Skip to main content

Molecular Cell Biology: Role of Repetitive DNA in Nuclear Architecture and Chromosome Structure

  • Chapter
Book cover Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 61))

Abstract

Highly organized and defined arrangement of DNA in the cell nucleus is an important contribution to a timely and spatially correct gene expression and the respective functioning of the eukaryotic cell. More and more information is gained upon this structural organization not only in the chromosomes of a mitotic or meiotic cell but also at the interphase stage (Heslop-Harrison and Bennett 1991). Detailed cytological investigations with improved multicolor fluorescent in situ hybridization (FISH; Lichter 1997) or oligonucleotide primed in situ labeling (PRINS; Menke et al. 1998) techniques have elucidated the higher-order structure of chromosomes within the cell nucleus. Here, we would like to concentrate on the role of repetitive DNA in maintaining this order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597

    PubMed  CAS  Google Scholar 

  • Allshire RC, (1997) Centromeres, checkpoints and chromatid cohesion. Curr Opin Genet Dev 7:264–273

    PubMed  CAS  Google Scholar 

  • Allshire RC, Gosden JR, Cross SH, Cranston G, Rout D, Sugawara N, Szostak JW, Fantes PA, Hastie ND (1988) Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature 332:656–659

    PubMed  CAS  Google Scholar 

  • Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    PubMed  CAS  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ /1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meisotic prophase. J Cell Biol 137(1):5–18

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (1996) The contribution of retroelements to plant genome organization, function and evolution. Trends Microbiology 4:347–353

    CAS  Google Scholar 

  • Beridze T, Tsirekidze N, Turishcheva MS (1994) On the tertiary structure of the Citrus ichangensis satellite DNA. FEBS Lett 338:179–182

    PubMed  CAS  Google Scholar 

  • Biessmann H, Mason JM (1994) Telomeric repeat sequences. Chromosoma 103:154–161

    PubMed  CAS  Google Scholar 

  • Binarova P, Hause B, Dolezel J, Draber P (1998) Association of gamma-tubulin with kinetochore/centromeric region of plant chromosomes. Plant J 14:751–757

    CAS  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomers. Nature 350:569–573

    PubMed  CAS  Google Scholar 

  • Blackburn EH, Szostak JW (1984) The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163–194

    PubMed  CAS  Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analysis of the chromosomal and genomic organization of Tyl-copia-like retrotransposons in pteridophytes, gynmosperms and angiosperms. Plant Mol Biol 33:11–21

    PubMed  CAS  Google Scholar 

  • Broun P, Ganal MW, Tanksley SD (1992) Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc Natl Acad Sci USA 89:1354–1357

    PubMed  CAS  Google Scholar 

  • Brun C, Marcand S, Gilson E (1997) Proteins that bind to the double-stranded regions of telomeric DNA. Trends Cell Biol 7:317–324

    CAS  Google Scholar 

  • Bugaeva EA, Parfenov VN, Podgornaya OI (1993) The diplotene frog oocyte nuclear envelope possesses telomer-binding activity. Mol Biol 26:654–660

    Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273

    PubMed  CAS  Google Scholar 

  • Clarke L (1998) Centromeres: proteins, protein complexes, and repeat domains at centromers of simple eukaryotes. Curr Opin Genet Dev 8(2):212–8

    PubMed  CAS  Google Scholar 

  • Copenhaver GP, Browne WE, Preuss D (1988) Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci USA 95:247–252

    Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. TIGS 14:200–204

    CAS  Google Scholar 

  • Cullis CA (1986) Unstable genes in plants. Symp Soc Exp Biol 40:77–84

    PubMed  CAS  Google Scholar 

  • Dawe RK, Cande WZ (1996) Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci USA 93:8512–7

    PubMed  CAS  Google Scholar 

  • Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247(5):633–638

    PubMed  CAS  Google Scholar 

  • Fang G, Cech TR (1993) The β subunit of Oxytricha telomer-binding proteins promotes G-quartet formation by telomeric DNA. Cell 74:875–885

    PubMed  CAS  Google Scholar 

  • Ferguson BM, Fangman WL (1992) A position effect on the time of replication origin activation in yeast. Cell 68(2):333–340

    PubMed  CAS  Google Scholar 

  • Fischer TC, Groner S, Zentgraf U, Hemleben V (1994) Evidence for nucleosomal phasing and a novel protein specifically binding to cucumber satellite DNA. Z Naturforsch 49c:79–86

    Google Scholar 

  • Fitzgerald MS, McKnight TD, Shippen DE (1996) Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci USA 93(25):14422–14427

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Smith DB, Kumar A (1992a) Extreme heterogeneity of Tyl-copia group retrotransposons in plants. Mol Gen Genet 231:233–242

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992b) Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Heslop-Harrison JS, Kumar A (1997) The evolution of Tyl-copia group retrotransposons in eukaryotic genomes. Genetica 100:185–195

    PubMed  CAS  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    PubMed  CAS  Google Scholar 

  • Ganal MW, Lapitan NLV, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94

    PubMed  CAS  Google Scholar 

  • Gilson E, Laroche T, Gasser SM (1993) Telomeres and the functional architecture of the nucleus. Trends Cell Biol 3:128–134

    PubMed  CAS  Google Scholar 

  • Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G (1998) Chromosomal localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Res 6:97–104

    PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at Saccharomyces cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63(4):751–762

    PubMed  CAS  Google Scholar 

  • Grancell A, Sorger PK (1998) Chromosome movement: kinetochores motor along. Curr Biol 8:R382–R385

    PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Google Scholar 

  • Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defence responses. Genetica 100:241–252

    PubMed  CAS  Google Scholar 

  • Grebenstein B, Grebenstein O, Sauer W, Hemleben V (1996) Distribution and complex organisation of satellite DNA sequences in Aveneae species. Genome 39:1045–1050

    PubMed  CAS  Google Scholar 

  • Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365

    PubMed  CAS  Google Scholar 

  • Greider CW (1998) Telomeres and senescence: the history, the experiment, the future. Curr Biol 8:178–181

    Google Scholar 

  • Harrington JJ, Bokkelen GV, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromers and construction of first-generation human artificial chromosomes. Nat Genet 15:345–355

    PubMed  CAS  Google Scholar 

  • Heller K, Kilian A, Piatyszek MA, Kleinhofs A (1996) Telomerase activity in plant extracts. Mol Gen Genet 252(3):342–345

    PubMed  CAS  Google Scholar 

  • Helm M, Hemleben V (1997) Characterization of a new prominent satellite of Cucumis metuliferus and differential distribution of satellite DNA in cultivated and wild species of Cucumis and in related genera of Cucurbitaceae. Euphytica 94:219–236

    CAS  Google Scholar 

  • Hemleben V, Zentgraf U (1994) Molecular cell biology: signal transduction in plants. Prog Bot 57:218–234

    Google Scholar 

  • Hemleben V, Zentgraf U, King K, Borisjuk N, Schweizer G (1992) Middle repetitive and highly repetitive sequences detect polymorphisms in plants. In: Kahl G, Appelhans H, Kömpf J, Driesel AJ (eds) DNa-polymorphisms in eukaryotic genomes. BioTechForum (BTF) 10, Adv Mol Genet, 5, Huethig, Heidelberg, pp 157–170

    Google Scholar 

  • Henderson EF, Blackburn EH (1989) An overhanging 3′ terminus is a conserved feature of telomeres. Mol Cell Biol 9:345–348

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Bennett MD (1991) Nucelar achitecture in plants. Trends Genet 6:401–405

    Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin AV, Alkhimova EG, Kamm A, Katsiotis A, Doudrick RL, Schwarzacher T, Kubis S, Kumar A, Pearce SR, Flavell AJ, Harrison GE (1997) The chromosomal distribution of Tyl-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    PubMed  CAS  Google Scholar 

  • Hiatt EN, Dawe RK (1998) A second mutant which suppresses abnormal chromosome 10-mediated meiotic drive. Abstr 40th Annual Maize Genetics Conf, Lake Geneva, Wisconsin, 23 pp

    Google Scholar 

  • Higashiyama T, Noutoshi Y, Fujie M, Yamada T (1997) ZEPP, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16:3715–3723

    PubMed  CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    PubMed  CAS  Google Scholar 

  • Houben A, Guttenbach M, Kreb W, Pich U, Schubert I, Schmid M (1994) Immunostaining and interphase arrangement of field bean kinetochores. Chromosome Res 3:27–31

    Google Scholar 

  • Houben A, Brandes A, Pich U, Manteuffel R, Schubert I (1996) Molecular cytogenetic characterization of a higher plant centromere/kinetochore complex. Theor Appl Genet 93:477–484

    CAS  Google Scholar 

  • Iwahara J, Kigawa T, Kitagawa K, Masumoto H, Okazaki T, Yokoyama S (1998) A helixturn-helix structure unit in human centromere protein B (CENP-B). EMBO J 17:827–837

    PubMed  CAS  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    PubMed  CAS  Google Scholar 

  • Jones RN, Rees H (1982) B Chromosomes. Academic Press, London

    Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27:853–862

    PubMed  CAS  Google Scholar 

  • Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Tyl-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci USA 93:2708–2713

    PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case of epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler J (1996) Misdivision analysis of the centromere structure in maize. EMBO J 15:5246–5255

    PubMed  CAS  Google Scholar 

  • Kilian A, Stiff C, Kleinhofs A (1995) Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci USA 92:9555–9559

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim WT, Chung IK (1998) Rice proteins that bind single-stranded G-rich telomere DAN. Plant Mol Biol 36:661–672

    PubMed  CAS  Google Scholar 

  • King K, Jobst J, Hemleben V (1995) Differential homogenization and amplification of two satellite DNAs in the genus Cucurbita. J Mol Evol 41:996–1005

    PubMed  CAS  Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402

    PubMed  CAS  Google Scholar 

  • Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequences and an unusual 3′ terminus. Proc Natl Acad Sci USA 78:3015–3019

    PubMed  CAS  Google Scholar 

  • König P, Giralso R, Chapman L, Rhodes D (1996) The crystal structure of the DNA-binding domain of yeast Rap1 in complex with telomeric DNA. Cell 85:125–136

    PubMed  Google Scholar 

  • Kubis S, Heslop-Harrison JS, Desel C, Schmidt T (1997) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36:821–831

    Google Scholar 

  • Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, Waugh R, Flavell AJ (1997) The Tyl-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100:205–217

    PubMed  CAS  Google Scholar 

  • Kumar A (1998) The evolution of plant retroviruses: moving to green pastures. Trends Plant Sci 3:371–374

    Google Scholar 

  • Kunze R, Saedler H, Lönnig WE (1997) Plant transposable elements. In: Callow JA (ed) Advances in Botanical Research, vol 27. Academic Press, San Diego, pp 331–470

    Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Google Scholar 

  • Lichter P (1997) Multicolor FISHing: what’s the catch? Trends Genet 13:475–479

    PubMed  CAS  Google Scholar 

  • Liu Z, Tye BK (1991) A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions. Genes Dev 5:49–59

    PubMed  CAS  Google Scholar 

  • Lucas H, Feurbach F, Kunert K, Grandbastien MA, Caboche M (1995) RNA-mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J 14:2364–2373

    PubMed  CAS  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166

    Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Molecular cytogenetics of the genus Arabidopsis: In situ localization of rDNA sites, chromosome numbers and diversity in centromeric heterochromatin. Ann Bot 71:479–484

    CAS  Google Scholar 

  • Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423

    CAS  Google Scholar 

  • McKim KS, Hawley RS (1995) Chromosomal control of meiotic cell division. Science 270:1595–1601

    PubMed  CAS  Google Scholar 

  • McNulty AK, Saunders MJ (1992) Purification and immulological detection of pea nuclear intermediate filaments: Evidence for plant nuclear lamins. J Cell Sci 103:407–414

    PubMed  CAS  Google Scholar 

  • Menke M, Fuchs J, Schubert I (1998) A comparison of sequence resolution on plant chromosomes: PRINS versus FISH. Theor Appl Genet 97:1314–1320

    CAS  Google Scholar 

  • Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promotor of the tobacco Tnt1 retrotransposon is induced by wounding and abiotic stress. Plant Mol Biol 33:257–266

    PubMed  CAS  Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    CAS  Google Scholar 

  • Minguez A, Moreno Diaz de la Espina S (1993) Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106(l):431–439

    PubMed  CAS  Google Scholar 

  • Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR (1990) Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 87:3599–3603

    PubMed  CAS  Google Scholar 

  • Moore G, Roberts M, Aragon-Alcaide L, Foote T (1997) Centromeric sites and cereal chromosome evolution. Chromosoma 105:321–323

    PubMed  CAS  Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69:361–370

    PubMed  CAS  Google Scholar 

  • Nagl W (1976) Zellkern und Zellzyklen. Eugen Ulmer, Suttgart

    Google Scholar 

  • Nickerson JA, Blencowe BJ, Penman S (1995) The architectural organization of nuclear metabolism. Int Rev Cytol 162A:67–123

    PubMed  CAS  Google Scholar 

  • Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637

    PubMed  CAS  Google Scholar 

  • Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13(16):3801–3811

    PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78(7):4490–4494

    PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li, D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Tylcopia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    PubMed  CAS  Google Scholar 

  • Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97:141–151

    PubMed  CAS  Google Scholar 

  • Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4:207–213

    PubMed  CAS  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315

    PubMed  CAS  Google Scholar 

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    PubMed  CAS  Google Scholar 

  • Pouteau S, Huttner E, Grandbastien MA, Caboche M (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10:1911–1918

    PubMed  CAS  Google Scholar 

  • Pouteau S, Grandbastien MA, Boccara M (1994) Microbai elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5:535–542

    CAS  Google Scholar 

  • Presting GG, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531

    PubMed  CAS  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequences localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    PubMed  CAS  Google Scholar 

  • Pryor A, Faulkner K, Rhoades MM, Peacock WJ (1980) Asynchronous replication of heterochromatin in maize. Proc Natl Acad Sci USA 77:6705–6709

    PubMed  CAS  Google Scholar 

  • Regad F, Lebas M, Lescure B (1994) Interstitial telomeric repeats within the Arabidopsis thaliana genome. J Mol Biol 239:163–169

    PubMed  CAS  Google Scholar 

  • Rhoades MM, Vilkomerson H (1942) On the anaphase movement of chromosomes. Proc Natl Acad Sci USA 28:433–443

    PubMed  CAS  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    PubMed  CAS  Google Scholar 

  • Richards EJ, Dawe RK (1998) Plant centromeres: structure and control. Curr Opin Plant Biol 1:130–135

    PubMed  CAS  Google Scholar 

  • Richards EJ, Goodman HM, Ausubel FM (1991) The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acid Res 19:3351–3357

    PubMed  CAS  Google Scholar 

  • Riha K, Fajkus J, Siroky J, Vyskot B (1998) Developmental control of telomere lengths and telomerase acitivty in plants. Plant Cell 10:1691–1698

    PubMed  CAS  Google Scholar 

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7:1045–1053

    PubMed  CAS  Google Scholar 

  • San Miguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenetic regions of the maize genome. Science 274:765–768

    CAS  Google Scholar 

  • Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C (1995) Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270:480–483

    PubMed  CAS  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1996) High resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersend and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol Biol 30:1099–1113

    PubMed  CAS  Google Scholar 

  • Schmidt, T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Google Scholar 

  • Schmidt T, Kubis S, Heslop-Harrison JS (1995) Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Tyl-copia-like elements as major components of the genome. Chromosome Res 3:335–345

    PubMed  CAS  Google Scholar 

  • Schmit AC, Stoppin VS, Chevrier V, Job D, Lambert AM (1994) Cell cycle-dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher plant cells. Chromosoma 103:343–351

    PubMed  CAS  Google Scholar 

  • Schubert I (1998) Late replicating satellites: something for all centromeres? Trends Genet 14:385–386

    PubMed  CAS  Google Scholar 

  • Searle JB (1998) Speciation, chromosomes and genomes. Genome Res 8:1–3

    PubMed  CAS  Google Scholar 

  • Shaw DD (1994) Centromeres: moving chromosomes through space and time. TREE 9:170–175

    PubMed  CAS  Google Scholar 

  • Shippen DE, McKnight TD (1998) Telomeres, telomerase and plant development. Trends Plant Sci 3:126–130

    Google Scholar 

  • Shippen DE, Blackburn EH, Price CM (1994) DNA bound by Oxytricha telomere protein is accessible to telomerase and other DNA polymerases. Proc Natl Acad Sci USA 91:405–409

    PubMed  CAS  Google Scholar 

  • Shoeman RL, Traub P (1990) The in vitro DNA-binding properties of purified nuclear lamin proteins and vimentin. J Biol Chem 265(16):9055–9061

    PubMed  CAS  Google Scholar 

  • Shore D (1997) Telomeres. Different means to common ends. Nature 385:676–677

    PubMed  CAS  Google Scholar 

  • Shore D (1998) Telomeres — unsticky ends. Science 281:1818–1819

    PubMed  CAS  Google Scholar 

  • Simoens CR, Gielen J, Van Montagu M, Inzé D (1988) Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res 16:6753–6766

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Mills K, Guarente L (1998) Molecular mechanisms of yeast aging. Trends Biochem Sci 23:131–134

    PubMed  CAS  Google Scholar 

  • Stadler M, Stelzer T, Borisjuk N, Zanke C, Schilde-Rentschler L, Hemleben V (1995) Distribution of novel and known repeated elements of Solanum and application for the identification of somatid hybrids among Solanum species. Theor Appl Genet 91:1271–1278

    CAS  Google Scholar 

  • Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML (1997) Conservation of the centromere/kinetochore protein ZW10. J Cell Biol 138:1289–1301

    PubMed  CAS  Google Scholar 

  • Sun X, Wahlstrom J, Karpen G (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    PubMed  CAS  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996) The BARE-1 retrotransposon is transcribed in barley from an LTR promotor active in transient assays. Plant Mol Biol 31:295–306

    PubMed  CAS  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    PubMed  CAS  Google Scholar 

  • Thompson HL, Schmidt R, Dean C (1996a) Analysis of the occurrence and nature of repeated DNA in an 850 kb region of Arabidopsis thaliana chromosome 4. Plant Mol Biol 32:553–557

    PubMed  CAS  Google Scholar 

  • Thompson HL, Schmidt R, Dean C (1996b) Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res 24:3017–3022

    PubMed  CAS  Google Scholar 

  • Traut W (1991) Chromosomen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Turcich MP, Bokhari-Rhiza A, Hamilton DA, He C, Messier W, Stewart CB, Mascarenhas JP (1996) PREM-2, a copia-type retroelement is expressed preferentially in early microspores. Sex Plant Reprod 9:65–74

    Google Scholar 

  • van Driel R, Wansink DG, van Steensel B, Grande MA, Schul W, de Jong L (1995) Nuclear domains and nuclear matrix. Int Rev Cytol 162A: 151–189

    PubMed  Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organisation of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833

    PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM (1992) copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    PubMed  CAS  Google Scholar 

  • Wang WR, Skopp R, Scofield M, Price CM (1992) Euplotes crassus has multiple genes encoding telomere-binding proteins and telomere-binding protein homologs. Nucleic Acids Res 20:6621–6629

    PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of BARE-1 like retrotransposable elements in the barley genome revealsed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Plant retrotransposons: turned on by stress. Curr Biol 6:959–961

    PubMed  CAS  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    PubMed  CAS  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    PubMed  CAS  Google Scholar 

  • Willard HF (1998) Centromeres: the missing link in the development of human artificial chromosomes. Curr Opin Genet Dev 8:219–225

    PubMed  CAS  Google Scholar 

  • Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6:197–210

    PubMed  CAS  Google Scholar 

  • Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23:579–604

    PubMed  CAS  Google Scholar 

  • Zakian VA (1996) Structure, function and replication of the Saccharomyces cerevisiae telomeres. Annu Rev Genet 30:141–172

    PubMed  CAS  Google Scholar 

  • Zentgraf U (1995) Telomere-binding proteins of Arabidopsis thaliana. Plant Mol Biol 27:467–475

    PubMed  CAS  Google Scholar 

  • Zentgraf U, Velasco R, Hemleben V (1998) Molecular cell biology: different transcriptional activities in the nucleus. Prog Bot 59:131–168

    CAS  Google Scholar 

  • Zhong Z, Shiue L, Kaplan S, de Lange T (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12:4934–4843

    Google Scholar 

  • Zhong XB, Fransz PF, Wennekes-Eden J, Ramanna MS, van-Kammen A, Zabel P, Hansde-Jong J (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517

    PubMed  CAS  Google Scholar 

  • Zinkowski RP, Meyne J, Brinkley BR (1991) The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113:1091–1110

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hemleben, V., Zentgraf, U., Torres-Ruiz, R.A., Schmidt, T. (2000). Molecular Cell Biology: Role of Repetitive DNA in Nuclear Architecture and Chromosome Structure. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57203-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57203-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52371-7

  • Online ISBN: 978-3-642-57203-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics