Skip to main content

Functional Assessment of the Coronary Physiology: The Role of Magnetic Resonance

  • Chapter
Coronary Circulation and Myocardial Ischemia

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 32))

  • 93 Accesses

Abstract

Nuclear Magnetic Resonance has recently emerged in cardiac physiology and cardiology. The absence of radiation exposure, the capability of imaging the entire heart volume, the development of fast imaging methods that can be performed on conventional MR systems are some of the several advantages, that have made MRI a reference imaging technique for evaluation of cardiac and coronary physiology. The MR signal depends on multiple parameters that all together represent the various aspects of cardiac metabolisms and functions: chemical composition, molecular motion, diffusion, physical state, water and lipid content, fiber orientation, perfusion, flow velocity. Fast MR imaging sequences use this dependence in order to assess: coronary anatomy (MR coronarography) and flow reserve (velocity by phase gradient encoding or time-of-flight), coronary wall imaging (spiral gradients), microcirculation (perfusion with endogenous or exogenous contrast agents), fiber orientation (diffusion) and contractility (tagging), high-energy phosphate metabolism, oxygen consumption and viability (by 31-Phosphorus or myoglobin spectroscopy), or global ventricular function. Spatial and temporal resolutions have considerably increased: images can now be acquired in less than 50 ms with a submillimetric matrix (Fig. 1). Also, the aforementioned parameters can be evaluated at rest and under physiological or pharmacological stress, and combined in a single comprehensive examination. This evaluation has the potential of aiding physicians in their therapeutic decisions eg coronary revascularization and helping them to plan and follow measures of primary or secondary prevention. Respecting the usual contraindications [1], MRI is safe and applicable even in the acute phase of a myocardial infarction. Echoplanar, Turboflash and Spiral interactive realtime imaging are the major methods which make this technology a major instrument of clinical and basic research in coronary physiology. Anatomy: MR Angiography and Tissue Characterization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shellock FG, Kanal E, SMRI Safety Committee. Policies, guidelines, and recom mendations for MR imaging safety and patients management. J Magn Reson Imaging 1991, 1:97–101

    Article  PubMed  CAS  Google Scholar 

  2. Hofman MBM, Paschal CB, Debiao L et al. MRI of coronary arteries: 2D breath-hold vs. 3D respiratory-gated acquisition. J Comput Assist Tomog 1995, 19:56–62

    Article  CAS  Google Scholar 

  3. Hundley WG; Hamilton CA; Clarke GD; Hillis LD; Herrington DM; Lange RA; Applegate RJ; Thomas MS; Payne J; Link KM; Peshock RM. Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 1999 Jun 29;99:3248–54

    PubMed  CAS  Google Scholar 

  4. Li D. Physical principles of magnetic resonance angiography. Coron Artery Dis 1999 May; 10:129–34

    Article  PubMed  CAS  Google Scholar 

  5. Keegan J; Gatehouse PD; Taylor AM; Yang GZ; Jhooti P; Firmin DN. Coronary artery imaging in a 0.5-Tesla scanner: implementation of real-time, navigator echo-controlled segmented k-space Flash and interleaved-spiral sequences. Magn Reson Med 1999;41:392–9

    Article  PubMed  CAS  Google Scholar 

  6. Hofman MB; Henson RE; Kovacs SJ; Fischer SE; Lauffer RB; Adzamli K; De Becker J; Wickline SA; Lorenz CH. Blood pool agent strongly improves 3D magnetic resonance coronary angiography using an inversion pre-pulse. Magn Reson Med 1999;41:360–7

    Article  PubMed  CAS  Google Scholar 

  7. Slavin GS; Riederer SJ; Ehman RL. Two-dimensional multishot echo-planar coronary MR angiography. Magn Reson Med 1998;40:883–9

    Article  PubMed  CAS  Google Scholar 

  8. Sakuma H; Goto M; Nomura Y; Kato N; Takeda K; Higgins CB. Three-dimensional coronary magnetic resonance angiography with injection of extracellular contrast medium. Invest Radiol 1999;34:503–8

    Article  PubMed  CAS  Google Scholar 

  9. Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. Stuber M; Botnar RM; Danias PG; Sodickson DK Kissinger KV; Van Cauteren M; De Becker J; Manning WJ. J Am Coll Cardiol 1999 Aug; 34(2):524–31

    Article  PubMed  CAS  Google Scholar 

  10. Cline HE; Thedens DR; Irarrazaval P; Meyer CH; Hu BS Nishimura DG; Ludke S: §D MR coronary artery segmentation. Magn Reson Med 1998;40:698–702

    Article  Google Scholar 

  11. Toussaint JF, Southern JF, Fuster V, Kantor HL. T2 Contrast for NMR Characterization of Human Atherosclerosis. Arterioscl Thromb and Vase Biol 1995, 15:1533–1542

    CAS  Google Scholar 

  12. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996, 94:932–938

    PubMed  CAS  Google Scholar 

  13. Meyer CH, Hu BS, Macovski A, Nishimura DG. Coronary vessel wall imaging. Proc Int Soc Magn Reson Med 1998, 1:15 (Abstr)

    Google Scholar 

  14. Fayad ZA, Fuster VF, Fallon JT, Sharma SK, Jayasundera TG, Worthley SG, Helft G, Aguinaldo G, Badimon JJ: Human coronary atherosclerotic wall imaging using in vivo high-resolution MR. Circulation, 1999; 100(18): I–520 (Abstract 2742)

    Google Scholar 

  15. Doorey AJ, Wills JS, Blasetto J, Goldenberg EM. Usefulness of MRI for diagnosing an anomalous coronary artery coursing between aorta and pulmonary trunk. Am J Cardiol 1994, 74:198–199

    Article  PubMed  CAS  Google Scholar 

  16. McConnell MV, Ganz P, Selwyn AP, Edelman RR, Manning WJ. Identification of anomalous coronary arteries and their anatomic course by Magnetic Resonance coronary angiography. Circulation 1995, 92:3158–3162

    PubMed  CAS  Google Scholar 

  17. Post JC, van Rossum AC, Bronzwaer JGF et al. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 1995, 92:3163–3171

    PubMed  CAS  Google Scholar 

  18. Edelman RR, Manning WJ, Gervino E, and Li W. Flow velocity quantification in human coronary arteries with fast, breath-hold angiography. J Magn Reson Imaging 1993, 3:699–703

    Article  PubMed  CAS  Google Scholar 

  19. Poncelet BP, Weisskoff RM, Wedeen VJ, Brady TJ, Kantor H. Time of flight quantification of coronary flow with echo-planar MRI. Magn Reson Med 1993, 30:447–457

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez F, Bassingthwaighte JB. Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Physiol 1990, 258:H1012–H1024

    PubMed  CAS  Google Scholar 

  21. Wilke N, Simm C, Zhang J et al. Contrast enhanced first pass myocardial perfusion imaging: Correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993, 29:485–497

    Article  PubMed  CAS  Google Scholar 

  22. Kivelitz DE, Bis KG, Wilke NM. Quantitative MR first-pass vs. N13-ammonia PET in coronary artery disease. Radiology 1997, 205:253–254

    Google Scholar 

  23. Fritz-Hansen T; Rostrup E; Sondergaard L; Ring PB; Amtorp O; Larsson HB. Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 1998;40:922–9

    Article  PubMed  CAS  Google Scholar 

  24. Lima JAC, Judd RM, Olivieri CL, Schulman SP, Atalar E, Zerhouni EA. Myocardial perfusion by contrast enhanced ultrafast MRI relates to myocardial damage in patients with acute myocardial infarction. Proc Soc Magn Reson 1994, 1:109

    Google Scholar 

  25. Niemi P, Poncelet BP, Kwong KK; Weisskoff RM; Rosen BR; Brady TJ; Kantor HL: Myocardial intensity changes associated with flow stimulation in blood oxygenation sensitive magnetic resonance imaging. Magn Reson Med 1996;36:78–82

    Article  PubMed  CAS  Google Scholar 

  26. Li D, Dhawale P, Haacke EM, Rubin PJ, Gropler RJ. Myocardial BOLD effects of dipyridamole and dobutamine using a segmented double-echo interleaved sequence. Proc Soc Magn Reson 1995, 1:339

    Google Scholar 

  27. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion Imaging. Magn Reson Med 1992, 23:37–45

    Article  PubMed  CAS  Google Scholar 

  28. Walsh EG, Minematsu K, Leppo J, Moore SC. Radioactive microsphere validation of a volume localized continuous saturation perfusion measurement. Magn Reson Med 1994, 31:147–153

    Article  PubMed  CAS  Google Scholar 

  29. Balaban RS, Taylor JF, Turner R. Effect of cardiac flow on gradient recalled echo images of the canine heart. NMR Biomed 1994, 7:89–95

    Article  PubMed  CAS  Google Scholar 

  30. Judd RM, Atalay MK, Rottman GA, Zerhouni EA. Effects of myocardial water exchange on Tl enhancement during bolus administration of MR contrast agents. Magn Reson Med 1995, 33:215–223

    Article  PubMed  CAS  Google Scholar 

  31. Toussaint JF, Kwong KK, M’Kparu F et al. Perfusion Changes in Human Skeletal Muscle During Reactive Hyperemia Measured by Echo-Planar Imaging. Magn Reson Med 1996, 35:62–69

    Article  PubMed  CAS  Google Scholar 

  32. Ovize M, Pichard JB, de Lorgeril M, et al. Accurate quantitation of infarct size by Gd-DOTA enhanced magnetic resonance imaging in the dog. J Am Coll Cardiol 1991, 17:242 A

    Article  Google Scholar 

  33. Saeed M, Wendland MF, Yu KK, et al. Identification of myocardial reperfusion with echo planar MRI. Circulation 1994, 90:1492–1501

    PubMed  CAS  Google Scholar 

  34. Holman ER, van Jonbergen HPW, van Dijkman PRM, van der Laarse A, de Roos A, van der Wall EE. Comparison of MRI studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 1993, 71:1036–1040

    Article  PubMed  CAS  Google Scholar 

  35. Van Dijkman PRM, Van der Wall EE, De Roos A, et al. Acute, subacute, and chronic myocardial infarction: quantitative analysis of Gadolinium-enhanced MR images. Radiology 1991, 180:147–151

    PubMed  Google Scholar 

  36. De Roos A, Van Rossum AC, Van der Wall EE, et al. Reperfused and nonreperfused myocardial infarction: potential of Gd-DTPA enhanced MRI. Radiology 1989, 172:717–720

    PubMed  Google Scholar 

  37. Lima JAC, Wu K, Judd RM et al. Infarct extent and presence of no-reflow regions by contrast enhanced MRI predict long-term prognosis after acute myocardial infarction. Circulation 1995, 92:I–509

    Google Scholar 

  38. Hartnell G, Cerel A, Kamalesh M et al. Detection of myocardial ischemia: Value of combined myocardial perfusion and cineangiographic MR imaging. Am J Roentgenol 1994, 163:1061–1067

    CAS  Google Scholar 

  39. Walsh EG, Doyle M, Lawson MA, Blackwell GG, Pohost GM. Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. Magn Reson Med 1995, 34:39–47

    Article  PubMed  CAS  Google Scholar 

  40. Dendale P; Franken PR; Holman E; Avenarius J; van der Wall EE; de Roos A. Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 1998;82:375–7

    Article  PubMed  CAS  Google Scholar 

  41. Baer FM; Theissen P; Schneider CA; Voth E; Sechtem U; Schicha H; Erdmann E. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after sucessful revascularization. J Am Coll Cardiol 1998;31:1040–8

    Article  PubMed  CAS  Google Scholar 

  42. Pennell DJ. Underwood SR. Ell PJ. Swanton RH. Walker JM. Longmore DB. Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography, Br Heart J. 1990, 64:362–369

    Article  PubMed  CAS  Google Scholar 

  43. Cubukcu AA, Ridgway JP, Sivananthan UM et al. Detection of contractile reserve by tagged cine MRI during low-dose dobutamine infusion. Circulation 1995, 92:I–508

    Google Scholar 

  44. Schenck J, Jolesz F, Roemer P, Cline HE, Lorensen WE, Kikinis R et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 1995, 195:805–814

    PubMed  CAS  Google Scholar 

  45. Kerr AB, Pauly JM, Hu B et al. Real-time Interactive MRI on a conventional scanner. Magn Reson Med 1997, 38:355–367

    Article  PubMed  CAS  Google Scholar 

  46. Unal O, Korosec F, Frayne R, Strother C, Mistretta C. A rapid 2D time-resolved variable-rate k-space sampling MR technique for passive catheter tracking during endovascular procedures. Magn Reson Med 1998, 40:356–362

    Article  PubMed  CAS  Google Scholar 

  47. Macovski A, Conolly S. Novel approaches to low-cost MRI. Magn Reson Med 1993, 30:221–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toussaint, J.F. (2002). Functional Assessment of the Coronary Physiology: The Role of Magnetic Resonance. In: Pinsky, M.R., Artigas, A., Dhainaut, JF. (eds) Coronary Circulation and Myocardial Ischemia. Update in Intensive Care Medicine, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57212-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57212-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42588-5

  • Online ISBN: 978-3-642-57212-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics