Skip to main content

Basic Aspects of Fibrinolysis and Thrombolysis

  • Chapter
Coronary Circulation and Myocardial Ischemia

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 32))

  • 93 Accesses

Abstract

The hypothesis underlying thrombolytic therapy of thromboembolic disease is that early and sustained recanalization prevents cell death, reduces infarct size, preserves organ function, and reduces early and late mortality. Thrombolysis consists of the pharmacological dissolution of the blood clot, by intravenous infusion of plasminogen activators that activate the fibrinolytic system (Fig. 1). The fibrinolytic system includes a proenzyme, plasminogen, which is converted by plasminogen activators to the active enzyme plasmin, which in turn digests fibrin to soluble degradation products. Inhibition of the fibrinolytic system occurs by plasminogen activator inhibitors (mainly plasminogen activator inhibitor-1, PAI-1) and by plasmin inhibitors (mainly α2-antiplasmin) [1]. Thrombolytic agents that are either approved or under clinical investigation in patients with acute myocardial infarction include streptokinase, recombinant tissue-type plasminogen activator (rt-PA or alteplase), rt-PA derivatives such as reteplase and TNK-rtPA, anisoylated plasminogen-streptokinase activator complex (APSAC or anistreplase), two-chain urokinase-type plasminogen activator (tcu-PA or urokinase), recombinant single-chain u-PA (scu-PA, pro-u-PA or prourokinase), and recombinant staphylokinase and derivatives [2].

Schematic representation of the fibrinolytic system. The proenzyme plasminogen is activated to the active enzyme plasmin by tissue-type or urokinase-type plasminogen activator. Plasmin degrades fibrin into soluble fibrin degradation products. Inhibition of the fibrinolytic system may occur at the level of the plasminogen activators, by plasminogen activator inhibitors, or at the level of plasmin, mainly by α2-antiplasmin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  2. Collen D (1997) Thrombolytic therapy. Thromb Haemost 78:742–746

    PubMed  CAS  Google Scholar 

  3. Collen D (1996) Fibrin-selective thrombolytic therapy for acute myocardial infarction. Circulation 93:857–865

    PubMed  CAS  Google Scholar 

  4. Forsgren M, Raden B, Israelsson M, Larsson K, Heden LO (1987) Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213:254–260

    Article  PubMed  CAS  Google Scholar 

  5. Collen D (1980) On the regulation and control of fibrinolysis. Thromb Haemost 43:77–89

    PubMed  CAS  Google Scholar 

  6. Pennica D, Holmes WE, Kohr WJ, et al. (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221

    Article  PubMed  CAS  Google Scholar 

  7. Lijnen HR, Collen D (1991) Strategies for the improvement of thrombolytic agents. Thromb Haemost 66:88–110

    PubMed  CAS  Google Scholar 

  8. Holmes WE, Pennica D, Blaber M, et al. (1985) Cloning and expression of the gene for prourokinase in Escherichia coli. Biotechnology 3:923–929

    Article  CAS  Google Scholar 

  9. Holmes WE, Nelles L, Lijnen HR, Collen D (1987) Primary structure of human alpha 2-antiplasmin, a serine protease inhibitor (serpin). J Biol Chem 262:1659–1664

    PubMed  CAS  Google Scholar 

  10. Bangert K, Johnsen AH, Christensen U, Thorsen S (1993) Different N-terminal forms of α2-plasmin inhibitor in human plasma. Biochem J 291:623–625

    PubMed  CAS  Google Scholar 

  11. Wiman B, Nilsson T, Cedergren B (1982) Studies on a form of alpha 2-antiplasmin in plasma which does not interact with the lysine-binding sites in plasminogen. Thromb Res 28:193–199

    Article  PubMed  CAS  Google Scholar 

  12. Ichinose A, Tamaki T, Aoki N (1983) Factor XIII-mediated cross-linking of NH2-terminal peptide of alpha2-plasmin inhibitor to fibrin. FEBS Lett 153:369–371

    Article  PubMed  CAS  Google Scholar 

  13. Pannekoek H, Veerman H, Lambers H, et al. (1986) Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 5:2539–2544

    PubMed  CAS  Google Scholar 

  14. Declerck PJ, De Mol M, Alessi MC, et al. (1988) Purification and characterization of a plasminogen activator inhibitor-1-binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 263:15454–15461

    PubMed  CAS  Google Scholar 

  15. Gechtman Z, Sharma R, Kreizman T, Fridkin M, Shaltiel S (1993) Synthetic peptides derived from the sequence around the plasmin cleavage site in vitronectin. Use in mapping the PAI-1 binding site. FEBS Lett 315:293–297

    Article  PubMed  CAS  Google Scholar 

  16. Wiman B, Collen D (1979) On the mechanism of the reaction between human α2-antiplasmin and plasmin. J Biol Chem 254:9291–9297

    PubMed  CAS  Google Scholar 

  17. Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 84:573–578

    Article  PubMed  CAS  Google Scholar 

  18. Kruithof EKO (1988) Plasminogen activator inhibitors — a review. Enzyme 40:113–121

    PubMed  CAS  Google Scholar 

  19. Thorsen S, Philips M, Selmer J, Lecander I, Astedt B (1988) Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur J Biochem 175:33–39

    Article  PubMed  CAS  Google Scholar 

  20. Chmielewska J, Ranby M, Wiman B (1988) Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for’ second site’ interactions. Biochem J 251:327–332

    PubMed  CAS  Google Scholar 

  21. Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF (1989) Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 339:721–724

    Article  PubMed  CAS  Google Scholar 

  22. Adams DS, Griffin LA, Nachajko WR, Reddy VB, Wei CM (1991) A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem 266:8476–8482

    PubMed  CAS  Google Scholar 

  23. Wagner OF, de Vries C, Hohmann C, Veerman H, Pannekoek H (1989) Interaction between plasminogen activator inhibitor type 1 (PAI-1) bound to fibrin and either tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA). Binding of t-PA/PAI-1 complexes to fibrin mediated by both the finger and the kringle-2 domain of t-PA. J Clin Invest 84:647–655

    Article  PubMed  CAS  Google Scholar 

  24. Reilly CF, Hutzelmann JE (1992) Plasminogen activator inhibitor-1 binds to fibrin and inhibits tissue-type plasminogen activator-mediated fibrin dissolution. J Biol Chem 267:17128–17135

    PubMed  CAS  Google Scholar 

  25. Hekman CM, Loskutoff DJ (1985) Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260:11581–11587

    PubMed  CAS  Google Scholar 

  26. Declerck PJ, De Mol M, Vaughan DE, Collen D (1992) Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a non-inhibitory substrate for tissue-type plasminogen activator. J Biol Chem 267:11693–11696

    PubMed  CAS  Google Scholar 

  27. Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919

    PubMed  CAS  Google Scholar 

  28. Thorsen S (1992) The mechanism of plasminogen activation and the variability of the fibrin effector during tissue-type plasminogen activator-mediated fibrinolysis. Ann NY Acad Sci 667:52–63

    Article  PubMed  CAS  Google Scholar 

  29. McLean JW, Tomlinson JE, Kuang WJ, et al. (1987) cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 330:132–137

    Article  PubMed  CAS  Google Scholar 

  30. Harpel PC, Gordon BR, Parker TS (1989) Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci USA 86:3847–3851

    Article  PubMed  CAS  Google Scholar 

  31. Fleury V, Anglès-Cano (1991) Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. Biochemistry 30:7630–7638

    Article  PubMed  CAS  Google Scholar 

  32. Loscalzo J, Weinfeld M, Fless GM, Scanu AM (1990). Lipoprotein (a), fibrin binding and plasminogen activation. Arteriosclerosis 10:240–245

    Article  PubMed  CAS  Google Scholar 

  33. Edelberg JM, Gonzales-Gronow M, Pizzo SV (1990) Lipoprotein (a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thromb Res 57:155–162

    Article  PubMed  CAS  Google Scholar 

  34. Liu JN, Harpel PC, Pannell R, Gurewich V (1993) Lipoprotein (a): Akinetic study of its influence on fibrin-dependent plasminogen activation by prourokinase or tissue plasminogen activator. Biochemistry 32:9694–9700

    Article  PubMed  CAS  Google Scholar 

  35. Bajzar L, Manuel R, Nesheim ME (1995) Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 270:14477–14484

    Article  PubMed  CAS  Google Scholar 

  36. Eaton DL, Malloy BE, Tsai SP, Henzel W, Drayna D (1991) Isolation, molecular cloning, and partial characterization of a novel carboxypeptidase B from human plasma. J Biol Chem 266:21833–21838

    PubMed  CAS  Google Scholar 

  37. Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L (1997) Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost 78:386–391

    PubMed  CAS  Google Scholar 

  38. Collen D, Lijnen HR (1994) Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84:680–686

    PubMed  CAS  Google Scholar 

  39. Lijnen HR, Collen D (1996) Staphylokinase, a fibrin-specific bacterial plasminogen activator. Fibrinolysis 10:119–126

    Article  CAS  Google Scholar 

  40. Collen D (1998) Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nature Med 4:279–284

    Article  PubMed  CAS  Google Scholar 

  41. Gurewich V, Pannell R, Louie S, Kelley P, Suddith RL, Greenlee R (1984) Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J Clin Invest 73:1731–1739

    Article  PubMed  CAS  Google Scholar 

  42. Lijnen HR, Van Hoef B, Nelles L, Collen D (1990) Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740→Ala) and plasmin resistant scu-PA (Lys158→Glu). J Biol Chem 265:5232–5236

    PubMed  CAS  Google Scholar 

  43. Husain SS (1991) Single-chain urokinase-type plasminogen activator does not possess measurable intrinsic amidolytic or plasminogen activator activities. Biochemistry 30: 5797–5805

    Article  PubMed  CAS  Google Scholar 

  44. Liu J, Pannell R, Gurewich V (1992) A transitional state of pro-urokinase that has a higher catalytic efficiency against Glu-plasminogen than urokinase. J Biol Chem 267:15289–15292

    PubMed  CAS  Google Scholar 

  45. Liu J, Gurewich V (1992) Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK. Biochemistry 31:6311–6317

    Article  PubMed  CAS  Google Scholar 

  46. Fleury V, Gurewich V, Anglés-Cano E (1993) A study of the activation of fibrin-bound plasminogen by tissue-type plasminogen activator, single chain urokinase and sequential combinations of the activators. Fibrinolysis 7:87–96

    Article  CAS  Google Scholar 

  47. Fleury V, Lijnen HR, Anglés-Cano E (1993) Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J Biol Chem 268:18554–18559

    PubMed  CAS  Google Scholar 

  48. Husain SS (1993) Fibrin affinity of urokinase-type plasminogen activator. Evidence that Zn2+ mediates strong and specific interaction of single-chain urokinase with fibrin. J Biol Chem 268:8574–8579

    PubMed  CAS  Google Scholar 

  49. Declerck PJ, Lijnen HR, Verstreken M, Collen D (1991) Role of α2-antiplasmin in fibrin-specific clot lysis with single-chain urokinase-type plasminogen activator in human plasma. Thromb Haemost 65:394–398

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lijnen, H.R., Collen, D. (2002). Basic Aspects of Fibrinolysis and Thrombolysis. In: Pinsky, M.R., Artigas, A., Dhainaut, JF. (eds) Coronary Circulation and Myocardial Ischemia. Update in Intensive Care Medicine, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57212-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57212-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42588-5

  • Online ISBN: 978-3-642-57212-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics