Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 142))

Abstract

Through the process of decomposition, dead organic material is broken down into particles of progressively smaller size, until the structure can no longer be recognised, and organic molecules are mineralised to their prime constituents: H2O, CO2 and recalcitrant organic as well as mineral components. During litter decomposition, C may additionally be leached as dissolved organic C to the mineral soil. Other mineral components, like K and Mn, are released from the original tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Andersson JPE, Domsch KH (1975) Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can J Microbiol21:314–322

    Article  Google Scholar 

  • Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22:585–594

    Article  Google Scholar 

  • Berg B (1988) Dynamics of nitrogen CSN) in decomposing Scots pine (Pinus sylvestris) needle litter. Long-term decomposition in a Scots pine forest VI. Can J Bot 66:1539–1546

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Clark FT, Rosswall T (eds) Terrestrial nitrogen cycle. Ecol Bull 33:163–178

    Google Scholar 

  • Berg B, Wessen B, Ekbohm G (1982) Nitrogen level and decomposition of Scots pine needle litter. Oikos 38:291–296

    Article  Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta RC, Couteaux MM, Escudero A, Gallardo A, Kratz W, Madeira M, McClaugherty C, Meentemeyer V, Munoz F, Piussi P, Remacle J, Virzo De Santo A (1993) Litter mass-loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Google Scholar 

  • Berg B, Calvo de Anta R, Escudero A, Gardenas A, Johansson MB, Laskowski R, Madeira M, Mälkönen, McClaugherty C, Meentemeyer V, Virzo De Santo A (1995) The chemical composition of newly shed needle litter of Scots pine and some other pine species in a climatic transect. X Long-term decomposition in Scots pine forest. Can J Bot 73:1423–1435

    Google Scholar 

  • Blair JM, Crossley DA Jr, Callagham LC (1992) Effects of litter quality and micro-arthropods on N dynamics and retention of exogenous lsN in decomposing litter. Bioi Fertil Soils 12:241–252

    Article  CAS  Google Scholar 

  • Buchmann N, Schulze E-D, Gebauer G (1995) 15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation. Oecologia 102:361–370

    Article  Google Scholar 

  • Bunnel FL, Tait DEN, Flanagan PW, van Cleve K (1977) Microbial respiration and substrate weight loss. I. A general model of the influence of abiotic variables. Soil Biol Biochem 9:33–40

    Article  Google Scholar 

  • Clinton PW, Newman RH, Allen RB (1995) Immobilisation of 15N in forest litter studied by 15N CPMAS-NMR spectroscopy. Eur J Soil Sci 46:551–556

    Article  Google Scholar 

  • Colpaert JV, van Tichelen KK (1996) Decomposition, nitrogen and phosphorus mineralisation from beech leaf litter colonised with ectomycorrhizal or litter decomposing basidiomycetes. New Phytol 134:123–132

    Article  Google Scholar 

  • Cotrufo MF, Ineson P (1996) Elevated CO, reduces field decomposition rates of Betula pendula Roth. leaf litter. Oecologia 106:525–530

    Article  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. 10:63–66

    Google Scholar 

  • Dickson BA, Crocker RL (1953) A chronosequence of soils and vegetation near Mt. Shasta, California. II. The development of the forest floors and the carbon and nitrogen profiles of the soils. J Soil Sci 4: 142–154

    Article  CAS  Google Scholar 

  • Dighton J (1995) Nutrient cycling in different terrestrial ecosystems in relation to fungi. Can J Bot 73:1349–1360

    Article  Google Scholar 

  • Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Bioi Fertil Soils 22:299–304

    Article  CAS  Google Scholar 

  • Downs M, Nadelhoffer K, Melillo JM, Aber JD (1996) Immobilization of a 15N-labelled nitrate addition by decomposing forest litter. Oecologia 105:141–150

    Google Scholar 

  • Edmonds RL (1980) Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Can J For Res 10:327-337

    Google Scholar 

  • Flanagan PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organicmatter quality in taiga ecosystems. Can J For Res 13:795–817

    Article  CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  • Hart SC, Firestone MK, Paul EA, Smith JL (1993) Flow and fate of soil nitrogen in an annual grassland and a young mixed conifer-forest. Soil Bioi Biochem 25:431–442

    Article  Google Scholar 

  • Hayano K (1986) Cellulase complex in a tomato field soil: induction, localization and some properties. Soil Biol Biochem 18:215–219

    Article  CAS  Google Scholar 

  • Hayano K, Katami A (1985) Origin and properties of β-glucosidase activity of tomato-field soil. Soil Bioi Biochem 17:553–557

    Article  CAS  Google Scholar 

  • Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Bioi Biochem 25:1537–1546

    Article  Google Scholar 

  • Hunt HW, Ingham ER, Coleman DC, Elliott DC, Reid CPP (1988) Nitrogen limitation of production and decomposition in prairie, mountain meadow and Pine forest. Ecology 69:1009–1016

    Article  Google Scholar 

  • Joergensen RG, Meyer B (1989) Nutrient changes in decomposing beech leaf litter assessed using a solution flux approach. J Soil Sci 41:279–293

    Google Scholar 

  • Kirk TK, Farell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 47:10577–10585

    Article  Google Scholar 

  • Koopmans CJ, Tietema A, Verstraten JM (1998) Effects of reduced N deposition on litter decomposition and cycling in two N-saturated forests in the Netherlands. Soil Biol Biochem 30:141–151

    Article  CAS  Google Scholar 

  • Latter PM, Howson G, Howard DM, Scott WA (1998) Long-term study of litter decomposition on a Pennine peat bog: which regression? Oecologia 113:94–103

    Article  Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microbiol Ecol8:237–299

    Article  CAS  Google Scholar 

  • Martin F, Delaruelle C, Hilbert JL (1990) An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycol Res 94:1049–1064

    Article  Google Scholar 

  • Mason CF (1977) Decomposition. The Camelot Press, Southampton

    Google Scholar 

  • Mayer O (1993) Functional groups of microorganisms. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Ecological Studies 99. Springer, Berlin Heidelberg New York, pp 67–96

    Google Scholar 

  • McClaugherty CA, Berg B (1987) Cellulose, lignin and nitrogen concentrations as rate-regulating factors in late stages of forest litter decomposition. Pedobiologia 30:101–112

    CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Meentemeyer V, Berg B (1986) Regional variation in rate mass loss of Pinus sylvestris needle litter in Swedish pine forest as influenced by climate and litter quality. Scand J For Res 1:167–180

    Google Scholar 

  • Mellilo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Miller M, Paloj A, Rangger A, Reeslev M, Kjøller A (1998) The use of fluorogenic substrates to measure fungal presence and activity in soil. Appl Environ Microbiol64:613–617

    PubMed  CAS  Google Scholar 

  • Møller J, Miller M, Kjøler A (1999) Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Bioi Biochem 31:367–374

    Article  Google Scholar 

  • Myrold DD (1990) Effects of acid deposition on soil organisms. In: Lucier AA, Haines SG (eds) Mechanisms of forest response to acidic deposition. Springer Berlin Heidelberg New York, pp 163–187

    Chapter  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Parnas H (1975) Model for decomposition of organic material by microorganisms. Soil Bioi Biochem 7:161–169

    Article  CAS  Google Scholar 

  • Rhee YH, Hah YC, Hong W (1987) Relative contribution of fungi and bacteria to soil carboxymethylcellulase activity. Soil Bioi Biochem 19:479–481

    Article  CAS  Google Scholar 

  • Rodin LE, Bazilevich NI (1967) Production and mineral cycling in terrestrial vegetation. Oliver & Boyd, London

    Google Scholar 

  • SetäHä H, Marshall VG, Trofymow JA (1996) Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Bioi Biochem 28:1661–1675

    Article  Google Scholar 

  • Sinsabough R L, Moorhead (1997) Synthesis of litter quality and enzymic approaches to decomposition modelling. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, pp 363–375

    Google Scholar 

  • Sinsabough RL, Antibus RK, Linkins AE (1991) An enzymic approach in to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  Google Scholar 

  • Sinsabough RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn DR, Weiland T (1992) Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Bioi Biochem 24:743–749

    Article  Google Scholar 

  • Staaf H (1980) Release of plant nutrients from decomposing leaf litter in a South Swedish beech forest. Holarct Ecol3:129–136

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictor of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Publ Climatol8:5–104

    Google Scholar 

  • Tietema A, Wessel WW (1994) Microbial activity and leaching during initial oak leaf litter decomposition. Biol Fertil Soils 18:49–54

    Google Scholar 

  • Upadhyay VP, Singh JS (1989) Patterns of nutrient immobilization and release in decomposing forest litter in central Himalaya, India. J Ecol 77: 127–146

    Article  Google Scholar 

  • Zeller B (1998) Contribution à l’étude de la décomposition d’une litière de hêtre, la libération de l’azote, sa minéralization et son prélèvement par le hêtre (Fagus sylvatica 1.) dans une hêtraie de montagne du bassin versant du Strengbach (Haut-Rhin). Thesis, Université Henri Poincaré, Nancy, France, 138 pp

    Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F (1998) 15N partitioning and production of 15N-labelled litter in beech trees following [15Nlurea spray. Ann Sci For 55:375–383

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cotrufo, M.E., Miller, M., Zeller, B. (2000). Litter Decomposition. In: Schulze, ED. (eds) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57219-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57219-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67239-5

  • Online ISBN: 978-3-642-57219-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics