Botzler C. Heat-shock proteins and the immune response. Ann N Y Acad Sci 1998; 851: 86–93.

    Article  PubMed  CAS  Google Scholar 

  66. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997; 278: 117–120.

    Article  PubMed  CAS  Google Scholar 

  67. Cantrell DA, Smith KA. Transient expression of interleukin 2 receptors: consequences for T cell growth. J Exp Med 1983; 158: 1895–1911.

    Article  PubMed  CAS  Google Scholar 

  68. Hefeneider SH, Conlon PJ, Henney CS, Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol 1983; 130: 222–227.

    PubMed  CAS  Google Scholar 

  69. Muller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994; 264: 1918–1921.

    Article  PubMed  CAS  Google Scholar 

  70. Colamonici OR, Porterfield B, Domanski P, et al. Ligand-independent anti-oncogenic activity of the alpha subunit of the type I interferon receptor. J Biol Chem 1994; 269: 27275–27279.

    PubMed  CAS  Google Scholar 

  71. Platanias LC, Uddin S, Domanski P, Colamonici OR. Differences in interferon alpha and beta signaling interferon beta selectively induces the interaction of the alpha and beta subunits of the type I interferon receptor. J Biol Chem 1996; 271: 23630–23633.

    Article  PubMed  CAS  Google Scholar 

  72. Kowalzick L, Weyer U, Lange P, Breitbart EW. Systemic therapy of advanced metastatic malignant melanoma with a combination of fibroblast interferon-beta and recombinant interferon-gamma. Dermatologica 1990; 181: 298–303.

    Article  PubMed  CAS  Google Scholar 

  73. Creagan ET, Loprinzi CL, Ahmann DL, Schaid DJ. A phase I-II trial of the combination of recombinant leukocyte A interferon and recombinant human interferon-gamma in patients with metastatic malignant melanoma. Cancer 1988; 62; 2472–2474.

    Article  PubMed  CAS  Google Scholar 

  74. Creagan ET, Schaid DJ, Ahmann DL, Frytak S. Recombinant interferons in the management of advanced malignant melanoma: updated review of five prospective clinical trials and long-term responders. Am J Clin Oncol 1988; 11: 652–659.

    Article  PubMed  CAS  Google Scholar 

  75. Gleave ME, Elhilali M, Fradet Y, et al. Interferon gamma-lb compared with placebo in metastatic renal-cell carcinoma: Canadian Urologie Oncology Group. N Engl J Med 1988; 38: 1265–1271.

    Google Scholar 

  76. Brown TD, Goodman PJ, Fleming T, et al. Phase II trial of recombinant DNA gamma-interferon in advanced colorectal cancer: a Southwest Oncology Group study. J Immunother 1991; 10: 379–382.

    Article  PubMed  CAS  Google Scholar 

  77. Abdel-Wahab Z, Dar M, Osanto S, et al. Eradication of melanoma pulmonary metastases by immunotherapy with tumor cells engineered to secrete interleukin-2 or gamma interferon. Cancer Gene Ther 1997; 4: 33–41.

    PubMed  CAS  Google Scholar 

  78. Abdel-Wahab Z, Weltz C, Hester D, et al. A Phase I clinical trial of immunotherapy with interferon-gamma gene-modified autologous melanoma cells: monitoring the humoral immune response. Cancer 1997; 80: 401–412.

    Article  PubMed  CAS  Google Scholar 

  79. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993; 90: 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  80. Ando K, Hiroishi K, Kaneko T, et al. Perforin, Fas/Fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL. J Immunol 1997; 158: 5283–5291.

    PubMed  CAS  Google Scholar 

  81. Lee RK, Spielman J, Zhao DY, Olsen KJ, Podack ER. Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells J Immunol 1996; 157: 1919–1925.

    PubMed  CAS  Google Scholar 

  82. Bartlett DL, Ma G, Alexander HR, Libutti SK, Fraker DL. Isolated limb reperfusion with tumor necrosis factor and melphalan in patients with extremity melanoma after failure of isolated limb perfusion with chemotherapeutics. Cancer 1997; 80: 2084–2090.

    Article  PubMed  CAS  Google Scholar 

  83. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin-TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987; 330: 662–664.

    Article  PubMed  CAS  Google Scholar 

  84. Jones AL, Selby P. Tumour necrosis factor: clinical relevance. Cancer Sury 1989; 8: 817–836.

    CAS  Google Scholar 

  85. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 1997; 20: 165–177.

    Article  PubMed  CAS  Google Scholar 

  86. Vanky F, Nagy N, Hising, C, Sjovall K, Larson B, Klein E. Human ex vivo carcinoma cells produce transforming growth fac tor beta and thereby can inhibit lymphocyte functions in vitro. Cancer Immunol Immunother 1997; 43: 317.

    Article  PubMed  CAS  Google Scholar 

  87. Hirte H, Clark DA. Generation of lymphokine-activated killer cells in human ovarian carcinoma ascitic fluid: identification of transforming growth factor-beta as a suppressive factor. Cancer Immunol Immunother 1991; 32: 296.

    Article  PubMed  CAS  Google Scholar 

  88. Dalai BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 1993; 143: 381.

    Google Scholar 

  89. McCune BK, Mullin BR, Flanders KC, Jaffurs WJ, Mullen LT, Sporn MB. Localization of transforming growth factor-beta isotypes in lesions of the human breast [see comments]. Hum Pathol 1992; 23: 13–20.

    Article  PubMed  CAS  Google Scholar 

  90. Walker RA, Dearing SJ. Transforming growth factor beta 1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 1992; 28: 641.

    Article  PubMed  CAS  Google Scholar 

  91. Wojtowicz-Praga S, Verma Un, Wakefield L, Esteban Jm, Hartmann D, Mazumdcr A, Verma Un. Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2 [published erratum appears in J Im munother Emphasis Tumor Immunol 1996;19:386]. J Immunother Emphasis Tumor Immunol 1996; 19: 169.

    Article  PubMed  CAS  Google Scholar 

  92. Fakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 1996; 93: 2909.

    Google Scholar 

  93. Dorigo O, Shawler DL, Royston I, Sobol RE, Berek JS, Fakhrai H. Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 1998; 71: 204.

    Article  PubMed  CAS  Google Scholar 

  94. Nakagomi H, Pisa P, Pisa EK, et al. Lack of interleukin-2 (IL2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma. Int j Cancer 1995; 63: 366–371.

    Article  PubMed  CAS  Google Scholar 

  95. Tanchot C, Guillaume S, Delon J, et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity 1998; 8: 581–590.

    Article  PubMed  CAS  Google Scholar 

  96. Petersson M, Charo J, Salazar-Onfray F, et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 1998; 161: 2099–2105.

    PubMed  CAS  Google Scholar 

  97. Fortis C, Foppoli M, Gianotti L, et al. Increased interleukin-10 serum levels in patients with solid turnouts. Cancer Lett 1996; 104: 1–5.

    Article  PubMed  CAS  Google Scholar 

  98. Tomer Y, Sherer Y, Shoenfeld Y. Autoantibodies, autoimmunity and cancer. Oncol Rep 1998; 5: 753–761.

    PubMed  CAS  Google Scholar 

  99. Peterson K, Rosenblum MK, Kotanides H, Posner JB. Parancoplastic cerebellar degeneration, I: a clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 1992; 42: 1931–1937.

    Article  PubMed  CAS  Google Scholar 

  100. Golumbek P, Levitsky H, Jaffee L, Pardoll DM. The antitumor immune response as a problem of self-nonself discrimination: implications for immunotherapy. Immunol Res 1993; 12: 183–192.

    Article  PubMed  CAS  Google Scholar 

  101. Schendel DJ, Gansbacher B, Obemeder R, et al. Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes, I: HLA-A2 restricted recognition of autologous and allogeneic tumor lines. J Immunol 1993; 151: 4209–4220.

    PubMed  CAS  Google Scholar 

  102. Slingluff CL Jr, Cox AL, Stover JM Jr, Moore MM, Hunt DF, Engelhard VH. The cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res 1994; 54: 2731–2737.

    PubMed  CAS  Google Scholar 

  103. Ioannidee CG, Fisk B, Pollack MS, Frazier ML, Wharton JT, Freedman RS. Cytotoxic T-cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize common determi nants on non-ovarian tumour clones. Scand J Immunol 1993; 37: 413–424.

    Article  Google Scholar 

  104. Yasumura S, Hirabayashi H, Schwartz DR, et al. Human cytotoxic T-cell lines with restricted specificity for squamous cell carcinoma of the head and neck. Cancer Res 1993; 53: 1461–1468.

    PubMed  CAS  Google Scholar 

  105. Peoples GE, Goedegebuure PS, Andrews JVR, Schoof DD, Eberlein TJ. HLA-A2 presents shared tumor-associated antigens derived from endogenous proteins in ovarian cancer. J Immunol 1993; 151: 5481–5491.

    PubMed  CAS  Google Scholar 

  106. Schwartzentruber DJ, Solomon D, Rosenberg SA, Topalian SL. Characterization of lymphocytes infiltrating human breast cancer: specific immune reactivity detected by measuring cytokine secretion. J Immunother 1992; 12: 1–12.

    Article  PubMed  CAS  Google Scholar 

  107. Wolfel T, Herr W, Coulie P, Schmitt U, Meyer zum Buschenfelde K-H, Knuth A. Lysis of human pancreatic adenocarcinoma cells by autologous HLA-class I-restricted cytolytic T-lymphocyte (CTL) clones. Int J Cancer 1993; 54: 636–644.

    Article  PubMed  CAS  Google Scholar 

  108. Dessureault S, Graham F, Gallinger S. B7–1 gene transfer into human cancer cells by infection with an adenovirus-B7 (Ad-B7) expression vector. Ann Surg Oncol 1996; 3: 317–324.

    Article  PubMed  CAS  Google Scholar 

  109. Turka LA, Ledbetter JA, Lee K, June CH, Thompson CB. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol 1990; 144: 1646–1653.

    PubMed  CAS  Google Scholar 

  110. Koulova L, Clark EA, Shu G, Dupont B. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells. J Exp Med 1991; 173: 759–762.

    Article  PubMed  CAS  Google Scholar 

  111. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ. Comparative analysis of B7–1 and B7–2 costimulatory ligands: expression and function. J Exp Med 1994; 180: 631–640.

    Article  PubMed  CAS  Google Scholar 

  112. deVries TJ, Fourkour A, Wobbes T, Verkroost G, Ruiter DJ, van Muijen GNP. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res 1997; 57: 3223.

    CAS  Google Scholar 

  113. Kawakami Y, Zakut R, Topalian SL, Stotter H, Rosenberg SA. Shared human melanoma antigens: recognition by tumor-infiltrating lymphocytes in HAL-A2.1-transfected melanomas. J Immunol 1992; 148: 638–643.

    PubMed  CAS  Google Scholar 

  114. Hom SS, Topalian SL, Simonis T, Mancini M, Rosenberg SA. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: analysis by human lymphocyte antigen restriction. J Immunother 1991; 10: 153–164.

    PubMed  CAS  Google Scholar 

  115. Bakker AB, Schreurs MW,, de Boer AJ et al. Melanocyte lineagespecific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179: 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  116. Elliott BE, Carlow DA, Rodricks AM, Wade A. Perspectives on the role of MHC antigens in normal and malignant cell development. Adv Cancer Res 1989; 53: 181–245.

    Article  PubMed  CAS  Google Scholar 

  117. Doyle A, Martin WJ, Funa K, et al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer. J Exp Med 1985; 161: 1135–1151.

    Article  PubMed  CAS  Google Scholar 

  118. Lassam N, Jay G. Suppression of MHC class I RNA in highly oncogenic cells occurs at the level of transcription initiation. J Immunol 1989; 143: 3792–3797.

    PubMed  CAS  Google Scholar 

  119. Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 1995; 25: 340–347.

    Article  PubMed  CAS  Google Scholar 

  120. Jager E, Ringhoffer M, Altmannsberger M, et al. Immunoselec tion in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 1997; 71: 142–147.

    Article  PubMed  CAS  Google Scholar 

  121. Rivoltini L, Barracchini KC, Viggiano V, et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res 1995; 55: 3149–3157.

    PubMed  CAS  Google Scholar 

  122. Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993; 177: 265–272.

    Article  PubMed  CAS  Google Scholar 

  123. Restifo NP, Esquivel F, Asher AL, et al. Defective presentation of endogenous antigens by a murine sarcoma: implications for the failure of an anti-tumor immune response. J Immunol 1991; 147: 1453–1459.

    PubMed  CAS  Google Scholar 

  124. Sanda MG, Restifo NP, Walsh JC, et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 1995; 87: 280–285.

    Article  PubMed  CAS  Google Scholar 

  125. Sibille C, Gould KG, Willard-Gallo K, et al. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol 1995; 5: 923–930.

    Article  PubMed  CAS  Google Scholar 

  126. Maeurer MJ, Gollin SM, Martin D, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART1/Melan-A antigen. J Clin Invest 1996; 98: 1633–1641.

    Article  PubMed  CAS  Google Scholar 

  127. Hahne M, Rimoldi D, Schröter M, et al. Melanoma cell expression of fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363.

    Article  PubMed  CAS  Google Scholar 

  128. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. Inverse relationship of melanocytic differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 1996; 66: 470–476.

    Article  PubMed  CAS  Google Scholar 

  129. Chappell DB, Restifo NP. T cell-tumor cell: a fatal interaction? Cancer Immunol Immunother 1998; 47: 65–71.

    Article  PubMed  CAS  Google Scholar 

  130. Perkins D, Wang Z, Donovan C, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996; 156: 4154–4159.

    PubMed  CAS  Google Scholar 

  131. Hurwitz AA, Yu TF, Leach DR, Allison JP. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A 1998; 95: 10067–10071.

    Article  PubMed  CAS  Google Scholar 

  132. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995; 182: 459–465.

    Article  PubMed  CAS  Google Scholar 

  133. Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997; 7: 885–895.

    Article  PubMed  CAS  Google Scholar 

  134. Hsueh EC, Gupta RK, Qi K, Morton DL. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 1998; 16: 2913–2920.

    PubMed  CAS  Google Scholar 

  135. Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 1996; 77 (7): 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  136. Aaltomaa S, Lipponen P, Eskelinen M, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 1992; 28A: 859–864.

    Article  Google Scholar 

  137. Clark WH Jr, Elder DE, Guerry D 4th, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 1989; 81: 1893–1904.

    Article  PubMed  Google Scholar 

  138. Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998; 58: 3491–3494.

    PubMed  CAS  Google Scholar 

  139. DeLisle Dupre. Traite du Vice Cancereux. Paris: Couturier Fils, 1774.

    Google Scholar 

  140. Fehleisen F. Ubcr die Zuchtung der Erysipel-Kokken auf Kunstlichen Nahrboden und die Ubertragbarkeit auf den Menschen. Deutsche Med Wschr 1882; 8: 533.

    Google Scholar 

  141. Bruns P. Die Heilwirkung des Erysipels auf Geschwulste. Beitr Klin Chir 1887–1888; 3: 443.

    Google Scholar 

  142. Coley WB. The mixed toxins of erysipelas and bacillus prodigiosus in the treatment of sarcoma. JAMA 1900; 34: 906–908.

    Article  Google Scholar 

  143. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelatis and the Bacillus prodigiousis). Proc R Soc Med Surg Sec 1909; 3: 1.

    Google Scholar 

  144. Patard JJ, Saint F, Velotti F, Abbou CC, Chopin DK. Immune response following intravesical bacillus Calmette-Guerin instillations in superficial bladder cancer: a review. Urol Res 1998; 26: 155–159.

    Article  PubMed  CAS  Google Scholar 

  145. Morton DL, Eilher FR, Malgrem RA, et al. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970; 68: 158–164.

    PubMed  CAS  Google Scholar 

  146. Lieberman R, Wybran J, Epstein W. The immunologic and histopathologic changes of BCG-mediated tumor regression in patients with malignant melanoma. Cancer 1975; 35: 756–777.

    Article  PubMed  CAS  Google Scholar 

  147. Vermorken et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999; 353: 345–350.

    Article  PubMed  CAS  Google Scholar 

  148. Herd D, Maguire HC Jr, Schuchter LM, et al. Autologous hapten-modified melanoma vaccine as postsurgical adjuvant treatment after resection of nodal metastases. J Clin Oncol 1997; 15: 2359–2370.

    Google Scholar 

  149. Tafra L, Dale PS, Wanek LA, Ramming KP, Morton DL. Resection and adjuvant immunotherapy for melanoma metastatic to the lung and thorax. J Thorac Cardiovasc Surg 1995;110:119–128; discussion 129.

    Google Scholar 

  150. Morton DL, Foshag LJ, Hoon DS, et al. Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine [published erratum appears in Ann Surg 1993;217:309]. Ann Surg 1992; 216: 463–482.

    Article  PubMed  CAS  Google Scholar 

  151. Wallack MK, Sivanandham M, Balch CM, et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 1998;187:69–77; discussion 77–79.

    Google Scholar 

  152. Helling F, Zhang S, Shang A, et al. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995; 55: 2783–2788.

    PubMed  CAS  Google Scholar 

  153. Livingston P, Zhang S, Adluri S, et al. Tumor cell reactivity mediated by IgM antibodies in sera from melanoma patients vaccinated with GM2 ganglioside covalently linked to KLH is increased by IgG antibodies. Cancer Immunol Immunother 1997; 43: 324–330.

    Article  PubMed  CAS  Google Scholar 

  154. Livingston PO, Adluri S, Helling F, et al. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine 1994; 12: 1275–1280.

    Article  PubMed  CAS  Google Scholar 

  155. Livingston PO, Wong GY, Adluri S, et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin On-col 1994b; 12 (5): 1036–1044.

    CAS  Google Scholar 

  156. Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 1998; 92: 1184–1190.

    PubMed  CAS  Google Scholar 

  157. Applebaum J, Reynolds S, Knispel J, Oratz, Shapiro R, Bystryn JC. Identification of melanoma antigens that are immunogenic in humans and expressed in vivo [published erratum appears in J Natl Cancer Inst 1998;90:1017]. J Natl Cancer Inst 1998; 90: 146–149.

    Article  PubMed  CAS  Google Scholar 

  158. Reynolds SR, Oratz R, Shapiro RL, et al. Stimulation of CD8+ T cell responses to MAGE-3 and Melan A/MART-1 by immunization to a polyvalent melanoma vaccine. Int J Cancer 1997; 72: 972–976.

    Article  PubMed  CAS  Google Scholar 

  159. Marchand M, Weynants P, Rankin E, et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 1995; 63: 883–885.

    Article  PubMed  CAS  Google Scholar 

  160. Jaeger E, Bernhard H, Romero P, et al. Generation of cytotoxic T-cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int J Cancer 1996; 66: 162–169.

    Article  PubMed  CAS  Google Scholar 

  161. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    Article  PubMed  CAS  Google Scholar 

  162. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–965.

    Article  PubMed  CAS  Google Scholar 

  163. Tuting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27: 2702–2707.

    Article  PubMed  CAS  Google Scholar 

  164. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 1997; 15: 94–103.

    Article  PubMed  CAS  Google Scholar 

  165. DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 1998; 185: 65–74.

    Article  PubMed  CAS  Google Scholar 

  166. Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 1998; 46: 82–87.

    Article  PubMed  CAS  Google Scholar 

  167. Morse MA, Lyerly HK, Gilboa E, Thomas E, Nair SK. Opti-mization of the sequence of antigen loading and CD40-ligandinduced maturation of dendritic cells. Cancer Res 1998; 58: 2965–2968.

    PubMed  CAS  Google Scholar 

  168. Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extractrs. Int J Cancer 1997; 70: 706–715.

    Article  PubMed  CAS  Google Scholar 

  169. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A 1998; 95: 13141–13146.

    Article  PubMed  CAS  Google Scholar 

  170. Nestle FO, Alijagie S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nature Med 1998; 4: 328–332.

    Article  PubMed  CAS  Google Scholar 

  171. Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 1997; 186: 1177–1182.

    Article  PubMed  CAS  Google Scholar 

  172. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA(-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnol 1998; 16: 364–369.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slingluff, C.L. (2001). Immunology of Cancer. In: Norton, J.A., et al. Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57282-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57282-1_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63239-6

  • Online ISBN: 978-3-642-57282-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics