Skip to main content

Monitoring Techniques and Complications in Critical Care

  • Chapter
Surgery

Abstract

The English word monitor is a derivative of the Latin verb monere, which means “to warn.” Ideally, patients are monitored to provide advanced warning of impending deterioration in the status of one or more organ systems so that appropriate steps can be taken in a timely way to prevent or ameliorate the physiological derangement. In practice, physiological monitoring is used for this purpose, but it also is carried out for other reasons, including titration of therapeutic interventions, diagnostic evaluation, and prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komatsu T, Shibutani K, Okamoto K, et al. Critical level of oxygen delivery after cardiopulmonary bypass. Crit Care Med 1987; 75: 194–197.

    Article  Google Scholar 

  2. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kuman V, Bizzari D. Critical level of oxygen delivery in anesthetized man. Crit Care Med 1983: 640–643.

    Google Scholar 

  3. Lubarsky DA, Smith LR, Sladen RN, Mault JR, Reed RL. Defining the relationship of oxygen delivery and consumption: use of biologic system models. J Surg Res 1995; 58: 503–508.

    Article  PubMed  CAS  Google Scholar 

  4. Duran WN, Renkin EM. Oxygen consumption and blood flow in resting mammalian skeletal muscle. Am J Physiol 1974; 226: 173–177.

    PubMed  CAS  Google Scholar 

  5. Gutierrez G, Pohil RJ, Strong R. Skeletal muscle oxygen consumption and energy metabolism during hypoxemia. J Appl Physiol 1989; 66: 2117–2123.

    PubMed  CAS  Google Scholar 

  6. Buck LT, Hochachka PW, Schon A, Gnaiger E. Microcalorimetrie measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes. Am J Physiol 1993; 265: R1014 - R1019.

    PubMed  CAS  Google Scholar 

  7. Buck LT, Land SC, Hochachka PW. Anoxia-tolerant hepatocytes: model system for study of reversible metabolic suppression. Am J Physiol 1993; 265: R49 - R56.

    PubMed  CAS  Google Scholar 

  8. Lehmann KG, Gelman JA, Weber MA, Lafrades A. Comparative accuracy of three automated techniques in the noninvasive measurement of central blood pressure in men. Am J Cardiol 1998; 81: 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  9. Epstein RH, Bartkowski RR, Huffnagle S. Continuous noninvasive finger blood pressure during controlled hypotension. Anesthesiology 1991; 75: 796–803.

    Article  PubMed  CAS  Google Scholar 

  10. Remington JW, Wood EH. Formation of peripheral pulse contour in man. J Appl Physiol 1956; 9: 433–442.

    PubMed  CAS  Google Scholar 

  11. Bazaral MG, Welch M, Golding LAR, Badhwar K. Comparison of brachial and radial artery pressure monitoring in patients undergoing coronary artery bypass surgery. Anesthesiology 1990; 73: 38–45.

    Article  PubMed  CAS  Google Scholar 

  12. Dorman T, Breslow MJ, Lipsett PA, et al. Radial artery pressure monitoring underestimates central artery pressure during vaso-pressor therapy in critically ill surgical patients. Crit Care Med 1998; 26: 1646–1649.

    Article  PubMed  CAS  Google Scholar 

  13. Rivers EP, Lozon J, Enriquez E, et al. Simultaneous radial, femoral, and aortic arterial pressures during human cardiopulmonary resuscitation. Crit Care Med 1993; 21: 878–883.

    Article  PubMed  CAS  Google Scholar 

  14. Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 1970; 283: 447–451.

    Article  PubMed  CAS  Google Scholar 

  15. Ginosar Y, Sprung CL. The Swan-Ganz catheter: twenty-five years of monitoring. Crit Care Clin 1996; 12: 771–776.

    Article  PubMed  CAS  Google Scholar 

  16. Mallory DL, McGee WT, Shawker TH, et al. Ultrasound guidance improves the success rate of internal jugular vein cannulation. A prospective, randomized trial. Chest 1990; 98: 157–160.

    Article  PubMed  CAS  Google Scholar 

  17. van Grondelle A, Ditchey RV, Groves BM, Wagner WW, Reeves JT. Thermodilution method overestimates low cardiac output in humans. Am J Physiol 1983; 245: H690 - H692.

    PubMed  Google Scholar 

  18. Mihaljevic T, von Segesser LK, Tonz M, et al. Continuous versus bolus thermodilution cardiac output measurements-a comparative study. Crit Care Med 1995; 23: 944–949.

    Article  PubMed  CAS  Google Scholar 

  19. Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 1995; 23: 860–866.

    Article  PubMed  CAS  Google Scholar 

  20. Mihm FG, Gettinger A, Hanson CW, et al. A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 1998; 26: 1346–1350.

    Article  PubMed  CAS  Google Scholar 

  21. Rouby J-J, Poete P, Bodin L, Bourgeois J-L, Arthaud M, Viars P. Three mixed venous saturation catheters in patients with circulatory shock and respiratory failure. Chest 1991; 98: 954–958.

    Article  Google Scholar 

  22. Boutros AR, Lee C. Value of continuous monitoring of mixed venous blood oxygen saturation in the management of critically ill patients. Crit Care Med 1986; 14: 132–134.

    Article  PubMed  CAS  Google Scholar 

  23. Jastremski MS, Chelluri L, Beney KM, Bailly RT. Analysis of the effects of continuous on-line monitoring of mixed venous oxygen saturation on patient outcomes and cost-effectiveness. Crit Care Med 1989; 17: 148–153.

    Article  PubMed  CAS  Google Scholar 

  24. Kyff JV, Vaughn S, Yang SC, Raheja R, Puri VK. Continuous monitoring of mixed venous oxygen saturation in patients with acute myocardial infarction. Chest 1989; 95: 607–611.

    Article  PubMed  CAS  Google Scholar 

  25. Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 1995; 333: 1025–1032.

    Article  PubMed  CAS  Google Scholar 

  26. Dhainaut J-F, Brunet F, Monsallier JF, et al. Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 1987; 15: 148–152.

    Article  PubMed  CAS  Google Scholar 

  27. Jardin F, Gueret P, Dubourg O, Farcot J-C, Margairaz A, Bourdarias J-P. Right ventricular volumes by thermodilution in the adult respiratory distress syndrome: a comparative study using two-dimensional echocardiography as a reference method. Chest 1985; 88: 34–39.

    Article  PubMed  CAS  Google Scholar 

  28. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276: 889–897.

    Article  PubMed  Google Scholar 

  29. Gore JM, Goldberg RJ, Spodick DH, Alpert JS, Dalen JE. A community-wide assessment of the use of pulmonary artery catheters in patients with acute myocardial infarction. Chest 1987; 92: 721–727.

    Article  PubMed  CAS  Google Scholar 

  30. Zion MM, Balkin J, Rosenmann D, et al. Use of pulmonary artery catheters in patients with acute myocardial infarction. Analysis of experience in 5,841 patients in the SPRING Registry. Chest 1990; 98: 1331–1335.

    Article  PubMed  CAS  Google Scholar 

  31. Dalen JE. Does pulmonary artery catheterization benefit patients with acute myocardial infarction? Chest 1990; 98: 1313–1314.

    Article  PubMed  CAS  Google Scholar 

  32. Robin ED. Death by pulmonary artery flow-directed catheter. Time for a moratorium ? Chest 1987; 92: 727–731.

    Article  PubMed  CAS  Google Scholar 

  33. Dalen JB, Bone RC. Is it time to pull the pulmonary artery catheter? JAMA 1996; 276: 916–918.

    Article  PubMed  CAS  Google Scholar 

  34. Pearson KS, Gomez MN, Moyers JR, Carter JG, Tinker JH. A cost/benefit analysis of randomized invasive monitoring for patients undergoing cardiac surgery. Anesth Analg 1989, 69: 336–341.

    Article  PubMed  CAS  Google Scholar 

  35. Tuman KJ, McCarthy RJ, Spiess BD, et al. Effect of pulmonary artery catheterization on outcome in patients undergoing coronary artery surgery. Anesthesiology 1989; 70: 199–206.

    Article  PubMed  CAS  Google Scholar 

  36. Isaakson IJ, Lowdon JD, Berry AJ, et al. The value of pulmonary artery and central venous monitoring in patients undergoing abdominal aortic reconstructive surgery: a comparative study of two selected, randomized groups. J Vasc Surg 1990; 12: 754–760.

    Article  Google Scholar 

  37. Joyce WP, Provan JL, Ameli FM, McEwan MM, Jelenich S, Jones DP. The role of central haemodynamic monitoring in abdominal aortic surgery. A prospective randomised study. Eur J Vasc Surg 1990; 4: 633–636.

    Article  PubMed  CAS  Google Scholar 

  38. Bender JS, Smith-Meek MA, Jones CE. Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg 1997; 226: 229–236.

    Article  PubMed  CAS  Google Scholar 

  39. Valentine RJ, Duke ML, Inman MH, et al. Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vasc Surg 1998; 27: 203–211.

    Article  PubMed  CAS  Google Scholar 

  40. Bland RD, Shoemaker WC, Abraham E, Cobo JC. Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med 1985; 13: 85–90.

    Article  PubMed  CAS  Google Scholar 

  41. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee T-S. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988, 94: 1176–1186.

    Article  PubMed  CAS  Google Scholar 

  42. Stahl TJ, Alden PB, Ring WS, Madoff RC, Cerra FB. Sepsis-induced diastolic dysfunction in chronic canine peritonitis. Am J Physiol 1990; 258: H625 - H633.

    PubMed  CAS  Google Scholar 

  43. Bishop MH, Shoemaker WC, Appel PL, et al. Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitative endpoints in severe trauma. J Trauma 1995; 38: 780–787.

    Article  PubMed  CAS  Google Scholar 

  44. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 1993; 270: 2699–2707.

    Article  PubMed  CAS  Google Scholar 

  45. Fleming A, Bishop M, Shoemaker W, et al. Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 1992; 127: 1175–1179.

    Article  PubMed  CAS  Google Scholar 

  46. Yu M, Burchell S, Hasaniya NWMA, Takanashi DM, Myers SA, Takiguchi SA. Relationship of mortality to increasing oxygen delivery in patients 50 > years of age: a prospective, randomized trial. Crit Care Med 1998; 26: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  47. Yu M, Levy MH, Smith P, Takiguchi SA, Miyasaki A, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 1993; 21: 830–838.

    Article  PubMed  CAS  Google Scholar 

  48. Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen improves outcome in septic shock. Chest 1992; 102: 216–220.

    Article  PubMed  CAS  Google Scholar 

  49. Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994; 330: 1717–1722.

    Article  PubMed  CAS  Google Scholar 

  50. Alia I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA, Frutos F. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest 1999; 115: 453–461.

    Article  PubMed  CAS  Google Scholar 

  51. Heyland D, Cook DJ, King D, Kernerman P, Brun-Buisson C. Maximizing of oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 1996; 24: 517–524.

    Article  PubMed  CAS  Google Scholar 

  52. Connors AF Jr. Right heart catheterization: is it effective? New Horiz 1997; 5: 195–200.

    PubMed  Google Scholar 

  53. Sprung CL, Pozen RG, Rozanski JJ, Pinero JR, Eisler BR, Castellanos A. Advanced ventricular arrhythmias during bedside pulmonary artery catheterization. Am J Med 1982; 72: 203–208.

    Article  PubMed  CAS  Google Scholar 

  54. Iberti TJ, Benjamin E, Gruppi L, Raskin JM. Ventricular arrhythmias during pulmonary artery catheterization in the intensive care unit. Prospective study. Am J Med 1985; 78: 451–454.

    Article  PubMed  CAS  Google Scholar 

  55. Mermel LA, Maki DG. Infectious complications of Swan-Ganz pulmonary artery catheters. Pathogenesis, epidemiology, prevention, and management. Am J Respir Crit Care Med 1994; 149: 1020–1036.

    Article  PubMed  CAS  Google Scholar 

  56. Connors AF Jr, Castele RJ, Farhat NZ, Tomashefski JF Jr. Complications of right heart catheterization. A prospective autopsy study. Chest 1985; 88: 567–572.

    Article  PubMed  Google Scholar 

  57. Urschel JD, Myerowitz PD. Catheter-induced pulmonary artery rupture in the setting of cardiopulmonary bypass. Ann Thorac Surg 1993; 56: 585–589.

    Article  PubMed  CAS  Google Scholar 

  58. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TF. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. JAMA 1990; 264: 2928–2932.

    Article  PubMed  CAS  Google Scholar 

  59. Gnaegi A, Feihl F, Perret C. Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 1997; 25: 213–220.

    Article  PubMed  CAS  Google Scholar 

  60. Cerny JC, Ketslakh M, Poulos CL, Dechert RE, Bartlett RH. Evaluation of the Vcicom-100 pulse Doppler cardiac output computer. Chest 1991; 100: 143–146.

    Article  PubMed  CAS  Google Scholar 

  61. Donovan KD, Dobb GJ, Newman MA, Hockings BES, Ireland M. Comparison of pulsed Doppler and thermodilution methods for measuring cardiac output in critically ill patients. Crit Care Med 1987; 15: 853–857.

    Article  PubMed  CAS  Google Scholar 

  62. Daigle RE, Miller CW, Histand MB, McLeod FD, Hokanson DE. Nontraumatic aortic blood flow sensing by use of an ultrasonic esophageal probe. J Appl Physiol 1975; 38: 1153–1160.

    PubMed  CAS  Google Scholar 

  63. Valtier B, Cholley BP, Belot J-P, de la Coussaye J-E, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 1998; 158: 77–83.

    Article  PubMed  CAS  Google Scholar 

  64. Sageman WS, Amundson DE. Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients. Crit Care Med 1993; 21: 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  65. Genoni M, Pelosi P, Romand JA, Pedoto A, Moccetti T, Malacrida R. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med 1998; 26: 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  66. Marik PE, Pendelton JE, Smith R. A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography. Crit Care Med 1997; 25: 1545–1550.

    Article  PubMed  CAS  Google Scholar 

  67. Miles DS, Gotshall RW, Quinones JD, Wulfeck DW, Kreitzer RD. Impedance cardiography fails to measure accurately left ventricular ejection fraction. Crit Care Med 1990; 18: 221–228.

    Article  PubMed  CAS  Google Scholar 

  68. Bowling LS, Sageman WS, O’Connor SM, Cole R, Amundson DE. Lack of agreement between measurement of ejection fraction by impedance cardiography versus radionuclide ventriculography. Crit Care Med 1993; 21: 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  69. Hirschl MM, Binder M, Gwechenberger M, et al. Noninvasive assessment of cardiac output in critically ill patients by analysis of the finger blood pressure waveform. Crit Care Med 1997; 25: 1909–1914.

    Article  PubMed  CAS  Google Scholar 

  70. McIntyre KM, Vita JA, Lambrew CT, Freeman J, Loscalzo J. A noninvasive method of predicting pulmonary-capillary wedge pressure. N Engl J Med 1992; 327: 1715–1720.

    Article  PubMed  CAS  Google Scholar 

  71. Mommsen TP, Hochachka PW. Protons and anaerobiasis. Science 1983; 219: 1391–1397.

    Article  PubMed  Google Scholar 

  72. Schiedler MG, Cutler BS, Fiddian-Green RG. Sigmoid intramural pH for prediction of ischemic colitis during aortic surgery. A comparison with risk factors and inferior mesenteric artery stump pressures. Arch Surg 1987; 122: 881–886.

    Article  PubMed  CAS  Google Scholar 

  73. Fiddian-Green RG, McGough E, Pittenger G, Rothman E. Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 1983; 85: 613–620.

    PubMed  CAS  Google Scholar 

  74. Fiddian-Green RG, Baker S. Predictive value of the stomach wall pH for complications after cardiac operations. Comparison with other monitoring. Crit Care Med 1987; 15: 153–156.

    Article  PubMed  CAS  Google Scholar 

  75. Fiddian-Green RG, Pittenger G, Whitehouse WM. Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 1982; 33: 39–48.

    Article  PubMed  CAS  Google Scholar 

  76. Antonsson JB, Boyle CC, Kruithoff KL, et al. Validation of tono-metric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 1990; 259: G519 - G523.

    PubMed  CAS  Google Scholar 

  77. Tang W, Weil MH, Sun S, Noc M, Gazmuri RJ, Bisera J. Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol 1994; 76: 572–577.

    PubMed  CAS  Google Scholar 

  78. Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 1994; 76: 2443–2451.

    PubMed  CAS  Google Scholar 

  79. Salzman AL, Strong KE, Wang H, Wollert PS, VanderMeer T, Fink MP. Intraluminal “balloonless” air tonometry: a new method for determination of gastrointestinal mucosal PCO2. Crit Care Med 1994; 22: 126–134.

    PubMed  CAS  Google Scholar 

  80. Reilly PM, MacGowan S, Miyachi M, Schiller HJ, Vickers S, Bulkley GB. Mesenteric vasoconstriction in cardiogenic shock in pigs. Gastroenterology 1992; 102: 1968–1979.

    PubMed  CAS  Google Scholar 

  81. Dantzker DR. The gastrointestinal tract: the canary of the body? JAMA 1993; 270: 1247–1248.

    Article  PubMed  CAS  Google Scholar 

  82. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Arch Surg 1985; 121: 196–208.

    Article  Google Scholar 

  83. Fink MP, Kaups KL, Wang H, Rothschild HR. Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery St. Louis] 1991; 110: 154–161.

    CAS  Google Scholar 

  84. Fink MP, Antonsson JB, Wang H, Rothschild HR. Increased intestinal permeability in endotoxic pigs: mesenteric hypoperfusion as an etiologic factor. Arch Surg 1991; 126: 211–218.

    Article  PubMed  CAS  Google Scholar 

  85. Salzman AL, Wang H, Wollert PS, et al. Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 1994; 266: G633 - G646.

    PubMed  CAS  Google Scholar 

  86. Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP. Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 1989; 19: 271–274.

    Article  Google Scholar 

  87. Kolkman JJ, Groeneveld AB, Meuwissen SG. Gastric PCO2 tonometry is independent of carbonic anhydrase inhibition. Dig Dis Sci 1997; 42: 99–102.

    Article  PubMed  CAS  Google Scholar 

  88. Kolkman JJ, Groeneveld AB, Meuwissen SG. Effect of ranitidine on basal and bicarbonate enhanced intragastric PCO2: a tono-metric study. Gut 1994; 35: 737–741.

    Article  PubMed  CAS  Google Scholar 

  89. Parvianinen I, Vaisanen O, Ruokonen E, Takala J. Effect of nasogastric suction and ranitidine on the calculated gastric intramucosal pH. Intensive Care Med 1996; 22: 319–323.

    Article  Google Scholar 

  90. Bams JL, Kolkman JJ, Roukens MP, et al. Reliable gastric tonometry after coronary artery surgery: need for acid suppression despite transient failure of acid secretion. Intensive Care Med 1998; 24: 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  91. Levy B, Perrigault P-F, Gawalkiewicz P, et al. Gastric versus duodenal feeding and gastric tonometric measurements. Crit Care Med 1998; 26: 1991–1994.

    Article  PubMed  CAS  Google Scholar 

  92. Doglio GR, Pusajo JF, Egurrola MA, et al. Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 1991; 19: 1037–1040.

    Article  PubMed  CAS  Google Scholar 

  93. Maynard N, Bihari D, Beale R, et al. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 1993; 270: 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  94. Chang MC, Cheatham ML, Nelson LD, Rutherford EJ, Morris JA Jr. Gastric tonometry supplements information provided by systemic indicators of oxygen transport. J Trauma 1994, 37: 488–494.

    Article  PubMed  CAS  Google Scholar 

  95. Roumen RMH, Vreugde JPC, Goris RJA. Gastric tonometry in multiple trauma patients. J Trauma 1994; 36: 313–316.

    Article  PubMed  CAS  Google Scholar 

  96. Mythen MG, Webb AR. Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 1994; 20: 99–104.

    Article  PubMed  CAS  Google Scholar 

  97. Miller PR, Kincaid EH, Meredith JW, Chang MC. Threshold values of intramucosal pH and mucosal-arterial CO2 gap during shock resuscitation. J Trauma 1998; 45: 868–872.

    Article  PubMed  CAS  Google Scholar 

  98. Gys T, Hubens A, Neels H, Lauwers LF, Peeters R. Prognostic value of gastric intramural pH in surgical intensive care patients. Crit Care Med 1988; 16: 122–124.

    Article  Google Scholar 

  99. Marik PE. Gastric intramucosal pH: a better predictor of multi-organ dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 1993; 104: 225–229.

    Article  PubMed  CAS  Google Scholar 

  100. Bjork M, Hedberg B. Early detection of major complications after abdominal aortic surgery: predictive value of sigmoid colon and gastric intramucosal pH monitoring. Br J Surg 1994, 81: 25–30.

    Article  Google Scholar 

  101. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 1995; 130: 423–429.

    Article  PubMed  CAS  Google Scholar 

  102. Elizalde JI, Hernandez C, Llach J, Concepciòn M, Piqué JM, Torres A. Gastric intramucosal acidosis in mechanically ventilated pa- tients: role of mucosal blood flow. Crit Care Med 1998; 26: 827–832.

    Article  PubMed  CAS  Google Scholar 

  103. Soong CV, Halliday MI, Barclay GR, Hood JM, Rowlands BJ, Barros D’Sa AAB. Intramucosal acidosis and systemic host response in abdominal aortic aneurysm surgery. Crit Care Med 1997; 25: 1472–1479.

    Article  PubMed  CAS  Google Scholar 

  104. Gutierrez G, Palizas F, Doglio G, et al. Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 1992; 339: 195–199.

    Article  PubMed  CAS  Google Scholar 

  105. Ivatury RR, Simon RJ, Havriliak D, Garcia C, Greenbarg J, Stahl WM. Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resuscitation after trauma: a prospective randomized study. J Trauma 1995; 39: 128–136.

    Article  PubMed  CAS  Google Scholar 

  106. Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 1996; 183: 145–154.

    PubMed  CAS  Google Scholar 

  107. Russell JA. Gastric tonometry: does it work? Intensive Care Med 1997; 23: 3–6.

    Article  PubMed  CAS  Google Scholar 

  108. Groeneveld AB, Kolkman JJ. Splanchnic tonometry: a review of physiology, methodology, and clinical applications. J Crit Care 1994; 9: 198–210.

    Article  PubMed  CAS  Google Scholar 

  109. Schlichtig R, Mehta N, Gayowski TJP. Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi). J Grit Care 1996; 11: 51–56.

    Article  CAS  Google Scholar 

  110. Sato Y, Weil MH, Tang W, et al. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 1997; 82: 558–562.

    PubMed  CAS  Google Scholar 

  111. Guzman JA, Lacoma FJ, Kruse JA. Gastric and esophageal intramucosal PCO2 (PiCO2) during endotoxemia. Assessment of raw PiCO2 and PCO2 gradients as indicators of hypoperfusion in a canine model of septic shock. Chest 1998; 113: 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  112. Durham RM, Neunaber K, Mazuki JE, Shapiro MJ, Baue AE. The use of oxygen consumption and delivery as endpoints for resuscitation in critically ill patients. J Trauma 1996; 41: 32–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fink, M.P. (2001). Monitoring Techniques and Complications in Critical Care. In: Norton, J.A., et al. Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57282-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57282-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63239-6

  • Online ISBN: 978-3-642-57282-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics