Skip to main content

An Object-Oriented Approach to the Finite Element Modeling and Design of Material Processes

  • Conference paper
Advances in Software Tools for Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 10))

  • 381 Accesses

Abstract

An object-oriented approach to the analysis and design of metal forming and directional solidification processes is presented. A number of specific ideas are introduced on how a deformation or a solidification process can be partitioned into subproblems that can be independently developed and tested in the form of class hierarchies. Class development based on mathematical and/or physical arguments is emphasized. General ideas are provided to demonstrate that an OOP approach to the FEM modeling and design of material processes can lead to efficient simulators that are easily maintainable and expandable. A metal forming example is presented to demonstrate the ability of the deformation simulator to handle the analysis of industrial metal forming processes. Also, a design directional solidification example is presented to demonstrate the substantial benefits of using OOP techniques for the design of processes with a desired solidification morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABAQUS. Reference Manual. Hibbit, Karlsson and Sorensen Inc., 100 Medway Street, Providence, RI, 02906–4402, 1989.

    Google Scholar 

  2. O. M. Alifanov. Inverse Heat Transfer Problems. Springer-Verlag, Berlin, 1994.

    Book  MATH  Google Scholar 

  3. N. Aravas. On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Methods Engr. 24 (1987) 1395–1416.

    Article  MATH  Google Scholar 

  4. E. Arge, A. M. Bruaset and H. P. Langtangen (edts.). Modern Software Tools for Scientific Computing. Birkhäuser, Boston, 1997.

    Google Scholar 

  5. S. Badrinarayanan and N. Zabaras. A sensitivity analysis for the optimal design of metal forming processes. Comp. Methods Appl. Mech. Engr. 129 (1996) 319–348.

    Article  MATH  Google Scholar 

  6. J. J. Barton and L. R. Nackman. Scientific and Engineering C++. Addison-Wesley, New York, 1994.

    Google Scholar 

  7. P. Bomme. Intelligent Objects in Object-Oriented Engineering Environments. Ph.D. Thesis, École Polytechnique F¨¦d¨¦rale de Lausanne, Th¨¨se No. 1763, 1998.

    Google Scholar 

  8. A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Methods App/. Mech. Engr. 32 (1982) 199–259.

    MathSciNet  MATH  Google Scholar 

  9. S. B. Brown, K. H. Kim and L. Anand. An internal variable constitutive model for hot working of metals. Int. J. Plasticity 5 (1989) 95–130.

    Article  MATH  Google Scholar 

  10. J. Budiansky. Thermal and thermoelastic properties of isotropic composites. J. Composite Materials 4 (1970) 286–295.

    Article  Google Scholar 

  11. H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, 2nd Ed., New York, 1959.

    Google Scholar 

  12. M. Daehlen and A. Tveito (edts.). Numerical Methods and Software Tools in Industrial Mathematics. Birkäuser, Boston, 1997.

    MATH  Google Scholar 

  13. M. S. Engleman. FIDAP, v. 7.52. Fluid Dynamic International, Incorporated, 1996.

    Google Scholar 

  14. A. L. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part 1 - Yield criteria and flow rules for a porous ductile media. J. Engr. Mat. Techn. 99 (1977) 2–15.

    Article  Google Scholar 

  15. W. Kurz and D. J. Fisher. Fundamentals of Solidification. Trans Tech Publications Ltd, Switzerland, 1989.

    Google Scholar 

  16. H. P. Langtangen. Computational Partial Differential Equations - Numerical Methods and Diffpack Programming. Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  17. T. A. Laursen and J. C. Simo. On the formulation and numerical treatment of finite deformation frictional contact problems. Nonlinear Computational Mechanics - State of the Art, (edts.) P. Wriggers and W. Wager. Springer Verlag, Berlin, (1991) 716–736.

    Google Scholar 

  18. D. G. Luenberger. Optimization by vector space methods (Series in Decision and Control). J. Wiley and Sons, New York, 1997.

    Google Scholar 

  19. A.M. Lush. Computational procedures for finite element analysis of hot working. Ph.D. Thesis, MIT, 1990.

    Google Scholar 

  20. A. M. Lush. Thermo-mechanically-coupled finite element analysis of hot-working using an implicit constitutive time integration scheme. Numerical Methods in Industrial Forming Processes (edts. J.-L. Chenot, R.D. Wood and O.C. Zienkiewicz) (1992) 281–286.

    Google Scholar 

  21. R. I. Mackie. Object oriented programming of the finite element method. Int. J. Numer. Methods Engr. 35 (1992) 425–436.

    Article  MATH  Google Scholar 

  22. R. I. Mackie. Using objects to handle complexity in FE software. Engineering with Computers 13 (1997) 99–111.

    Article  Google Scholar 

  23. G. I. Marchuck. Adjoint Equations and Analysis of Complex Systems. Kluwer Academic Publishers, Boston, 1995.

    Google Scholar 

  24. B. Moran, M. Ortiz and C. F. Shih. Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Methods Engr. 29 (1990) 483–514.

    Article  Google Scholar 

  25. R. Sampath and N. Zabaras. An object-oriented implementation of adjoint techniques for the design of complex continuum systems. Int. J. Numer. Methods Engr., submitted for publication.

    Google Scholar 

  26. R. Sampath and N. Zabaras. An object oriented implementation of a front tracking finite element method for directional solidification processes. Int. J. Numer. Methods Engr. 44(9) (1999) 1227–1265.

    Article  MATH  Google Scholar 

  27. R. Sampath and N. Zabaras. Inverse thermal design and control of solidification processes in the presence of a strong magnetic field. J. Comp. Physics, submitted for publication.

    Google Scholar 

  28. R. Sampath and N. Zabaras. A diffpack implementation of the Brooks/Hughes Streamline-upwind/Petrov-Galerkin FEM formulation for the incompressible Navier-Stokes equations. Research Report MM-97–01, Sibley School of Mechanical and Aerospace Engineering, Cornell University,http://www.mae.cornell.edu/research/zabaras1997

    Google Scholar 

  29. R. Sampath and N. Zabaras. Finite element simulation of buoyancy driven flows using an object-oriented approach. Research Report MM-97–02, Sibley School of Mechanical and Aerospace Engineering, Cornell University http://www.mae.cornell.edu/research/zabaras,1997.

    Google Scholar 

  30. R. Sampath and N. Zabaras. FEM simulation of double diffusive convection using an object-oriented approach. Research Report MM-97–03, Sibley School of Mechanical and Aerospace Engineering, Cornell University http://www.mae.cornell.edu/research/zabaras,1997.

    Google Scholar 

  31. R. Sampath and N. Zabaras. FEM simulation of alloy solidification in the presence of magnetic fields. Research Report MM-97–04, Sibley School of Mechanical and Aerospace Engineering, Cornell University http://www.mae.cornell.edu/research/zabaras,1997.

    Google Scholar 

  32. R. Sampath and N. Zabaras. Design and object-oriented implementation of a preconditioned-stabilized incompressible Navier-Stokes solver using equal-order interpolation velocity-pressure elements. Research Report MM-99–01, Sibley School of Mechanical and Aerospace Engineering,Cornell Universityhttp://www.mae.cornell.du/research/zabaras, 1999.

    Google Scholar 

  33. J. C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comp. Methods Appl. Mech. Engr.98 (1992) 41–104.

    Article  MATH  Google Scholar 

  34. A. Srikanth and N. Zabaras. A computational model for the finite element analysis of thermoplasticity coupled with ductile damage at finite strains.Int. J. Num. Meth. Eng.,in press.

    Google Scholar 

  35. N. Zabaras. Adjoint methods for inverse free convection problems with application to solidification processes. Computational Methods for Optimal Design and Control (edts. J. Borggaard, E. Cliff, S. Schreck and J. Burns). Birkäuser Series in Progress in Systems and Control Theory, Birkäuser (1998) 391–426.

    Chapter  Google Scholar 

  36. A. Srikanth and N. Zabaras. Preform design and shape optimization in metal forming. Comp. Methods Appl. Mech. Engr., submitted for publication.

    Google Scholar 

  37. T.E. Tezduyar. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics 28 (1991) 1–44.

    Article  MathSciNet  Google Scholar 

  38. T. E. Tezduyar, M. Behr and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces - the deformingspatial-domain/space-time procedure: I. The concept and the preliminary tests. Comp. Meth. Appl. Mech. Engr. 94 (1992) 339–351.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. E. Tezduyar, M. Behr, S. Mittal and A. A. Johnson. Computation of unsteady incompressible flows with the finite element method - space-time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis (edts. P. Smolinski, W. K. Liu, G. Hulbert and K. Tamma, ASME, New York) AMD 143 (1992) 7–24.

    Google Scholar 

  40. V. Tvergaard and A. Needleman. Elastic-Viscoplastic analysis of ductile fracture. Finite Inelastic Deformations - Theory and Applications, (edts. D. Bedso and E. Stein). IUTAM symposium Hannover, Germany (1991) 3–14.

    Google Scholar 

  41. G. Weber and L. Anand. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids.Comp. Methods Appl. Mech. Engr., 79 (1990) 173–202.

    Article  MATH  Google Scholar 

  42. G. Yang and N. Zabaras. The adjoint method for an inverse design problem in the directional solidification of binary alloys. J. Comp. Phys. 140(2) (1988) 432–452.

    Article  MathSciNet  Google Scholar 

  43. G. Yang and N. Zabaras. An adjoint method for the inverse design of solidification processes with natural convection. Int. J. Num. Meth. Eng. 42 (1998) 1121–1144.

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Zabaras, Y. Bao, A. Srikanth and W. G. Frazier A continuum sensitivity analysis for metal forming processes with application to die design problems.Int. J. Numer. Methods Engr., submitted for publication.

    Google Scholar 

  45. N. Zabaras and T. Hung Nguyen. Control of the freezing interface morphology in solidification processes in the presence of natural convection. Int. J. Num. Meth. Eng. 38 (1995) 1555–1578.

    Article  MATH  Google Scholar 

  46. N. Zabaras and A. Srikanth. An object oriented programming approach to the Lagrangian FEM analysis of large inelastic deformations and metal forming processes. Int. J. Num. Meth. Eng., in press.

    Google Scholar 

  47. N. Zabaras and G. Yang. A functional optimization formulation and FEM implementation of an inverse natural convection problem. Comp. Meth. Appl. Mech. Eng. 144(3–4) (1997) 245–274.

    Article  MathSciNet  MATH  Google Scholar 

  48. N. Zabaras and A. Srikanth. Using objects to model finite deformation plasticity. Engineering with Computers, in press.

    Google Scholar 

  49. A. Zavaliangos, L. Anand, B. F. von Turkovich. Deformation processing. Annals of the CIRP 40 (1991) 267–271.

    Article  Google Scholar 

  50. A. Zavaliangos and L. Anand. Thermal aspects of shear localization in microporous viscoplastic solids. Int. J. Numer. Methods Engr. 33 (1992) 595–634.

    Article  MATH  Google Scholar 

  51. Z. L. Zhang. On the accuracy of numerical integration algorithms for Gurson-based pressure dependent elastoplastic constitutive models. Comp. Methods Appl. Mech. Engr. 121 (1995) 15–28.

    Article  MATH  Google Scholar 

  52. Z. L. Zhang. Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models. Comp. Methods Appl. Mech. Engr. 121 (1995) 29–44.

    Article  MATH  Google Scholar 

  53. T. Zimmermann, Y. Dubois-P¨¨lerin and P. Bomme. Object-oriented finite element programming: I Governing principles. Comp. Methods Appl. Mech. Engr. 98 (1992) 291–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zabaras, N. (2000). An Object-Oriented Approach to the Finite Element Modeling and Design of Material Processes. In: Langtangen, H.P., Bruaset, A.M., Quak, E. (eds) Advances in Software Tools for Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57172-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57172-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66557-1

  • Online ISBN: 978-3-642-57172-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics