Skip to main content

Quaternion symmetry of the Dirac equation

  • Chapter

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 74))

Abstract

Following van der Waerden, the Dirac equation is derived from linearization of the Klein-Gordon equation using the algebraic properties of the Pauli spin matrices. As the algebra of these matrices is identical to that of quaternions, the Dirac equation can be reformulated in terms of quaternion algebra and therefore without reference to a specific spin quantization axis. In this paper we consider the symmetry content of the Dirac equation. It is found that the basic binary symmetry operations in spin space map onto the unit vectors of complex quaternions. We argue that a consistent choice of the inversion operator in spin space is of order four. We furthermore show that quaternion algebra is the natural language for time reversal symmetry. These considerations lead to the formulation of a symmetry scheme that automatically provides maximum point group and time reversal symmetry reduction in the solution of the Dirac equation in the finite basis approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. B. N. Kursunoglu and E. P. Wigner, editors. Reminiscences about a great physicist: Paul Adrien Maurice Dimc. Cambridge University Press, 1987.

    Google Scholar 

  2. F. G. Frobenius. Grelle84:59, 1878.

    Google Scholar 

  3. C. S. Peirce. Amer.Jour.Math., 4:225, 1881.

    Google Scholar 

  4. S. L. Altmann. Rotations, Quatemions, and Double Groups. Clarendon Press, Oxford, 1986.

    Google Scholar 

  5. G. Aucar, T. Saue, H. LÃa. Jensen, and L. Visscher. J.Ghem.Phys., 110:6208–6218, 1999.

    Article  CAS  Google Scholar 

  6. B. L. van der Waerden. Group Theory and Quantum Mechanics. Springer, Berlin, 1974.(Translation of the German Original Edition: Die Grundlehren der mathematischen Wissenschaften Band 37, Die Gruppentheoretische Methode in der Quantenmechanik. Publisher: Verlag von Julius Springer, Berlin 1932).

    Book  Google Scholar 

  7. H. Weyl. Z.Phys., 56:330–352, 1929.

    Article  Google Scholar 

  8. C. S. Wu, E. Ambler, W. Hayward, D. D. Hoppes, and R. P. Hudson. Phys.Rev., 1413:1413–1414,1957.

    Article  Google Scholar 

  9. E. P. Wigner. Group theory and its application to the quantum mechanics of atomic spectra. Academic Press, New York, 1959.

    Google Scholar 

  10. M. Tinkham. Group theory and Quantum Mechanics. McGraw-Hill, New York, 1964.

    Google Scholar 

  11. M. Lax. Symmetry Principles in Solid State and Molecular Physics. Wiley and Sons, New York, 1974.

    Google Scholar 

  12. T. Saue and H. J. Aa Jensen. J.Ghem.Phys., 111:6211–6222, 1999.

    Article  CAS  Google Scholar 

  13. H. Bethe. Ann.Phys., 3:133–208, 1929.

    Article  CAS  Google Scholar 

  14. J. G. Snijders. Relativity and pseudopotentials in the HFS method. PhD thesisVrije Universiteit, Amsterdam, 1979.

    Google Scholar 

  15. S. A. Werner. Phys.Rev.Lett., 35:1053–1055, 1975.

    Article  CAS  Google Scholar 

  16. H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse. Phys.Lett., 54:425–427, 1975.

    Article  Google Scholar 

  17. A. G. Klein and G.l. Opat. Phys.Rev.Lett., 37:238–240, 1976.

    Article  CAS  Google Scholar 

  18. M. E. Stoll. Phys.Rev. A16:1521–1524, 1977.

    Article  CAS  Google Scholar 

  19. C. P. Poole and H.A. Farach. Found.Phys., 12:719–738, 1982.

    Article  Google Scholar 

  20. G. Artken. Mathematical Methods for Physicists. Academic Press, San Diego, 1985.

    Google Scholar 

  21. S. L. Altmann and P. Herzig. Mol.Phys., 45:585–604, 1982.

    Article  CAS  Google Scholar 

  22. E. Wigner. Nachrichten der Akad. der Wissensch. zu Göttingen,II, pages 546–559, 1932.

    Google Scholar 

  23. H. J. Aa Jensen, KG. Dyall, T. Saue, and K Fægri. J.Chem.Phys., 104:4083–4097, 1996.

    Article  CAS  Google Scholar 

  24. Max Jammer. The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York, 1966.

    Google Scholar 

  25. G. M. Dixon. Division Algebras. Kluwer Academic, 1994.

    Google Scholar 

  26. Footnote 2 on page 607 in [38].

    Google Scholar 

  27. L. E. Dickson. Linear Algebras. Cambridge University Press, London, 1914.

    Google Scholar 

  28. C. Lanczos. Z.Phys57:474–483, 1929.

    Article  Google Scholar 

  29. C. Lanczos. Z.Phys57:484–493, 1929.

    Article  Google Scholar 

  30. A. W. Conway. Proc. Roy. Soc. (London) A162:145–154, 1937.

    Article  Google Scholar 

  31. P. Rastall. Rev. Mod.Phys., 36:820–832, 1964.

    Article  Google Scholar 

  32. K. Morita. Prog. Theor.Phys., 70:1648–1665, 1983.

    Article  CAS  Google Scholar 

  33. A. D. McLean and Y.S. Lee. In R. Carbo, editor, Current Aspects of Quantum Chemistry 1981, volume 21, pages 219–238, Amsterdam, 1982. Elsevier.

    Google Scholar 

  34. R. E. Stanton and S. Havriliak. J.Chem.Phys., 81:1910–1918, 1984.

    Article  CAS  Google Scholar 

  35. F. J. Dyson. J.Math. Phys., 3:1199–1215, 1962.

    Article  Google Scholar 

  36. Dirac, a relativistic ab initio electronic structure program, Release 3.1 (1998), written by T. Saue, T. Enevoldsen, T. Helgaker, H.J. Aa. Jensen, J. Laerdahl, K Ruud, J. Thyssen, and L. Visscher. See http://dirac.chem.sdu.dk.

    Google Scholar 

  37. T. Saue, K. Fægri, T. Helgaker, and O. Gropen. Mol.Phys., 91, 1997.

    Google Scholar 

  38. W. Pauli. Z.Phys., 43:601–623, 1927.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saue, T., Jensen, H.J.A. (2000). Quaternion symmetry of the Dirac equation. In: Mathematical Models and Methods for Ab Initio Quantum Chemistry. Lecture Notes in Chemistry, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57237-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57237-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67631-7

  • Online ISBN: 978-3-642-57237-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics