Skip to main content

Population Genetics: Coevolution in Host-Pathogen Systems

  • Chapter
  • 349 Accesses

Part of the book series: Progress in Botany ((BOTANY,volume 61))

Abstract

One of the greatest challenges in evolutionary biology is to explain how interspecific interactions influence the evolution of the species involved and how evolution modifies these interactions. This task requires a synthesis of population genetic theories, experimental results, and ecological evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios GN (1988) Plant pathology. Academic Press, London, 803 pp

    Google Scholar 

  • Aniktser Y, Wahl I (1979) Coevolution of the rust fungi on Gramineae and Liliaceae and their host. Annu Rev Phytopathol 17:367–403

    Article  Google Scholar 

  • Bayles RA, Clarkson JDS, Slater SE (1997) The UK cereal pathogen virulence survey. In: Crute IR, Holub B, Burdon JJ (eds) The gene-for-gene relationship in plant-parasite interactions. CAB International, Oxon, UK, pp 103–117

    Google Scholar 

  • Beerenbaum M (1983) Coumarins and caterpillars, a case for coevolution. Evolution 37:163–179

    Article  Google Scholar 

  • Beerenbaum MH, Feeny P (1981) Toxicity of angular furanocoumarins to swallowtail butterflies. Escalation in a coevolutionary arms race? Science 212:927–929

    Article  Google Scholar 

  • Braun PW, Lachnit B (1994) Kennzeichnung der räumlichen Verteilung von Pflanzenpopulationen. Agrarinformatik 2(4):67–71

    Google Scholar 

  • Braun PW, Turgut I (1995) Die Virulenzstruktur von Mehltaupopulationen auf Wildgersten in der Türkei. Z Pflanzenkr Pflanzenschutz 102(6):593–598

    Google Scholar 

  • Brown JKM (1994) Change and selection in the evolution of barley mildew. Trends Microbiol 2(12):470–475

    Article  PubMed  CAS  Google Scholar 

  • Brown JKM, Wolfe MS (1990) Structure and evolution of a population of Erysiphe graminis f. sp. hordei. Plant Pathol 39:376–390

    Article  Google Scholar 

  • Brown JKM, Foster FM, O’Hara RB (1997) Adaption of powdery mildew populations to cereal varieties in relation to durable and non durable resistance. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant parasite interactions. CAB International, Oxon, UK, pp 119–138

    Google Scholar 

  • Burdon JJ (1993) Genetic variation in pathogen populations and its implications for adaptation to host resistance. In: Jacobs Th, Parlevliet JE (eds) Durability of disease resistance. Kluwer, Dordrecht, pp 41–56

    Chapter  Google Scholar 

  • Burdon JJ (1996) The dynamics of disease in natural plant populations. In: Floyd RB, Sheppard AW, De Barro BJ (eds) Frontiers of population ecology. CSIRO, East Melbourne, Australia, pp 291–300

    Google Scholar 

  • Burdon JJ (1997) The evolution of gene-for-gene interactions in natural pathosystems. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant parasite interactions. CAB International, Oxon, UK, pp 245–262

    Google Scholar 

  • Burdon JJ, Jarosz AM (1989) Disease in mixed cultivars composites and natural plant populations some epidemiological and evolutionary consequences. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics breeding and genetic resources. Sinauer Associates, Sunderland, Massachusetts, USA, pp 215–228

    Google Scholar 

  • Burdon JJ, Jarosz AM (1991) Host-pathogen interactions in natural populations of Linum marginale and Melampsora lini I Patterns of resistance and racial variation in a large host population. Evolution 45(1):205–217

    Article  Google Scholar 

  • Burdon JJ, Jarosz AM (1992) Temporal variation in the racial structure of flax rust (Melampsora lini) populations growing on natural stands of wild flax (Linum marginale) local versus metapopulation dynamics. Plant Pathol 41:165–179

    Article  Google Scholar 

  • Burdon JJ, Wennstrom A, Elmquvist T, Kirby GC (1996) The role of race-specific resistance in natural plant populations. Oikos 76:411–416

    Article  Google Scholar 

  • Christ BJ, Person CO, Pope DD (1987) The genetic determination of variation in pathogenicity. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens their dynamics and genetics. Blackwell, Oxford, pp 7–19

    Google Scholar 

  • Clarke DD (1997) The genetic structure of natural pathosystems. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant parasite interactions. CAB International, Oxon, UK, pp 231–244

    Google Scholar 

  • Clarke DD, Bevan JR, Crute IR (1987) Genetic interactions between wild plants and their pathogenes. In: Day PR, Jellis GJ (1987) Genetics and plant pathogenesis. Blackwell, Oxford, pp 195–206

    Google Scholar 

  • Clarke DD, Campbell FS, Bevan JR (1990) Genetic interactions between Senecio vulgaris and the powdery mildew fungus Ersiphe fischeri. In: Burdon JJ, Leather SR (eds) Pest pathogens and plant populations. Blackwell, Oxford, pp 189–201

    Google Scholar 

  • Clay K (1989) Clavicipataceous fungal endophytes of grasses coevolution and the change from parasitism to mutualism. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic Press, London, pp 79–106

    Google Scholar 

  • Day PR (1978) The genetic base of epidemics. In: Horsfall JG, Cowling JB (eds) Plant disease, vol 2. Academic Press, New York, pp 263–283

    Google Scholar 

  • Dinoor A, Eshed N (1984) The role and importance of pathogens in natural plant communities. Annu Rev Phytopathol 22:443–466

    Article  Google Scholar 

  • Dinoor A, Eshed N (1987) The analysis of host and pathogen populations in natural ecosystems. In: Wolfe MS, Caten E (eds) Population of plant pathogens. Blackwell, Oxford, pp 75–88

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants, a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Emlen JM (1996) The role of time and energy in food preference. Am Nat 100:611–617

    Article  Google Scholar 

  • Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Frank SA (1991) Ecological and genetic models of host-pathogen coevolution. Heredity 67:73–83

    Article  PubMed  Google Scholar 

  • Frank SA (1992) Models of plant-pathogen coevolution. Trends Genet 8:213–219

    PubMed  CAS  Google Scholar 

  • Frank SA (1993) Revolutionary genetics of plants and pathogens. Evol Ecol 7:45–75

    Article  Google Scholar 

  • Futuyma DJ (1986) Evolutionary biology. Sinauer, Sunderland, Massachusetts, USA

    Google Scholar 

  • Futuyma DJ, Slatkin M (1983) Coevolution. Sinauer, Sunderland, Massachusetts, USA

    Google Scholar 

  • Gandon SY, Capowiez Y, Dubois Y, Michalakis, Olivieri I (1996) Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc Lond Ser B Biol Sci 263:1003–1009

    Article  Google Scholar 

  • Goldwasser L, Cook J, Silverman ED (1994) The effects of variability on metapopulation dynamics and rates of invasion. Ecology 75:40–47

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hau B, Pons J (1996) Selection of populations of barley powdery mildew influenced by fungicide strategies. In: Lyr H, Russell PE, Sisler HD (eds) Modern fungicides and antifungal compounds. Intercept, Andover, pp 357–364

    Google Scholar 

  • Heckelbacher B, Brodny U, Anikster Y, Fischbeck G, Wahl I (1992) Patterns of host-parasite interactions in natural populations of Hordeum spontaneum and endemic races of Erysiphe graminis. Vortr Pflanzenzücht 24:203–205

    Google Scholar 

  • Hovmøller MS, Munk L, Østergård H (1993) Observed and predicted changes in virulence gene frequencies at 11 loci in a barley powdery mildew population. Phytophatology 83:253–260

    Article  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Jarosz AM, Davelos AL (1995) Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytol 129:371–378

    Article  Google Scholar 

  • Jayakar SC (1970) A mathematical model for interaction of gene frequencies in a parasite and his host. Theor Popul Biol 1:140–164

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ (1997) An epidemiological approach to modelling the dynamics of a gene-for-gene interaction. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant parasite interactions. CAB International, Oxon, UK, pp 191–209

    Google Scholar 

  • Jones IT, Davies JER (1985) Partial resistance to Erysiphe graminis hordei in old European barley varieties. Eupytica 34:499–507

    Article  Google Scholar 

  • Kirby GC, Burdon JJ (1997) Effects of mutation and random drift on Leonard’s gene-for-gene coevolution model. Phytopathology 87:488–493

    Article  PubMed  CAS  Google Scholar 

  • Knudsen JCN, Dalsgaard H-H, Jorgensen JH (1986) Field assessment of partial resistance to powdery mildew in spring barley. Euphytica 35:233–243

    Article  Google Scholar 

  • Koch G, Köhler W (1990) Isozyme variation and genetic distances of Erysiphe graminis DC Formae Speciales. J Phytopathol 129:89–101

    Article  CAS  Google Scholar 

  • Koch G, Köhler W (1991) Isozyme variation versus virulence diversity in the european barley powdery mildew population. In: Jorgensen JH (ed) Integrated control of cereal mildews virulence patterns and their change. Riso National Laboratory Roskilde, Denmark, pp 197–202

    Google Scholar 

  • Leonard KJ (1977) Selection pressures and plant pathogens. Ann NY Acad Sci 287:207–222

    Article  Google Scholar 

  • Leonard KJ (1994) Stability of equilibria in a gene-for-gene coevolution model of host-parasite interactions. Phythopathology 84:70–77

    Article  Google Scholar 

  • Leonard KJ (1997) Modelling gene frequency dynamics. In: Grute IR, Holub EB, Burdon JJ (eds) Gene-for-gene relationship in plant parasite interactions. CAB International, Oxon, UK, pp 211–230

    Google Scholar 

  • Mac Arthur RH, Pianka ER (1996) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • May RM, Anderson RM (1983a) Parasite-host coevolution. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer Associates, Sunderland, Massachusetts, pp 186–206

    Google Scholar 

  • May RM, Anderson RM (1983b) Epidemiology and genetics in the coevolution of parasites and hosts. Proc Natl Acad Sci USA 68:246–248

    Google Scholar 

  • Maynard-Smith J (1974) Models in ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mode CJ (1985) A mathematical model for the co-evolution of obligate parasites and their hosts. Evolution 12:158–165

    Article  Google Scholar 

  • Norgaard Knudsen JC, Dalsgaard HH, Jorgensen JH (1986) Field assessment of partial resistance to powdery mildew in spring barley. Euphytica 35:233–244

    Article  Google Scholar 

  • Odum EP (1990) Ökologie. Thieme, Stuttgart

    Google Scholar 

  • Parker MA (1995) Local population differentiation for compability in an annual legume and its host specific fungal pathogen. Evolution 39:713–723

    Article  Google Scholar 

  • Pirozynski KA, Hawksworth DL (1989) Coevolution of fungi with plants and animals introduction and overview. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic Press, London, pp 1–30

    Google Scholar 

  • Pons J, Hau B, Köhler W (1996) Dynamics of fungicide resistance and virulence of powdery mildew populations. In: Kema GHJ, Niks RE, Damen RA (eds) Cereal rusts and powdery mildews bulletin, vol 24, Suppl: 275–278

    Google Scholar 

  • Robinson RA (1969) Disease resistance terminology. Rev Appl Mycol 48:593–606

    Google Scholar 

  • Robinson RA (1987) Host management in crop pathosystems. Macmillan, New York

    Google Scholar 

  • Robinson RA (1996) Return to resistance. Ag Access, Davis, California

    Google Scholar 

  • Thompson JN (1989) Concepts of coevolution. Trends Ecol Evol 4:179–183

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (1998) The population biology of coevolution. Res Popul Ecol 40:159–166

    Article  Google Scholar 

  • Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121–125

    Article  Google Scholar 

  • Thrall PH, Antonovics J (1995) Theoretical and empirical studies of metapopulations. Population and genetic dynamics of the Silene-Usfilago system. Can J Bot Rev Can Bot 73, Suppl 1 E-H:1249–1258

    Google Scholar 

  • Thrall PH, Burdon JJ (1997) Host-pathogen dynamics in a metapopulation context the ecological and evolutionary consequences of being spatial. J Ecol 85:743–753

    Article  Google Scholar 

  • Vanderplank JE (1982) Host-plant interactions in plant disease. Academic Press, New York

    Google Scholar 

  • Welz G (1986) Struktur und Dynamik der Virulenz in Populationen von Erysiphe graminis DC f. sp. hordei Marchal. Dissertation, Giessen

    Google Scholar 

  • Wolfe MS (1985) The current status and prospect of mutiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol 23:251–273

    Article  Google Scholar 

  • Wolfe MS (1987) Trying to understand and control powdery mildew. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens. Blackwell, Oxford, pp 253–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pons, J., Löwer, C., Braun, P., Köhler, W. (2000). Population Genetics: Coevolution in Host-Pathogen Systems. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57203-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57203-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52371-7

  • Online ISBN: 978-3-642-57203-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics