Skip to main content

Beatmungsstrategien für Frühgeborene

  • Chapter
Frühgeburt und Frühgeborenes
  • 137 Accesses

Zusammenfassung

Seit den Anfängen der Neonatologischen Intensivtherapie stehen die Methoden zur Behandlung der respiratorischen Insuffizienz als auch deren Ergebnisse im Mittelpunkt des Interesses. Seit ca. 20 Jahren ist der Anteil der Kinder mit einem Geburtsgewicht < 1500 g (VLBW), die beatmet werden müssen, weitgehend unverändert geblieben, dagegen hat der Anteil der untergewichtigen Neugeborenen mit einem Geburtsgewicht zwischen 1500 und 2500 g mit Beatmungsnotwendigkeit ständig abgenommen (Abb. 19.1). Deshalb konzentriert sich die Thematik auf Frühgeborene mit einem Gestationsalter < 32 SSW bzw. mit einem Geburtsgewicht < 1500 g. Diese Population hat ein sehr klar umschriebenes Profil akuter und chronischer Morbidität, für deren Behandlung ein Finanzierungsaufwand entsteht, der am einfachsten mit der stationären Behandlungsdauer in Tagen meßbar ist (Tabelle 19.1). In kontrollierten IRDS Infant Respiratory Distress Syndrome. F I O 2 Inspiratorische Sauerstofffraktion. NEC Nekrotisierende Enterocolitis. IVH Intraventrikuläre Hämorrhagie. PCW Postkonzeptionelle Wochen. PDA Persistierender Ductus arteriosus. ROP Retinopathia praematurorum. PVL Periventrikuläre Leukomalazie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andreasson B, Lindroth M, Svenningsen NW, Jonson B (1988) Effects on respiration of CPAP immediately after extubation in the very preterm infant. Pediatr Pulmonol 4: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Arnold JH, Bower LK, Thompson JE (1995) Respiratory deadspace measurements in neonates with congenital diaphragmatic hernia. Crit Care Med 23: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Arsowa S, Schmalisch G, Wauer RR (1996) Korrelation zwischen endexspiratorischem und kapillärem CO2 bei beatmeten Früh-und Neugeborenen. Klin Pediatr 209: 47–53

    Article  Google Scholar 

  • Baenzinger O, Jaggi JL, Mueller AC et al. (1994) Cerebral blood flow in preterm infants affected by sex, mechanical ventilation, and intrauterine growth. Pediatr Neurol 11: 319–324

    Article  Google Scholar 

  • Bernstein G, Heldt GP, Mannino FL (1994) Increased and more consistent tidal volumes during synchronized intermittend mandatory ventilation in newborn infants. Am J Respir Crit Care Med 150: 1444–1448

    PubMed  CAS  Google Scholar 

  • Bernstein G, Mannino FL, Heldt GP et al. (1996) Randomized multicenter trial comparing synchronized and conventional intermittend mandatory ventilation in neonates. J Pediatr 128: 453–463

    Article  PubMed  CAS  Google Scholar 

  • Bhuta T, Henderson-Smart DJ (1997) Elective high fequency oscillatory ventilation versus conventional ventilation in preterm infants with pulmonary dysfunction: systematic review and meta-analysis. Pediatr 100: E6

    Article  CAS  Google Scholar 

  • Bignall S, Dixon P, Quinn C, Kitney R (1997) Monitoring interactions between spontaneous respiration and mechanical inflations in preterm infants. Crit Care Med 25: 545–553

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund LL, Ingimarsson J, Curstedt T, Robertson JJ, Werner O, Vilstrup CT (1997) Manual ventilation with a few larg breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 42: 348–355

    Article  PubMed  CAS  Google Scholar 

  • Bose CL, Lawson EE, Greene A, Mentz W, Friedman M (1986) Measurement of cardiopulmonary function in ventilated neonates with RDS using rebreathing methodology Pediatr Res 20: 316–320

    CAS  Google Scholar 

  • Boynton BR, Carlo W, Jobe AH (1994) New therapies for neonatal respiratory failure. Cambridge Univ Press, Cambridge New York Melbourne, pp 192–245

    Google Scholar 

  • Burri PH (1984) Fetal and postnatal devopment of the lung. Annu Rev Physiol 46: 617–628

    Article  PubMed  CAS  Google Scholar 

  • Carlo WA, Greenough A, Chatburn RL (1994) Advances in conventional mechanical ventilation. In: Boynton BR, Carlo W, Jobe AH (eds) New therapies for neonatal respiratory failure. Cambridge Univ Press, Cambridge New York Melbourne, pp 131–151

    Google Scholar 

  • Chernick V (1973) Continuous negative chest wall pressure therapy for hyaline membrane disease. Peditatr Clin North Am 20: 407–417

    CAS  Google Scholar 

  • Clark RH, Gerstmann DR, Null DM jr et al. (1992) Prospektive randomized comparison of HFO and CMV in RDS. Pediatrics 89: 5–11

    PubMed  CAS  Google Scholar 

  • Clark RH (1994) High frequency ventilation. J Pediatr 124: 661–674

    Article  PubMed  CAS  Google Scholar 

  • Cleary JP, Bernstein G, Mannino FL, Heldt GP (1995) Improved oxygenation during synchronized intermittend mandatory ventilation in neonates with RDS: a randomized, crossover study. J Pediatr 126: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Comroe JH, Forster RE, Dubois AB Briscoe WA, Carlsen E (1962) The lung. Year Book Medical Chicago

    Google Scholar 

  • Donn SM, Nicks JJ, Becker MA (1994) Flow-synchronized ventilation of preterm infants with respiratory distress syndrome. J Perinatol 14: 90–94

    PubMed  CAS  Google Scholar 

  • Durand DJ, Asselin JM (1998) Physiology of HFV. In: Polin RA, Fox WW (eds) Fetal and neonatal Physiology. Vol 1. Saunders, Philadelphia London Toronto, pp 1212–1219

    Google Scholar 

  • Dyke MP (1995) Morphine increases synchronous ventilation in preterm infants. J Paediatr Child Health 31: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Elleau C, Galperine RI, Guenard H, Demarquez JL (1993) Helium-oxgen mixture in RDS: A double blind study. J Pediatr 122: 132–136

    Article  PubMed  CAS  Google Scholar 

  • Frank L, Sosenko IRS, Gerdes J (1998) Pathophysiology of lung injury and repair: Special features of immature lung. In: Polin RA, Fox WW (eds) Fetal and neonatal Physiology. Vol 1. Saunders, Philadelphia London Toronto, pp 1175–1188

    Google Scholar 

  • Gerstmann DR, Minton SD, Stoddart RA et al. (1996) The Povo multicenter early HFOV trial: Improved pulmonary and clinical outcome in RDS. Pediatrics 98: 1044–1050

    PubMed  CAS  Google Scholar 

  • Gittermann MK, Fusch C, Gittermann AR et al. (1997) Early nasal CPAP treatment reduces the need for intubation in VLBW infants. Eur J Pediatr 156: 384–388

    Article  PubMed  CAS  Google Scholar 

  • Greenough A (1995) Oxygen and ventilator therapy. In: Yu VYH (ed) Pulmonary problems in the perinatal period and their sequelae. Clin Pediatr vol 3/1, Bailliere Tindall, London Philadelphia Sydney Tokyo Toronto, pp 49–70

    Google Scholar 

  • Greenogh A, Gamsu HR, Greenall F (1989) Investigation of effects of paralysis by pancuronium on heart rate, blood pressure and fluid balance. Acta Paed Scand 78: 829–834

    Article  Google Scholar 

  • Greenough A, Milner AD (1987) High frequency ventilation in the neonatal period. Eur J Pediatr 146: 446–449

    Article  PubMed  CAS  Google Scholar 

  • Greenough A, Milner AD (1992) Respiratory support using patient triggered ventilation in neonatal period. Arch Dis Child 67: 69–71

    Article  PubMed  CAS  Google Scholar 

  • Greenough A, Morley CJ, Pool J (1986) Fighting the ventilator-are fast rates an effective alternative to paralysis? Early Human Dev 13: 189–194

    Article  CAS  Google Scholar 

  • Greenough A, Wood S, Morley CJ, Davis JA (1984) Pancuronium prevents pneumothoraces in ventilated premature infants who actively exspire against positive pressure ventilation. Lancet I: 1–3

    Article  Google Scholar 

  • Gregory GA (1972) Respiratory care of newborn infants. Pediatr Clin North Am 19: 311–324

    PubMed  CAS  Google Scholar 

  • Gregory GA (1973) Methods of neonatal respiratory assistance. Br J Anaesth 45: 806–807

    PubMed  Google Scholar 

  • Halliday HL (1998) Which interventions for neonatal respiratory failure are effective? Croat Med J 39: 165–170

    PubMed  CAS  Google Scholar 

  • Harding R (1994) Development of the respiratory system. In: Thorburn GD, Harding R (eds) Textbook of fetal physiology. Oxford Univ Press, Oxford New York Tokyo, pp 140–167

    Google Scholar 

  • HiFi Study Group (1989) HFOV compared with CMV in treatment of respiratory failure in preterm infants. N Engl J Med 320: 88

    Article  Google Scholar 

  • HiFi Study Group (1993) Randomized study of HFOV in infants with severe RDS. J Pediatr 122: 609–617

    Article  Google Scholar 

  • Horbar JD, Carpenter JH (1998) Vermont-Oxford Network 1997 Database Summary. Burlington Vermont o5401

    Google Scholar 

  • Hudson WA (1998) Normal and abnormal structural development of the lung. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Vol 1. Saunders, Philadelphia London Toronto, pp 1033–1046

    Google Scholar 

  • Hummler H, Gerhardt T, Gonzales A et al. (1996) Influence of different methods of synchronized mechanical ventilation on ventilation, gas exchange, patient effort, and blood pressure fluctuations in premature neonates. Pediatr Pulmonol 22: 305–313

    Article  PubMed  CAS  Google Scholar 

  • Jarreau PH, Moriette G, Mussat P et al. (1996) Patient triggered ventilation decreases the work of breathing in neonates. Am J Respir Crit Care Med 153: 1176–1181

    PubMed  CAS  Google Scholar 

  • Jobe AH (1998) Too many unvalidated new therapies to prevent chronic lung disease in preterm infants. J Pediatr 132: 200–202

    Article  PubMed  CAS  Google Scholar 

  • Jobe AH, Ikegami M (1998) Mechanisms initiating lung injury in the preterm. Early Hum Dev 53: 81–94

    Article  PubMed  CAS  Google Scholar 

  • Keszler M, Donn SM, Bucciarelli RL et al. (1991) Multicenter controlled trial comparing HFJV and CMV in newborn infants with pulmonary interstitial emphysema. J Pediatr 119: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Kluckow M, Evans N (1996) Relationship between blod pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr 129: 506–512

    Article  PubMed  CAS  Google Scholar 

  • Leach CL, Fuhrmann BP, Morin FC, Rath MG (1993) Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study. Crit Care Med 21: 1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Leach CL, Greenspan JS, Rubenstein SD, Shaffer TH, Wolfson MR, Jackson JC, DeLemos R, Fuhrmann BP (1996) Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. The Liqui Vent Study Group. N Engl J Med 12; 335(11): 761-767

    Google Scholar 

  • Leach CL, Greenspan JS, Rubenstein SD (1996) Partial liquid ventilation with perflubron in premature infants with severe respiratory distess syndrom. N Engl J Med 335: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Leach CL, Fuhrman BP, Morin FC, Rath MG (1993) Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: A prospective, randomized, controlled study. Crit Care Med 21: 1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Levine S, Levy S, Henson D (1990) Negative pressure ventilation. Crit Care Med 6: 505–531

    CAS  Google Scholar 

  • Lundstrom KE (1996) Initial treatment of preterm infants-CPAP or ventilation? Eur J Pediatr 155: S25–S29

    Article  PubMed  Google Scholar 

  • Mammel MC, Boros SJ (1996) High frequency ventilation. In: Goldsmith JP, Karotkin EH (eds) Assisted ventilation of the neonate. Saunders, Philadelphia London, pp 199–228

    Google Scholar 

  • McGettig et al. (1998) New ways to ventilate newborns in acute respiratory failure. Pediat Clin North Am 45: 475–509

    Article  Google Scholar 

  • Millet V, Lacrose V, Bartoli JM et al. (1997) Pression positive continue precoce en salle de travail. Arch Pediatr 4: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Nikischin W, Gerhardt T, Everett R et al. (1996) Patient triggered ventilation: a comparison of tidal volume and chestwall and abdominal motion as trigger signals. Pediatr Pulmonol 22: 28–34

    Article  PubMed  CAS  Google Scholar 

  • Nilsson B, Grossmann G, Robertson B (1980) Artificial ventilation of premature newborn rabbits: effects of positive end-expiratory pressure on lung mechanics and lung morphology. Acta Pediatr Scand 69: 597–602

    Article  CAS  Google Scholar 

  • Ogawa Y, Miyasaka K, Kawano T et al. (1993) A multicenter randomized trial of HFOV as compared with CMV in preterm infants with respiratory failure. Early Hum Dev 32: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator induced lung injury. Crit Care Med 21: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Pohlandt F, Saule H, Schröder H et al. (1992) Decreased incidence of extra-alveolar air leakage or death prior to air leakage in high versus low rate positive pressure ventilation: results of a randomised seven centre trial in premature infants. Eur J Pediatr 151: 904–909

    Article  PubMed  CAS  Google Scholar 

  • Rennie JM, South M, Morley CJ (1987) Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch Dis Child 62: 1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Rettwitz-Volk W, Veldman A, Roth B et al. (1998) A prospective randomized multicenter trial of HFOV compared with CMV in preterm infants with RDS receiving surfactant. J Pediatr 132: 200–202

    Article  Google Scholar 

  • Reynolds EOR (1974) Pressure waveform and ventilator settings for mechanical ventilation in severe hyaline membrane disease. Int Anesthesiol Clin 12: 259–280

    Article  PubMed  CAS  Google Scholar 

  • Samuels MP, Raine J, Wringht T (1996) Continuous negative extrathoracic pressure in neonatal respiratory failure. Pediatrics 98: 1154–164

    PubMed  CAS  Google Scholar 

  • Sandberg, K, Edberg WE, Benton W, Silberberg A, Sladek M, Sundell HW (1991) Surfactant improves gas mixing and alveolar ventilation in preterm lambs. Pediatr Res 30: 181–189

    Article  PubMed  CAS  Google Scholar 

  • Saugstadt OD (1998) Chronic lung disease: the role of oxydative stress. Biol Neonat 74 [Suppl 1]: 21–28

    Article  Google Scholar 

  • Schmalisch G, Wauer RR, Beier E, Weiland C (1983) Möglichkeiten und Grenzen der quantitativen Impedanzrespirografie mit dem Apnocard 2 bei Neugeborenen. Pädiatr Grenzg 22: 389–400

    CAS  Google Scholar 

  • Schmalisch G, Wauer RR (1990) Die grundlegenden atemmechanischen Vorgänge bei der druckbegrenzten Beatmung von Neugeborenen. Kinderärztl Prax 58: 653–661

    PubMed  CAS  Google Scholar 

  • Schmalisch G, Wauer RR (1995) Dimensionierung des Hintergrundflows bei der Ventilationsmessung von Neugeborenen und Säuglingen mittels Flow-Through-Technik. Pneumologie 49: 461–465

    PubMed  CAS  Google Scholar 

  • Schmalisch G, Wauer RR (1997) Methoden der Atemfunktionsdiagnostik bei Neugeborenen mit Surfactantmangel. In: Wauer RR (Hrsg) Surfactanttherapie. Thieme, Stuttgart New York, S 34–52

    Google Scholar 

  • Schulze A, Schaller P, Gerhardt B, Mädler HJ, Gmyrek D (1990) An infant ventilator technique for resistive unloading during spontaneous breathing. Results in a rabbit model of airway obstruction. Pediatr Res 28: 79–82

    PubMed  CAS  Google Scholar 

  • Schulze A, Schaller P (1997) Assisted mechanical ventilation using resistive and elastic unloading. Semin Neonatol 2: 105–114

    Article  Google Scholar 

  • Sedin G (1974) Positive pressure ventilation at moderately high frequency in newborn infants with IRDS. Acta Anaesthesiol Scand 30: 515–520

    Article  Google Scholar 

  • Sedin G, Jonzon A (1991) New ventilatory techniques in the treatment of newborn infants. J Perinat Med 19(Suppl 1): 176–182

    PubMed  Google Scholar 

  • Shaffer TH, Wolfson MR (1994) Liquid Ventilation. In: Polin AR, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia London Toronto, pp 1219–1242

    Google Scholar 

  • Tyson JE (1995) Use of unproven therapies in clinical practice and research: how can we better serve our patients and their families? Semin Perinatol 19: 98–111

    Article  PubMed  CAS  Google Scholar 

  • Wauer RR (1997) Surfactanttherapie. Thieme, Stuttgart New York, S 2–20

    Google Scholar 

  • Wauer RR, Maurer T, Novotny T, Schmalisch G (1997) Continuous negative extrathoracic pressure (CNP) for treatment in infants with chronic respiratory insufficiency in infants. Eur Respir J 9: 299 s

    Google Scholar 

  • Wenzel U, Wauer RR, Wagner M, Schmalisch G (1999) In-vitro and in-vivo assessment of a new equipment for the single breath CO2 analysis in neonates. Br J Anaesth 83: 503–510

    Article  PubMed  CAS  Google Scholar 

  • Wiswell TE, Graziani LT, Kornhauser MS et al.(1996) HFJV in the early management of RDS is associated with a greater risk for adverse outcomes. Pediatrics 98: 1035–1042

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wauer, R.R. (2000). Beatmungsstrategien für Frühgeborene. In: Friese, K., Plath, C., Briese, V. (eds) Frühgeburt und Frühgeborenes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57222-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57222-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63046-0

  • Online ISBN: 978-3-642-57222-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics