Skip to main content

Electron-electron repulsion energy as a QSAR descriptor

  • Chapter
Molecular Quantum Similarity in QSAR and Drug Design

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 73))

  • 190 Accesses

Abstract

In this chapter, the expectation value of the interelectronic repulsion energy operator, 〈Vee〉 is presented as a kind of QS-SM, which consequently can be used as a molecular descriptor in QSAR applications. The efficiency of this parameter in QSAR for different molecular sets will be here examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roothaan CCJ (1951) New developments in molecular orbital theory Revs Mod Phys 23 69–89

    Article  CAS  Google Scholar 

  2. Carbó R, Domingo L (1987) LCAO-MO similarity measures and taxonomy Int J Quantum Chem 23 517–545

    Article  Google Scholar 

  3. Gironés X, Amat L, Carbó-Dorca R (1999) Using molecular quantum similarity measures as descriptors in quantitative structure-toxicity relationships. SAR QSAR Environ Res, in press

    Google Scholar 

  4. Carbó-Dorca R, Amat L, Besalü E, Gironés X, Robert D (1999) Quantum mechanical origin of QSAR: theory and applications. J Mol Struct (Theochem), in press

    Google Scholar 

  5. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: A new general purpose quantum chemical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  6. AMPAC 6.01 (1994) Semichem, 7128 Summit, Schawnee, KS 66216DA

    Google Scholar 

  7. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman, JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian-94, (Revision E.2) Gaussian, Inc. Pittsburgh PA

    Google Scholar 

  8. Vinter V (1970) Germination and outgrowth: effect of inhibitors. J Appl Bacteriol 33:50–59

    Article  CAS  Google Scholar 

  9. Yasuda-Yasaki Y, Namiki-Kanie S, Hachisuka Y (1978) Inhibition of germination of Bacillus subtilis spores by alcohols. In: Chambliss G, Vary JC (eds) Spores VII. American Society of Microbiology, Washington, pp 113–116

    Google Scholar 

  10. Yasuda-Yataki Y, Nimihi-Kanie S, Hachisuka Y (1978) Inhibition of Bacillus subtillis spore germination by various hydrophobic compounds: demonstration of hydrophobic character of the L-alanine receptor site. J Bacteriol 136:484–490

    Google Scholar 

  11. Roth JS (1954) Cancer Res 2:346–350

    Google Scholar 

  12. Cooley NR, Keltner, JM Jr, Forester J (1973) Polychlorinated biphenyls, aroclors 1248 and 1260: effect on and accumulation by Tetrahymena pyriformis. J Protozool 20:443–445

    CAS  Google Scholar 

  13. Apostol S (1973) Environ Res 6:365–372

    Article  CAS  Google Scholar 

  14. Dive D, LeClerc H (1975) Prog Water Technol 7:67–72

    Google Scholar 

  15. Hill DL (1972) The biochemistry and physiology of Tetrahymena. Academic Press, New York

    Google Scholar 

  16. Schultz TW, Lin DT, Wilke TS, Arnold LM (1990) Quantitative structure-activity relationships for the tetrahymena pyriformis population growth endpoint: a mechanisms of action approach. In: Karcher W, Devillers J (eds) Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Urrestarazu E, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative structure-activity of the aquatic toxicity of polar and nonpolar aquatic pollutants. J Chem Inf Comput Sci 38:845–852

    Article  Google Scholar 

  18. Leibman KC, Ortiz E (1971) Pharmacologist 13:223

    Google Scholar 

  19. Leibman KC (1971) Chem Biol Interact 3:289

    Article  CAS  Google Scholar 

  20. Wilkinson CF, Hetnarski K, Yellin TO (1972) Imidazole derivatives-a new class of microsomal enzyme inhibitors. Biochem Pharmac 21:3187–3192

    Article  CAS  Google Scholar 

  21. Leibman KC, Ortiz E (1973) Metyrapone and other modifiers of microsomal drug metabolism. Drug Metab Dispos 1:184–190

    CAS  Google Scholar 

  22. Leibman KC, Ortiz E (1973) New potent modifiers of liver microsomal drug metabolism. Drug Metab Dispos 1:775–779

    CAS  Google Scholar 

  23. Wilkinson CF, Hetnarski K, Hicks LJ (1975) Pestic Biochem Physiol

    Google Scholar 

  24. Wilkinson CF, Hetnarski K, Cantwell P, Di Carlo F (1974) Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. J Biochem Pharmacol 23:2377–2386

    Article  CAS  Google Scholar 

  25. Fujita T, Iwasa J, Hansen C (1964) A new substituent constant, n, derived from partition coefficients. J Am Chem Soc 86:5175–5180

    Article  CAS  Google Scholar 

  26. Gaudette LE, Brodie BB (1959) Biochem Pharmac 2:89

    Article  CAS  Google Scholar 

  27. Martin YC, Hansch C (1971) Influence of hydrophobic character on the relative rate of oxidation of drugs by rat liver microsomes. J Med Chem 14:777–779

    Article  CAS  Google Scholar 

  28. Hansch C (1972) Quantitative relationships between lipophilic character and drug metabolism. Drug Metab Rev 1:1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbó-Dorca, R., Robert, D., Amat, L., Gironés, X., Besalú, E. (2000). Electron-electron repulsion energy as a QSAR descriptor. In: Molecular Quantum Similarity in QSAR and Drug Design. Lecture Notes in Chemistry, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57273-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57273-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67581-5

  • Online ISBN: 978-3-642-57273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics