Electron-electron repulsion energy as a QSAR descriptor

Part of the Lecture Notes in Chemistry book series (LNC, volume 73)


In this chapter, the expectation value of the interelectronic repulsion energy operator, 〈Vee〉 is presented as a kind of QS-SM, which consequently can be used as a molecular descriptor in QSAR applications. The efficiency of this parameter in QSAR for different molecular sets will be here examined.


Molecular Descriptor QSAR Model Aliphatic Alcohol Benzene Derivative Repulsion Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 261.
    Roothaan CCJ (1951) New developments in molecular orbital theory Revs Mod Phys 23 69–89CrossRefGoogle Scholar
  2. 262.
    Carbó R, Domingo L (1987) LCAO-MO similarity measures and taxonomy Int J Quantum Chem 23 517–545CrossRefGoogle Scholar
  3. 263.
    Gironés X, Amat L, Carbó-Dorca R (1999) Using molecular quantum similarity measures as descriptors in quantitative structure-toxicity relationships. SAR QSAR Environ Res, in pressGoogle Scholar
  4. 264.
    Carbó-Dorca R, Amat L, Besalü E, Gironés X, Robert D (1999) Quantum mechanical origin of QSAR: theory and applications. J Mol Struct (Theochem), in pressGoogle Scholar
  5. 265.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: A new general purpose quantum chemical molecular model. J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  6. 266.
    AMPAC 6.01 (1994) Semichem, 7128 Summit, Schawnee, KS 66216DAGoogle Scholar
  7. 267.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman, JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian-94, (Revision E.2) Gaussian, Inc. Pittsburgh PAGoogle Scholar
  8. 268.
    Vinter V (1970) Germination and outgrowth: effect of inhibitors. J Appl Bacteriol 33:50–59CrossRefGoogle Scholar
  9. 269.
    Yasuda-Yasaki Y, Namiki-Kanie S, Hachisuka Y (1978) Inhibition of germination of Bacillus subtilis spores by alcohols. In: Chambliss G, Vary JC (eds) Spores VII. American Society of Microbiology, Washington, pp 113–116Google Scholar
  10. 270.
    Yasuda-Yataki Y, Nimihi-Kanie S, Hachisuka Y (1978) Inhibition of Bacillus subtillis spore germination by various hydrophobic compounds: demonstration of hydrophobic character of the L-alanine receptor site. J Bacteriol 136:484–490Google Scholar
  11. 271.
    Roth JS (1954) Cancer Res 2:346–350Google Scholar
  12. 272.
    Cooley NR, Keltner, JM Jr, Forester J (1973) Polychlorinated biphenyls, aroclors 1248 and 1260: effect on and accumulation by Tetrahymena pyriformis. J Protozool 20:443–445Google Scholar
  13. 273.
    Apostol S (1973) Environ Res 6:365–372CrossRefGoogle Scholar
  14. 274.
    Dive D, LeClerc H (1975) Prog Water Technol 7:67–72Google Scholar
  15. 275.
    Hill DL (1972) The biochemistry and physiology of Tetrahymena. Academic Press, New YorkGoogle Scholar
  16. 276.
    Schultz TW, Lin DT, Wilke TS, Arnold LM (1990) Quantitative structure-activity relationships for the tetrahymena pyriformis population growth endpoint: a mechanisms of action approach. In: Karcher W, Devillers J (eds) Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. 277.
    Urrestarazu E, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative structure-activity of the aquatic toxicity of polar and nonpolar aquatic pollutants. J Chem Inf Comput Sci 38:845–852CrossRefGoogle Scholar
  18. 278.
    Leibman KC, Ortiz E (1971) Pharmacologist 13:223Google Scholar
  19. 279.
    Leibman KC (1971) Chem Biol Interact 3:289CrossRefGoogle Scholar
  20. 280.
    Wilkinson CF, Hetnarski K, Yellin TO (1972) Imidazole derivatives-a new class of microsomal enzyme inhibitors. Biochem Pharmac 21:3187–3192CrossRefGoogle Scholar
  21. 281.
    Leibman KC, Ortiz E (1973) Metyrapone and other modifiers of microsomal drug metabolism. Drug Metab Dispos 1:184–190Google Scholar
  22. 282.
    Leibman KC, Ortiz E (1973) New potent modifiers of liver microsomal drug metabolism. Drug Metab Dispos 1:775–779Google Scholar
  23. 283.
    Wilkinson CF, Hetnarski K, Hicks LJ (1975) Pestic Biochem PhysiolGoogle Scholar
  24. 284.
    Wilkinson CF, Hetnarski K, Cantwell P, Di Carlo F (1974) Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. J Biochem Pharmacol 23:2377–2386CrossRefGoogle Scholar
  25. 285.
    Fujita T, Iwasa J, Hansen C (1964) A new substituent constant, n, derived from partition coefficients. J Am Chem Soc 86:5175–5180CrossRefGoogle Scholar
  26. 286.
    Gaudette LE, Brodie BB (1959) Biochem Pharmac 2:89CrossRefGoogle Scholar
  27. 287.
    Martin YC, Hansch C (1971) Influence of hydrophobic character on the relative rate of oxidation of drugs by rat liver microsomes. J Med Chem 14:777–779CrossRefGoogle Scholar
  28. 288.
    Hansch C (1972) Quantitative relationships between lipophilic character and drug metabolism. Drug Metab Rev 1:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  1. 1.Institute of Computational Chemistry, Campus MontiliviUniversity of GironaGironaSpain

Personalised recommendations