Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 73))

Abstract

Sometimes, drug-receptor interactions are simple enough to be accurately characterized by a single parameter linear relationship. This was a general fact in early QSAR models, in which descriptors such as log P or Hammett a were used as sole parameters. In this kind of systems, therefore, it is not necessary to use such a sophisticated QSAR approach as detailed in chapter 4. A simpler method can be constructed by neglecting the off-diagonal similarity matrix while using only the diagonal elements, constituting the so-called quantum self-similarity measures (QS-SM). This simplification avoids the problem of selecting a molecular alignment, because the compared electron distributions belong to the same molecule, so the alignment is irrelevant. This new approach also permits, after a subsequent manipulation, the treatment of molecular fragments within the quantum similarity framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kubinyi H (1993) QSAR: Hansch Analysis and Related Approaches. VCH, Weinheim

    Book  Google Scholar 

  2. Fujita IT, Iwasa J, Hansch C (1964) A new substituent constant, w, derived from partition coefficients. J Am Chem Soc 86:5175–5180

    Article  CAS  Google Scholar 

  3. Rekker RF (1977) The hydrophobic fragmental constants. Its derivation and applications. A means of characterizing membrane systems. Elsevier, New York

    Google Scholar 

  4. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  5. Klopman G, Iroff L (1981) Calculation of partition coefficients by the charge density method. J Comput Chem 2:157–160

    Article  CAS  Google Scholar 

  6. Klopman G, Namboodiri K, Schochet M (1985) Simple method of computing the partition coefficent. J Comput Chem 1:28–38

    Article  Google Scholar 

  7. Ghose AK, Crippen GM (1986) Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hydrophobicity. J Comput Chem 7:565–577

    Article  CAS  Google Scholar 

  8. Koehler MG, Grigoras S, Dunn WJ III (1988) The relationship between chemical structure and the logarithm of the partition coefficient. Quant Struct-Act Relat 7:150–159

    Article  CAS  Google Scholar 

  9. Bodor N, Gabanyi Z, Wong C-K (1989) A new method for the estimation of partition coefficient. J Am Chem Soc 111:3783–3786

    Article  CAS  Google Scholar 

  10. Richards NGJ, Williams PB, Tute MS (1991) Empirical methods for computing molecular partition coefficients. I. Upon the need to model the specific hydration of polar groups in fragment-based approaches. Int J Quantum Chem, Quantum Biology Symposium 18:299–316

    Article  CAS  Google Scholar 

  11. Richards NGJ, Williams PB, Tute MS (1992) Empirical methods of computing molecular partition coefficients: II. Inclusion of conformational flexibility within fragment-based approaches. Int J Quantum Chem 44:219–233

    Article  CAS  Google Scholar 

  12. Essex JW, Reynolds CA, Richards WG (1992) Theoretical determination of partition coefficients. J Am Chem Soc 114:3634–3639

    Article  CAS  Google Scholar 

  13. Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130

    Article  CAS  Google Scholar 

  14. Moriguchi I, Hirono S, Nakagome I, Hirano H (1994) Comparison of reliability of log P values for drugs calculated by several methods. Chem Pharm Bull 42:976–978

    Article  CAS  Google Scholar 

  15. Amat L, Carbó-Dorca R, Ponec R (1998) Molecular quantum similarity measures as an alternative to log P values in QSAR studies. J Comput Chem 19:1575–1583

    Article  CAS  Google Scholar 

  16. Ponec R, Amat L, Carbô-Dorca R (1999) Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach. J Comput-Aided Mol Design 13:259–270

    Article  CAS  Google Scholar 

  17. Amat L, Carbó-Dorca R, Ponec R (1999) Simple linear QSAR models based on Quantum Similarity Measures. J Med Chem 42:5169–5180

    Article  CAS  Google Scholar 

  18. Hansch C, Kim D, Leo AJ, Novellino E, Silipo C, Vittoria A (1989) Toward a quantitative comparative toxicology of organic compounds. CRC Crit Rev Tox 19:185–226

    Article  CAS  Google Scholar 

  19. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: A new general purpose quantum chemical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  20. AMPAC 6.0,1994 Semichem, 7128 Summit, Shawnee, KS 66216 D.A.

    Google Scholar 

  21. Hammett LP (1938) Linear free energy relationships in rate and equilibria phenomena. Trans Faraday Soc 34:156

    Article  CAS  Google Scholar 

  22. Ponec R, Amat L, Carbó-Dorca R (1999) Quantum similarity approach to LFER: substituent and solvent effects on the acidities of carboxylic acids. J Phys Org Chem 12:447–454

    Article  CAS  Google Scholar 

  23. Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP (1962) 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Chem 5:1063–1065

    Article  CAS  Google Scholar 

  24. Koga H, Ito A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7 and 7,8-disubstituted l-alkyl-1,4-dihydro4-oxoquinoline-S-carboxylic acids. J Med Chem 23:1358–1363

    Article  CAS  Google Scholar 

  25. Albrecht R (1977) Development of antibacterial agents of the nalidixic acid type. Prog Drug Res 21:9–104

    CAS  Google Scholar 

  26. Andriole VT (ed) (1988) The quinolones. Academic Press, New York

    Google Scholar 

  27. Andriole VT (1990) Quinolones. In: Mandell GL, Douglas RG Jr, Bennett JE (eds) Principles and practice of infectious diseases, 3rd Ed. Churchill Livingstone, New York, pp 334–345

    Google Scholar 

  28. Cornett JB, Wentland MP (1986) Quinolone antibacterial agents. Annu Rep Med Chem 21:139–148

    Article  CAS  Google Scholar 

  29. Fernandes PB, Chu DTW (1987) Chemotherapeutic agents. Quinolones. Annu Rep Med Chem 22:117–126

    Article  CAS  Google Scholar 

  30. Fernandes PB, Chu DTW (1988) Quinolone antibacterial agents. Annu Rep Med Chem 23:133–140

    Article  CAS  Google Scholar 

  31. Heck JV (1989) Antibacterial agents. Annu Rep Med Chem 24:101–110

    Article  CAS  Google Scholar 

  32. White DR, Davenport LC (1990) Antibacterial agents. Annu Rep Med Chem 25:109–118

    Article  CAS  Google Scholar 

  33. Brighty KE, McGuirk PR (1991) Antibacterial agents. Annu Rep Med Chem 26:123–132

    Article  CAS  Google Scholar 

  34. Frigola J, Parés J, Corbera J, Vañó D, Mercè R, Torrens A, Màs J, Valentf E (1993) 7-azetidinylquinolones as antibacterial agents. Synthesis and structure-activity relationships. J Med Chem 36:801–810

    Article  CAS  Google Scholar 

  35. Carbó R, Besalú E (1994) Definition, mathematical examples and quantum chemical applications of nested summation symbols and logical Kronecker deltas. Computers Chem 18:117–126

    Article  Google Scholar 

  36. Carbó R, Besalú E (1995) Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation. J Math Chem 18:37–72

    Article  Google Scholar 

  37. Amat L, Carbó-Dorca R (1999) Fitted electronic density functions from H to Rn for use in quantum similarity measures: cis-diammine-dichloroplatinum(II) complex as an application example. J Comput Chem 20:911–920

    Article  CAS  Google Scholar 

  38. Goodman Gilman A, Rail TW, Nies AS, Taylor P (1990) The pharmacological basis of therapeutics. Pergamon Press, New York, p 1024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbó-Dorca, R., Robert, D., Amat, L., Gironés, X., Besalú, E. (2000). Quantum self-similarity measures as QSAR descriptors. In: Molecular Quantum Similarity in QSAR and Drug Design. Lecture Notes in Chemistry, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57273-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57273-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67581-5

  • Online ISBN: 978-3-642-57273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics