Skip to main content

Molekularbiologische Ursachen der vorzeitigen Wehentätigkeit

  • Chapter
Frühgeburt und Frühgeborenes
  • 140 Accesses

Zusammenfassung

Die Muskulatur des Menschen beträgt 40% des Körpergewichts, und trotz ihrer lebensnotwendigen Funktion bestehen nur unzureichende molekulare Kenntnisse über den ultrastrukturellen Aufbau. Elektronenmikroskopische und histochemische Untersuchungen konnten bisher im quergestreiften und glatten Muskel lediglich das kontraktile Filamentsystem Aktin und Myosin nachweisen. Muskelkontraktion kommt dadurch zustande, daß diese beiden Filamentsysteme ineinander gleiten, ohne sich dabei zu verkürzen (Huxley u. Hanson 1954). Das bisher bekannte Zweifilamentsystem der Muskulatur (Aktin und Myosin) kann die erheblichen physikalischen Unterschiede der 200 verschiedenen Muskelarten des Menschen nicht erklären, so daß die Existenz noch weiterer kontraktiler Filamentsysteme vermutet wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Benian GM, Kiff JE, Neckelmann N, Moerman DG, Waterston RH (1989) Sequence of an unusally large protein implicated in regulation of myosin activity in C. elegans. Nature 342: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Eilertsen KJ, Kazmierski ST, Keller TCS (1994) Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 126: 1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Funatsu T, Higuchi H, Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten non-repetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106: 1563–1572

    Article  PubMed  Google Scholar 

  • Gautel M, Leonard K, Labeit S (1993) Phosphorylation of KSP-motifs in the C-terminal region of titin in differentiating myoblasts. EMBO J 12: 3827–3834

    PubMed  CAS  Google Scholar 

  • Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) A cooperative phosphorylation switch in human cardiac myosin-binding protein C specific for the cardiac isoform: A modulator of cardiac contraction? EMBO J 14: 952–1960

    Google Scholar 

  • Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54: 165

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME, Podolski RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173: 149–152

    Google Scholar 

  • Johnson KA, Quiocho FA (1996) Twitching worms catch S100. Nature 380: 585–586

    Article  PubMed  CAS  Google Scholar 

  • Kolmerer B, Olivieri N, Herrmann BG, Labeit S (1996) Genomic organization of the m-line titin and ist tissue-specific expression in two distinct isoforms. J Mol Biol 256: 556

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B (1995a) The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248: 308–315

    PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B (1995b) Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Barlow DP, Gautel M et al. (1990) A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Gibson T, Lakey A et al. (1991) Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 282: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11: 1711–1716

    PubMed  CAS  Google Scholar 

  • Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67: 782

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara S, Natori R et al. (1977) Connectin, an elastic protein of muscle: Characterization and function. Biochem 82: 317–337

    CAS  Google Scholar 

  • Rossi E, Faiella A, Zeviani M et al. (1994) Order of six loci at 2q24-q31 and orientation of the HOXD locus. Genomics 24: 34–40

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino C, Reggiani S (1996) Molecular diversity of myofibrillar proteins: Gen regulation and functional significance. Physiol Rev 76: 371

    PubMed  CAS  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S et al. (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2 A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270: 31158–31162

    Article  PubMed  CAS  Google Scholar 

  • Turnacioglu KK, Mittal B, Sanger JM, Sanger JW (1996) Partial characterization of zeugmatin indicates that it is part of the Z-band region of titin. Cell Moti Cytoskel 34: 108–121

    Article  CAS  Google Scholar 

  • Wallgren-Pettersson C, Avela K, Marchand S et al. (1995) A gene for autosomal recessive nemaline myopathy assigned to chromosome 2q by linkage analysis. Neuromusc Disord 5: 441–443

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Ramirez-Mitchell R, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81: 3685–3689

    Article  PubMed  CAS  Google Scholar 

  • Watkins H, Conner D, Thierfelder L et al. (1995) Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 1: 34–437

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labeit, D. (2000). Molekularbiologische Ursachen der vorzeitigen Wehentätigkeit. In: Friese, K., Plath, C., Briese, V. (eds) Frühgeburt und Frühgeborenes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57222-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57222-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63046-0

  • Online ISBN: 978-3-642-57222-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics