Skip to main content

Quantum objects, density functions and molecular quantum similarity measures

  • Chapter
Molecular Quantum Similarity in QSAR and Drug Design

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 73))

  • 189 Accesses

Abstract

In this chapter, the elementary basis of Quantum Similarity framework is presented in an elementary way. Here, by defining in a rigorous way the concept of quantum object, the quantum mechanical concept of Quantum Similarity is described. This leads to a discussion about the role of density functions in the chemical description of molecular structures. Some definitions -tagged, Boolean and functional tagged sets, as well as vector semispaces- are previously introduced, in order to produce the adequate formalism from where Quantum Similarity can be easily deduced and after this computational algorithms can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Von Neumann J (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton

    Google Scholar 

  2. Bohm D (1989) Quantum Theory. Dover Publications, New York

    Google Scholar 

  3. Goldstein S (1988) Quantum Theory without Observers-Part One. Physics Today March: 42–46, Part Two, April:38-42

    Google Scholar 

  4. Bell JS (1993) Speakable and Unspeakable in Quantum Mechanics-Cambridge University Press, Cambridge

    Google Scholar 

  5. Vinogradov IM (ed) (1987) Encyclopaedia of Mathematics. Vol. 8. Reidel-Kluwer, Dordrecht, p 249

    Google Scholar 

  6. Carbó-Dorca R, Besalú E, Gironés X (1999) Extended Density Functions. Adv Quantum Chem, in press

    Google Scholar 

  7. Carbó-Dorca R (1997) Fuzzy sets and Boolean Tagged Sets. J Math Chem 22:143–147

    Article  Google Scholar 

  8. Carbó-Dorca R (1998) Fuzzy sets and boolean tagged sets; vector semispaces and convex sets; quantum similarity mesures and ASA density functions; diagonal vector spaces and quantum chemistry. In: Carbó-Dorca R, Mezey PG (eds) Advances in Molecular Similarity. JAI Press, Greenwich, Vol 2, pp 43–72

    Google Scholar 

  9. Carbó-Dorca R (1998) Tagged Sets, Convex Sets and Quantum Similarity Measures. J Math Chem 23:353–364

    Article  Google Scholar 

  10. Carbó R, Besalú E, Amat L, Fradera X (1996) On molecular quantum similarity measures (QMSM) and indices (QMSI). J Math Chem 19:47–56

    Article  Google Scholar 

  11. Robert D, Carbó-Dorca R (1998) A formal comparison between molecular quantum similarity indices. J Chem Inf Comput Sci 38:469–475

    Article  CAS  Google Scholar 

  12. Besalü E, Carbó R, Mestres J, Solà M (1995) Foundations and Recent Developments on Quantum Molecular Similarity. Top Curr Chem 173:31–62

    Article  Google Scholar 

  13. Arsenin VY (1968) Basic Equations and Special Functions of Mathematical Physics. Iliffe Books, London

    Google Scholar 

  14. Matsuoka O (1973) Int J Quantum Chem 7:365–381

    Article  Google Scholar 

  15. Bethe AH, Salpeter EE (1957) Quantum mechanics of one-and two-electron Systems. Springer-Verlag, Berlin

    Google Scholar 

  16. Dunlap BI, Connnolly JWD, Sabin JR (1979) On some approximations in applications of some Xα theory. J Chem Phys 71:3396–3402

    Article  CAS  Google Scholar 

  17. Mestres J, Solà M, Duran M, Carbó R (1994) On the calculation of ab initio quantum molecular similarities for large systems: fitting the electron density. J Comput Chem 15:1113–1120

    Article  CAS  Google Scholar 

  18. Cioslowski J, Piskorz P, Rez P (1997) Accurate analytical representations of the core electron densities of the elements 3 through 118. J Chem Phys 106:3607–3612

    Article  CAS  Google Scholar 

  19. Constans P, Carbo R (1995) Atomic shell approximation: electron density fitting algorithm restricting coefficients to positive values J Chem Inf Comput Sci 35:1046–1053

    Article  CAS  Google Scholar 

  20. Constans P, Amat L, Fradera X, Carbô-Dorca R (1996) Quantum molecular similarity measures (QMSM) and the atomic shell approximation (ASA). In: Carbo-Dorca R, Mezey PG (eds) Advances in Molecular Similarity. JAI Press, Greenwich, Vol 1, pp 187–211

    Chapter  Google Scholar 

  21. Amat L, Carbó-Dorca R (1997) Quantum similarity measures under atomic shell approximation: first order density fitting using elementary Jacobi rotations. J Comput Chem 18:2023–2039

    Article  CAS  Google Scholar 

  22. Amat L, Carbó-Dorca R (1999) Fitted electronic density functions from H to Rn for use in quantum Similarity measures: Cis-diamminedichloroplatinum(II) complex as an application example. J Comput Chem 20:911–920

    Article  CAS  Google Scholar 

  23. Ruedenberg K, Schwarz WHE (1990) Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering. J Chem Phys 42:4956–4969

    Article  Google Scholar 

  24. Coppens P (1992) In: International Tables for Crystallography. Kluwer, Amsterdam, Vol B, p 10

    Google Scholar 

  25. Coppens P, Becker (1992) In: International Tables for Crystallography. Kluwer, Amsterdam, Vol C, p 628

    Google Scholar 

  26. Ruedenberg K, Raffenetti RC, Bardon D (1973) Energy, structure and reactivity. Proceedings of the 1972 Boulder Conference on Theoretical Chemistry. Wiley, New York, p 164

    Google Scholar 

  27. Schmidt MW, Ruedenberg K (1979) Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitives. J Chem Phys 71:3951–3962

    Article  CAS  Google Scholar 

  28. Feller DF, Ruedenberg K (1979) Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations. Theor Chim Acta 52:231–251

    Article  CAS  Google Scholar 

  29. Jacobi CGJ (1846) Ober ein leichtes Verfahren, die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. J Reine Angew Math (Crelle’s Journal) 30:51–94

    Article  Google Scholar 

  30. Wilkinson JH, Reinsch C (1971) Linear algebra. Springer-Verlag, Berlin, pp 202–211

    Google Scholar 

  31. Pierre DA (1969) Optimization theory With applications. Wiley, New York

    Google Scholar 

  32. Carbó-Dorca R, Amat L, Besalú E, Gironés X, Robert D (1999) Quantum molecular similarity: theory and applications to the evaluation of molecular properties, biological activities and toxicity. In: Carbó-Dorca R, Mezey PG (eds) The Fundamentals of Molecular Similarity. Kluwer, New York, in press

    Google Scholar 

  33. McLean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z=l 1-18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  34. Krishnan B, Binkley JS, Seeger R, Pople JA (1980) Self-consistent orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  35. These coefficients and exponents can be downloaded from http://iqcudg-es/cat/similarity/ASA/func6311.html

    Google Scholar 

  36. Gironés X, Amat L, Carbô-Dorca R (1998) A comparative study of isodensity surfaces using “ab initio” and ASA density functions. J Mol Graph Model 16:190–196

    Google Scholar 

  37. Atai A, Tomioka N, Yamada M, Inoue A, Kato Y (1993) Molecular superposition for rational drug design. In: Kubinyi H (ed) 3D QSAR in drug design. ESCOM, Leiden, pp 200–225

    Google Scholar 

  38. Nyburg SC (1974) Some uses of a best molecular fit routine. Acta Cryst B 30:251–253

    Article  CAS  Google Scholar 

  39. Martin YC (1992) 3D database searching in drug design. J Med Chem 35:2145–2154

    Article  CAS  Google Scholar 

  40. Constans P, Amat L, Carbó-Dorca R (1997) Toward a global maximization of the molecular similarity function: superposition of two molecules. J Comput Chem 18:826–846

    Article  CAS  Google Scholar 

  41. See, for example: Bayada DM, Simpson RW, Johnson AP, Laurenco C (1992) An algorithm for the multiple common subgraph problem. J Chem Inf Comput Sci 32:680–685

    Article  CAS  Google Scholar 

  42. Gavuzzo E, Pagliuca S, Pavel V, Quagliata C (1972) Generation and best fitting of molecular models. Acta Cryst B 28:1968–1969

    Article  CAS  Google Scholar 

  43. McLachlan AD (1972) A mathematical procedure for superimposing atomic coordinates of proteins. Acta Cryst A 28:656–657

    Article  CAS  Google Scholar 

  44. Gerber PR, Muller K (1987) Superimposing several sets of atomic coordinates. Acta Cryst A 41:426–428

    Article  Google Scholar 

  45. Redington PK (1992) Molfit: A computer program for molecular superposition. Comput Chem 16:217–222

    Article  CAS  Google Scholar 

  46. Kearsley SK, Smith GM (1990) An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Comput Method 3:615–633

    Article  CAS  Google Scholar 

  47. Manaut M, Sanz F, Jose J, Milesi M (1991) Automatic search for maximum similarity between molecular electrostatic potential distributions. J Comput-Aided Mol Design 5:371–380

    Article  CAS  Google Scholar 

  48. Clark M, Cramer III RD, Jones DM, Patterson DE, Simeroth PE (1990) Comparative molecular field analysis (CoMFA). 2. Towards its use with 3D-structural databases. Tetrahedron Comput Method 3:47–59

    Article  CAS  Google Scholar 

  49. Good AC, Hodgkin EE, Richards WG (1992) Utilization of Gaussian functions for the rapid evaluation of molecular similarity. J Chem Inf Comput Sci 32:188–191

    Article  CAS  Google Scholar 

  50. Mestres J, Rohrer DC, Maggiora GM (1997) MIMIC: A molecular-field matching program, exploiting applicability of molecular similarity approaches. J Comput Chem 18:934–954

    Article  CAS  Google Scholar 

  51. Parretti MF, Kroemer RT, Rothman JH, Richards WG (1997) Alignment of molecules by the Monte Carlo optimization of molecular similarity indices. J Comput Chem 18:1344–1353

    Article  CAS  Google Scholar 

  52. McMahon AJ, King PM (1997) Optimization of Carbó molecular similarity index using gradient methods. J Comput Chem 18:151–158

    Article  CAS  Google Scholar 

  53. Dean PM, Callow P, Chau PL (1988) Molecular recognition: blind-searching for regions of strong structural match on the surfaces of two dissimilar molecules. J Mol Graph 6:28–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbó-Dorca, R., Robert, D., Amat, L., Gironés, X., Besalú, E. (2000). Quantum objects, density functions and molecular quantum similarity measures. In: Molecular Quantum Similarity in QSAR and Drug Design. Lecture Notes in Chemistry, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57273-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57273-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67581-5

  • Online ISBN: 978-3-642-57273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics