Skip to main content

Basic Mechanisms of Atherosclerosis: From Inflammation to Infection

  • Chapter
Coronary Circulation and Myocardial Ischemia

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 32))

  • 99 Accesses

Abstract

Myocardial infarction, the most common complication of atherosclerosis, remains a deadly disease. According to an international survey done between 1985 and 1990 [1], median 4-week mortality of acute coronary heart disease reaches the bewildering rate of 50%. Beyond treatment, prevention is clearly a major issue and any progress in our understanding of atherosclerosis can have a wide impact on public health. Inflammation is now ranking high among current explanations, with the possibility of infection as one of its potential causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chambless L, Keil U, Dobson A, et al. (1997) Population versus clinical view of case fatality from acute coronary heart disease: Results from the WHO MONICA Project 1985–1990. Circulation 96:3849–3859

    PubMed  CAS  Google Scholar 

  2. Capron L (1987) Cause de l’athérosclérose: l’hypothèse virale. Arch Mal Coeur 80 (suppl.I):51–55

    PubMed  Google Scholar 

  3. Virchow R (1862) Phlogose und Thrombose im Gefässystem. In: Gesammelte Abhandlungen zur wissenschaftlichen Medizin. Max Hirsch, Berlin

    Google Scholar 

  4. Capron L (1993) Mécanismes inflammatoires de l’athérosclérose: inférences pathogéniques et étiologiques. Arch Mal Coeur 86(suppl.I):19–30

    PubMed  Google Scholar 

  5. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138

    Article  PubMed  CAS  Google Scholar 

  6. Kragel AH, Reddy SG, Wittes JT, Roberts WC (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80:1747–1756

    Article  PubMed  CAS  Google Scholar 

  7. Rekhter MD, Gordon D (1995) Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am J Pathol 147:668–677

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Cliff WJ, Schoefl GI, Higgins G (1993) Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 143:164–172

    PubMed  CAS  Google Scholar 

  9. Capron L (1996) Évolution des théories sur l’athérosclérose. Rev Prat (Paris) 46:533–537

    Google Scholar 

  10. Huchard H (1891) Les causes de l’artério-sclérose et des cardiopathies artérielles. Rev Gén Clin Thérap 5:637–639

    Google Scholar 

  11. Vallance P, Collier J, Bhagat K (1997) Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet 349:1391–1392

    Article  PubMed  CAS  Google Scholar 

  12. Wick G, Schett G, Amberger A, Kleindienst R, Xu QB (1995) Is atherosclerosis an immunologically mediated disease? Immunol Today 16:27–33

    Article  PubMed  CAS  Google Scholar 

  13. Capron L (1996) Chlamydia in coronary plaques — Hidden culprit or harmless hobo? Nature Med 2:856–857

    Article  PubMed  CAS  Google Scholar 

  14. Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350:430–436

    Article  PubMed  CAS  Google Scholar 

  15. Fabricant CG, Fabricant J, Litrenta MM, Minick CR (1978) Virus-induced atherosclerosis. J Exp Med 148:335–340

    Article  PubMed  CAS  Google Scholar 

  16. Nicholson AC, Hajjar DP (1998) Herpesviruses in atherosclerosis and thrombosis: Etiologic agents or ubiquitous bystanders? Arterioscler Thromb Vasc Biol 18:339–348

    Article  PubMed  CAS  Google Scholar 

  17. Hendrix MGR, Salimans MMM, Vanboven CPA, Bruggeman CA (1990) High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade-III atherosclerosis. Am J Pathol 136:23–28

    PubMed  CAS  Google Scholar 

  18. Gag SZ, Hunt SA, Schroeder JS, Alderman EL, Hill IR, Stinson EB (1996) Early development of accelerated graft coronary artery disease: Risk factors and course. J Am Coll Cardiol 28:673–679

    Google Scholar 

  19. Wu TC, Hruban RH, Ambinder RF, et al. (1992) Demonstration of cytomegalovirus nucleic acids in the coronary arteries of transplanted hearts. Am J Pathol 140:739–747

    PubMed  CAS  Google Scholar 

  20. Gulizia JM, Kandolf R, Kendall TJ, et al. (1995) Infrequency of cytomegalovirus genome in coronary arteriopathy of human heart allografts. Am J Pathol 147:461–475

    PubMed  CAS  Google Scholar 

  21. Zhou YF, Leon MB, Waclawiw MA, et al. (1996) Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335:624–630

    Article  PubMed  CAS  Google Scholar 

  22. Speir E, Modali R, Huang ES, et al. (1994) Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265:391–394

    Article  PubMed  CAS  Google Scholar 

  23. Blum A, Giladi M, Weinberg M, et al. (1998) High anti-cytomegalovirus (CMV) IgG antibody titer is associated with coronary artery disease and may predict post-coronary balloon angioplasty restenosis. Am J Cardiol 81:866–868

    Article  PubMed  CAS  Google Scholar 

  24. Carlsson J, Miketic S, Mueller KH, et al. (1997 & 1998) Previous cytomegalovirus or Chlamydia pneumoniae infection and risk of restenosis after percutaneous transluminal coronary angioplasty. Lancet 350:1225 & 351:143 [letters].

    Article  PubMed  CAS  Google Scholar 

  25. Legrand A, Mayer EP, Dalvi SS, Nachtigal M (1997) Transformation of rabbit vascular smooth muscle cells by human cytomegalovirus morphological transforming region 1. Am J Pathol 151:1387–1395

    PubMed  CAS  Google Scholar 

  26. Grayston JT, Kuo CC, Wang SP, Altman J (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory track infections. N Engl J Med 315:161–168

    Article  PubMed  CAS  Google Scholar 

  27. Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–461

    PubMed  CAS  Google Scholar 

  28. Saikku P, Leinonen M, Mattila K, et al. (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet ii:983–985

    Article  Google Scholar 

  29. Moazed TC, Kuo CC, Patton DL, Grayston JT, Campbell LA (1996) Experimental rabbit models of Chlamydia pneumoniae infection. Am J Pathol 148:667–676

    PubMed  CAS  Google Scholar 

  30. Moazed TC, Kuo CC, Grayston JT, Campbell LA (1997) Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 175:883–890

    Article  PubMed  CAS  Google Scholar 

  31. Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64:1614–1620

    PubMed  CAS  Google Scholar 

  32. Molestina RE, Dean D, Miller RD, Ramirez JA, Summersgill JT (1998) Characterization of a strain of Chlamydia pneumoniae isolated from a coronary atheroma by analysis of the omp1 gene and biological activity in human endothelial cells. Infect Immun 66:1370–1376

    PubMed  CAS  Google Scholar 

  33. Yamashita K, Ouchi K, Shirai M, Gondo T, Nakazawa T, Ito H (1998) Distribution of Chlamydia pneumoniae infection in the atherosclerotic carotid artery. Stroke 29:773–778

    Article  PubMed  CAS  Google Scholar 

  34. Danesh J, Peto R (1998) Risk factors for coronary heart disease and infection with Helicobacter pylori: meta-analysis of 18 studies. BMJ 316:1130–1132

    Article  PubMed  CAS  Google Scholar 

  35. Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ (1997) Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 96:404–407

    PubMed  CAS  Google Scholar 

  36. Gurfinkel E, Bozovich G, Daroca A, Beck E, Mautner B, for the ROXIS Study Group (1997) Randomised trial of roxithromycin in non-Q wave coronary syndromes: ROXIS pilot study. Lancet 350:404–407

    Article  PubMed  CAS  Google Scholar 

  37. Zhou YF, Guetta E, Yu ZX, Finkel T, Epstein SE (1996) Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells. J Clin Invest 98:2129–2138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capron, L., Wyplosz, B. (2002). Basic Mechanisms of Atherosclerosis: From Inflammation to Infection. In: Pinsky, M.R., Artigas, A., Dhainaut, JF. (eds) Coronary Circulation and Myocardial Ischemia. Update in Intensive Care Medicine, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57212-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57212-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42588-5

  • Online ISBN: 978-3-642-57212-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics