Skip to main content

Abstract

Wounds are heterogeneous and the wound healing process is of a multifac torial nature, influenced by many factors and compounds, introduced externally. Throughout history, humans have searched for materials to promote wound healing. A great variety of preparations and products have been used, ranging from hot oils, papyri and waxes of the Egyptians to the cotton and gauze tissues which are still used (Majno 1976). Until the 1960s, there had been a minimum of research and development into wound management products, and very few of the products have been shown to be of great benefit. However, since the understanding of wound-healing biology has advanced, it may now be the time when the rational design of effective drugs to promote healing is a real possibility (Folkman 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ă…gren MS, Mertz PM (1994) Are excessive granulation tissue and retarded wound contraction due to decreased collagenase activity in wounds in tight-skin mice? Br J Dermatol 131:337-340

    Article  PubMed  Google Scholar 

  • Ă…gren MS, Jorgensen LN, Andersen M, Viljanto J, Gottrup F (1998) Matrix metallopro-teinase 9 level predicts optimal collagen deposition during early wound repair in hu-mans. Br J Surg 85:68-71

    Article  PubMed  Google Scholar 

  • Ahn ST, Mustoe TA (1990) Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg 24:17-23

    Article  PubMed  CAS  Google Scholar 

  • Alaish SM, Bettinger DA, Oluyinka O, Olutoye OO, Gould LJ, Yager DR, Davis A, Crossland MC, Diegelmann RF, Cohen K (1995) Comparison of the polyvinyl alcohol sponge and expanded polytetrafluoroethylene subcutaneous implants as models to evaluate wound healing potential in human beings. Wound Rep Reg 3:292-298

    Article  CAS  Google Scholar 

  • Algire GH (1943) An adaptation of the transparent chamber technique to the mouse. J Natl Cancer Inst 4:1-11

    Google Scholar 

  • Al-Khateeb T, Stephens P, Sheperd JP, Thomas DW (1997) An investigation of preferential fìbroblast wound repopulation using a novel in vitro wound model. J Periodontol 68:1063-1069

    Article  PubMed  CAS  Google Scholar 

  • Arfors KE, Jonsson JA, McKenzie (1970) A titanium rabbit ear chamber: assembly, insertion and results. Microvasc Res 2:516-519

    Article  PubMed  CAS  Google Scholar 

  • Arnold F, Cherry G, Cox D, Hutchinson G, Weston-Davis W (1996) Wound pharmacology: a report from the wound pharmacology forum. Wound Rep Reg 4:121-126

    Article  Google Scholar 

  • Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long term cultivation of chicken embryos. Dev Biol 41:391-394

    Article  PubMed  CAS  Google Scholar 

  • Baker JH, Bartlett R, Funk W, Hammersen F, Messmer T (1987) The effect of superoxide dismutase on the skin microcirculation after ischemia and reperfusion. Prog Appl Micro-circ 12:276-281

    Google Scholar 

  • Baker JH, Hammersen F, Bondar I, Galla TJ, Menger MD, Gross W, Messmer T (1989 a) Direct monitoring of nutritive blood flow in a failing skin flap: the hairless mouse ear skin flap model. Plast Reconstr Surg 84:303-313

    Article  Google Scholar 

  • Baker JH, Hammersen F, Bondar I, Uhl E, Galla TJ, Menger MD, Messmer T (1989 b) The hairless mouse ear for in vivo studies of skin microcirculation. Plast Reconstr Surg 83:948-959

    Article  Google Scholar 

  • Baker JH, Kjolseth D, Kim M, Frank J, Bondar I, Uhl E, Kamler M, Messmer K, Tobin GR, Weiner LJ (1994) The hairless mouse ear: an in vivo model for studying wound neovas-cularization. Wound Rep Reg 2:138-143

    Article  Google Scholar 

  • Beck LS, Chen TL, Hirabayashi SE, DeGuzman L, Lee WP, McFatridge LL, Xu Y, Bates RL, Ammann AJ (1990 a) Accelerated healing of ulcer wounds in rabbit ear recombinant hu-man transforming growth factor-beta 1. Growth Factors 2:273-282

    PubMed  CAS  Google Scholar 

  • Beck LS, Chen TL, Mikalauski P, Ammann AJ (1990 b) Recombinant human transforming growth factor-beta 1 (rhTGF-beta 1) enhances healing and strength of granulation skin wounds. Growth Factors 3:267-275

    Article  PubMed  CAS  Google Scholar 

  • Blant IH (1953) Further observations on factors which influence the water content of the stratum corneum. J Invest Dermatol 21:259-269

    Google Scholar 

  • Bothwell JW, Rovee DT (1971) The effect of dressings on the repair of cutaneous wounds in humans. In: Harkiss KJ (ed) Surgical dressings and wound healing. Crosby Lookwood, London, pp 78-97

    Google Scholar 

  • Boykin JV, Erisson E, Pittman RN (1980) In vivo microcirculation of scald burn and the progression of postburn dermal ischemia. Plast Reconstr Surg 66:191-198

    Article  PubMed  CAS  Google Scholar 

  • Buisson AC, Zahm J-M, Polette M, Pierrot D, Bellon G, Puchelle E, Birembaut P, Tournier J-M (1996) Gelatinase B is involved in the in vitro repair of human respiratory epithe-lium. J Cell Physiol 166:413-426

    Article  PubMed  CAS  Google Scholar 

  • Danielsen L, Balslev E, Döring G, Højby N, Madsen SM, Ă…gren M, Thomsen HK, Fos HH, Westh H (1998) Ulcer bed infection. Report of a case of enlarging venous leg ulcer colo-nized by Pseudomonas aeruginosa. APMIS 106:721-726

    Article  PubMed  CAS  Google Scholar 

  • De Vries, Mekkes JR, Middelkoop E, Hinrichs WLJ, Wildevuur CRH, Westerhof W (1993) Dermal substitutes for full-thickness wounds in a one-stage grafting model. Wound Rep Reg 1:244-254

    Article  Google Scholar 

  • Devitt H, Clark MA, Marks R, Picton W (1978) A quantitative approach to epidermal wound healing: the effect of dexamethasone on regenerating epithelium. Br J Dermatol 98:315-323

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann RF, Lindblad WJ, Cohen IK (1986) A subcutaneous implant for wound healing studies in humans. J Surg Res 40:229-237

    Article  PubMed  CAS  Google Scholar 

  • Dyson M, Young SR, Pendle CL, Webster DF, Lang SM (1988) Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol 91:434-439

    Article  PubMed  CAS  Google Scholar 

  • Dyson M, Young SR, Hart J, Lynch JA, Lang S (1992) Comparison of the effects of moist and dry conditions on the process of angiogenesis during dermal repair. J Invest Derma-tol 99:729-733

    Article  CAS  Google Scholar 

  • Eaglstein WH, Mertz PM (1978) New method for assessing epidermal wound healing: the effect of triamcinolone actonide and polyethylene film occlusion. J Invest Dermatol 71:382-384

    Article  PubMed  CAS  Google Scholar 

  • Eckes B, Krieg T, Nusgens BV, Lapière CM (1995) In vitro reconstituted skin as a tool for biology, pharmacology and therapy: a review. Wound Rep Reg 3:248-257

    Article  CAS  Google Scholar 

  • Ehrlich HP, Gottrup F (1998) Experimental models in wound healing. In: Leaper DJ, Harding KG (eds) Wounds: biology and management. Oxford University Press, Oxford, pp 41-51

    Google Scholar 

  • Ehrlich HP, Needle AL (1983) Wound healing in tight-skin mice: delayed closure of excised wounds. Plast Reconstr Surg 72:190-198

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, MacGarvey U, McGrane WL, White ME (1987) Ibuprofen as an antagonist of fìbrinolysis in wound fluid. Thromb Res 45:17-28

    Article  PubMed  CAS  Google Scholar 

  • Eriksson E, Boykin JV, Pittman RN (1980) Methods for in vivo microscopy of cutaneous microcirculation of the hairless mouse ear. Microvasc Res 19:374-379

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1992) Is there a field of wound pharmacology? Ann Surg 215:1-2

    Article  PubMed  CAS  Google Scholar 

  • Ford HR, Hoffman RA, Wing EJ, Magee M, Mclntyre L, Simmons RL (1989) Characteriza-tion of wound cytokines in the sponge matrix model. Arch Surg 124:1422-1428

    Article  PubMed  CAS  Google Scholar 

  • Garlick JA, Taichman LB (1994) Effect of TGF-β1 on re-epithelialization of human keratino-cytes in vitro: an organotypic model. J Invest Dermatol 103:554-559

    Article  PubMed  CAS  Google Scholar 

  • Genever PG, Cunliffe WJ, Wood EJ (1995) Influence of the extracellular matrix on fìbroblast responsiveness to phenytoin using in vitro wound healing models. Br J Dermatol 133:231-235

    Article  PubMed  CAS  Google Scholar 

  • Ghassemifar MR, Ghassemifar N, FranzĂ©n LE (1995) Macrophage-conditioned medium with-out serum enhances collagen gel contraction. In Vitro Cell Dev Biol Anim 31:161-163

    Article  CAS  Google Scholar 

  • Gimbrone MA,Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascular-ization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413-427

    PubMed  Google Scholar 

  • Goodall CM, Sanders AG, Shubik P (1965) Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J Natl Cancer Inst 35:497-521

    PubMed  CAS  Google Scholar 

  • Goodson WH III, Hunt TK (1982) Development of a new miniature method for the study of wound healing in human subjects. J Surg Res 33:394-401

    Article  PubMed  Google Scholar 

  • Gottrup F (1983) Healing of incisional wounds in the stomach and duodenum (thesis). Uni-versity of Aarhus, Denmark

    Google Scholar 

  • Gottrup F (1992) Surgical wounds - healing types and physiology. In: Harting K (ed) Theo-ry, advanced wound healing resource. Chapter X. Coloplast, Copenhagen, pp 1-17

    Google Scholar 

  • Gottrup F (1996) Experimental tissue trauma and healing. In: Jensen SL, Gregersen H, Sho-kouh-Amiri MH, Moody FG (eds) Essentials of experimental surgery: gastroenterology. Harwood Academic, Amsterdam, pp 1-11

    Google Scholar 

  • Gottrup F (1998) Physiology and pathophysiology of wound healing. In vivo models. In: Jeppsson B (ed) Animal modeling in surgical research. Harwood Academic, Philadelphia, pp 29-35

    Google Scholar 

  • Gottrup F, Lorentzen H, Jorgensen LN (1999) Human models. In: Mani R, Falanga V, Sher-man CP, Sanderman D (eds) Clinical measurement and basic science. Saunders Com-pany, London, pp 156-159

    Google Scholar 

  • Greenberg GB, Hunt TK (1978) The proliferative response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluids and macrophages. J Cell Physiol 97:353-360

    Article  Google Scholar 

  • Greenwald DP, Gottlieb LJ, Mass DP, Shumway SM, Temaner M (1992) Full-thickness skin wound explants in tissue culture: a mechanical evaluation of healing. Plast Reconstr Surg 90:289-294

    PubMed  CAS  Google Scholar 

  • Hembry RM, Bernanke DR, Hayahashi K, Trelstad RL (1986) Morphological examination of mesenchymal cells in healing wounds of normal and tight skin mice. Am J Pathol 125:81-89

    PubMed  CAS  Google Scholar 

  • Hentzer B, Kobayasi T (1979) Adult human skin maintained in organ culture: I. The ultra-structure of the acellular compartment of connective tissue. Acta Derm Venereol 59:389-400

    PubMed  CAS  Google Scholar 

  • Hinrichsen N, Birk-Sorensen L, Gottrup F, Hjortdal V (1998) Wound contraction in an ex-perimental porcine model. Scand J Plast Reconstr Hand Surg 32:243-248

    Article  CAS  Google Scholar 

  • Holm-Pedersen P, Zederfeldt B (1971) Granulation tissue formation in subcutaneous im-planted cellulose sponges in young and old rats. Scand J Plast Reconstr Surg 5:13-16

    Article  PubMed  CAS  Google Scholar 

  • Hunt TK, Twomey P, Zederfeldt B, Dunphy JE (1967) Respiratory gas tensions and pH in healing wounds. Am J Surg 114:302-307

    Article  PubMed  CAS  Google Scholar 

  • Hunt TK, Andrews W, Haliday B, Greenburg G, Knighton D, Clark R, Thrakral K (1981) Coagulation and macrophage stimulation of angiogenesis and wound healing. In: Dinen P, Holdrick-Smith G (eds) Surgical wounds. Lea and Febiger, Philadelphia, pp 1-18

    Google Scholar 

  • Isselhard WH, Kusche J (1986) Animal experimentation. In: Troidl H, Spitzer WO, McPeek B, Mckneally MF (eds) Principles and practice of research strategies for surgical investi-gators. Springer, Berlin Heidelberg New York, pp 149-161

    Google Scholar 

  • Jorgensen LN, Kallehave F, Karlsmark T, Vejlsgaard GL, Gottrup F (1994) Evaluation of the wound healing potential in human beings from the subcutaneous insertion of expanded polytetrafluoroethylene tubes. A methodologic study. Wound Rep Reg 2:20-30

    Article  CAS  Google Scholar 

  • Jorgensen LN, Olsen L, Kallehave F, Karlsmark, Diegelmann RF, Cohen K, Gottrup F (1995) The wound healing process in surgical patients evaluated by the expanded polytetrafluoroethylene and the polyvinyl alcohol sponge: a comparison with special reference to intrapatient variability. Wound Rep Reg 3:527-532

    Article  CAS  Google Scholar 

  • Kheradmand F, Folkesson HG, Shum L, Derynk R, Pytela R, Matthay MA (1994) Transforming growth factor-β enhances alveolar epithelial cell repair in a new in vitro model. Lung Cell Mol Physiol 11:L728-L738

    Google Scholar 

  • Kiistala U (1972) Dermal-epidermal separation. Ann Clin Res 4:236-246

    PubMed  CAS  Google Scholar 

  • Kiistala U, Mustakallio KK (1964) In vivo separation of epidermis by production of suction blisters. Lancet 1:1444-1445

    Article  PubMed  CAS  Google Scholar 

  • Kjolseth D (1996) The hairless mouse ear: an in vivo model for studying wound epithelial-ization and neovascularization (doctoral dissertation). University of Aarhus, Denmark

    Google Scholar 

  • Knighton DR, Fiegel VD, Phillips GD (1991) The assay of angiogenesis. In: Barbul A, Cad-well MD, Eagelstein WH, Hunt TK, Marshall D, Pines E, Skover G (eds) Clinical and experimental approaches to dermal and epidermal repair: normal and chronic wounds. Wiley-Liss, New York, pp 291-299

    Google Scholar 

  • Kratz G, Lake M, Gidlund M (1994) Insulin like growth factor-1 and -2 and their role in the re-epithelialisation of wounds: interactions with insulin like growth factor binding pro-tein type 1. Scan J Plast Reconstr Hand Surg 28:107-112

    Article  CAS  Google Scholar 

  • Ksander GA, Chu GH, McMullin H, Ogawa Y, Pratt BM, Rosenblatt JS, McPherson JM (1990) Transforming growth factor beta 1 and beta 2 enhance connective tissue formation in animal models of dermal healing by secondary intent. Ann N Y Acad Sci 593:135-147

    Article  PubMed  CAS  Google Scholar 

  • Leader RW, Padgett GA (1981) The genesis and validation of animal models. Am J Pathol 101:11-17

    Google Scholar 

  • Lebel L, Gerdin B (1991) Sodium hyaluronate increases vascular ingrowth in the rabbit ear chamber. Int J Exp Pathol 72:111-118

    PubMed  CAS  Google Scholar 

  • Lees VC, Fan T-P (1994) A freeze-injured skin graft model for the quantitative study of basic fĂ­broblast growth factor and other promoters of angiogenesis in wound healing. Br J Plast Surg 47:349-359

    Article  PubMed  CAS  Google Scholar 

  • LĂ©vy JJ, van Rosen J, GassmĂ¼ller J, Kuhlmann RK, Lange L (1995) Validation of an in vivo wound healing model for the quantification of pharmacological effects on epidermal re-generation. Dermatology 190:136-141

    Article  PubMed  Google Scholar 

  • Lundin S, Svedman P, Högluns P, Jönsson K, Melin P (1995) Absorption of an oxytocin an-tagonist (antocin) and vasopressin analogue (dDAVP) through a standardized skin ero-sion in volunteers. Pharm Res 12:2024-2029

    Article  PubMed  CAS  Google Scholar 

  • Majno G (1976) The healing hand. Harvard University Press, Cambridge

    Google Scholar 

  • MazuĂ© G, Bertolero F, Jacob C, Sarmientos P, Roncucci R (1991) Preclinical and clinical studies with recombinant human basic fĂ­broblast growth factor. Ann N Y Acad Sci 638:329-339

    Article  PubMed  Google Scholar 

  • Miller EJ, Rhodes RK (1982) Preparation and characterization of the different types of col-lagen. Methods Enzymol 82:33-64

    Article  PubMed  CAS  Google Scholar 

  • Moll I, Houdek P, Schmidt H, Moll R (1998) Characterization of epidermal wound healing in a human skin organ culture model: acceleration by transplanted keratinocytes. J In-vest Dermatol 111:251-258

    Article  CAS  Google Scholar 

  • Mustoe TA, Pierce GF, Thomasen A, Gramates P, Sporn MB, Deul TF (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science 237:1333-1336

    Article  PubMed  CAS  Google Scholar 

  • Mustoe TA, Pierce GF, Morishima C, Deuel TF (1991) Growth factor induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87:694-703

    Article  PubMed  CAS  Google Scholar 

  • Nachahal J, Riches DJ (1982) The healing of suction blisters in pig skin. J Cutan Pathol 9:303-315

    Article  Google Scholar 

  • Pallin B, Ahonen J, Rank F, Zederfeldt B (1975) Granulation tissue formation in viscose cel-lulose sponges of different design. Acta Chir Scand 141:697-701

    PubMed  CAS  Google Scholar 

  • Paulini K, Körner B, Beneke G, Endres R (1974) A quantitative study on the growth of con-nective tissue: investigations on implanted polyester-polyurethrane sponges. Connect Tis-sue Res 2:257-265

    Article  CAS  Google Scholar 

  • Pierce GF, Tarpley JE, Yanagihara D, Mustoe TA, Fox GM, Thomason A (1992) Platelet derived growth factor (BB homodimer), transforming growth factor ĂŸ1 and basic fìbroblast growth factor in dermal wound healing. Am J Pathol 140:1375-1388

    PubMed  CAS  Google Scholar 

  • Pinnagoda J, Tubker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis 22:164-178

    Article  PubMed  CAS  Google Scholar 

  • Rovee DT, Miller CA (1968) Epidermal role in breaking strength of wounds. Arch Surg 96:43-52

    Article  PubMed  CAS  Google Scholar 

  • Sanders AG, Shubik P (1964) A transparent window for use in the Syrian hamster. Israel J ExpMed 11:118a

    Google Scholar 

  • Sarret Y, Woodley DT, Grigsby K, Wynn K, O’Keefe EJ (1992) Human keratinocyte locomo-tion: the effect of selected cytokines. J Invest Dermatol 98:12-16

    Article  PubMed  CAS  Google Scholar 

  • Savunen TJA, Viljanto JA (1992) Prediction of wound tensile strength: an experimental study. Br J Surg 79:401-403

    Article  PubMed  CAS  Google Scholar 

  • Schilling JA, Joel W, Shurby HM (1959) Wound healing: a comparative study of the histo-chemical changes in granulation tissue contained in stainless steel wire mesh and polyvi-nyl sponges cylinders. Surgery 46:702-710

    PubMed  CAS  Google Scholar 

  • Schor SL, Schor AM, Durning P, Rushton G (1985) Skin fìbroblasts obtained from cancer patients display foetal-like migratory behaviour on collagen gels. J Cell Sci 73:235-244

    PubMed  CAS  Google Scholar 

  • Seiler WO, Stähelin HB, Zolliker R, Kallenberger A, LĂ¼scher NJ (1989) Impaired migration of epidermal cells from decubitus ulcers in cell cultures. A cause of protracted wound healing? Am J Clin Pathol 92:430-434

    PubMed  CAS  Google Scholar 

  • Silvermann RA, Lender J, Elmets CA (1989) Effects of occlusive and semiocclusive dressings on the return of barrier function to transepidermal water loss in standardized human wounds. J Am Acad Dermatol 20:755-760

    Article  Google Scholar 

  • Stromberg K, Chapekar MS, Goldman BA, Chamber WA, Cavagnaro JA (1994) Regulatory concerns on the development of topical recombinant ophthalmic and cutaneous wound healing biologics. Wound Rep Reg 2:155-164

    Article  CAS  Google Scholar 

  • Svendsen P, Gottrup F (1998) Comparative biology of animals and man in surgical research. In: Jeppsson B (ed) Animal modeling in surgical research. Harwood Academic, Philadel-phia, pp 1-15

    Google Scholar 

  • Svedman P, Lundin S, Höglund P, Hammerlund C, Malmros C, Pantzar N (1996) Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device. Pharm Res 13:1354-1359

    Article  PubMed  CAS  Google Scholar 

  • Viidik A, Gottrup F (1986) Mechanics of healing soft tissue wounds. In: Smid-Schönbein GW, Woo SL-Y, Zwifach BW (eds) Frontiers in biomechanics. Springer, Berlin Heidelberg New York, pp 263-279

    Chapter  Google Scholar 

  • Viljanto J (1964) Biochemical basis of tensile strength in wound healing (thesis). Acta Chir Scand Suppl 333

    Google Scholar 

  • Viljanto J (1976) Cellstic: a device for wound healing studies in man. Description of the method. J Surg Res 20:115-119

    Article  PubMed  CAS  Google Scholar 

  • Viljanto JA (1991) Assessment of wound healing speed in man. In: Barbul A (ed) Clinical and experimental approaches to dermal and epidermal repair: normal and chronic wounds. Wiley-Liss, New York, pp 279-290

    Google Scholar 

  • Viljanto J, Raekallio J (1976) Wound healing in children as assessed by the Cellstic method. J Pediatr Surg 11:43-46

    Article  PubMed  CAS  Google Scholar 

  • Walmod PS, Foley A, Berezin A, Ellerbeck U, Nau H, Bock E, Berezin V (1998) Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues. Cell Motil Cytoskeleton 40:220-237

    Article  PubMed  CAS  Google Scholar 

  • Weiss K, Segel JP, Gerrad TL (1994) Regulatory issues in clinical applications of cytokines and growth factors. Prog Growth Factor Res 5:213-222

    Article  PubMed  CAS  Google Scholar 

  • Whalen GF, Zetter BR (1992) Angiogenesis. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing, biochemical and clinical aspects. Saunders, Philadelphia, pp 77-95

    Google Scholar 

  • Wicke C, Halliday BJ, Scheuenstuhl H, Foree EF, Hunt TK (1995) Examination of expanded polytetrafluoroethylene wound healing models. Wound Rep Reg 3:284-291

    Article  CAS  Google Scholar 

  • Winter GD (1962) Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 193:293-294

    Article  PubMed  CAS  Google Scholar 

  • Woessner JF, Boucek RJ (1961) Connective tissue development in subcutaneous implanted polyvinyl sponges. Arch Biochem 93:85-94

    Article  PubMed  CAS  Google Scholar 

  • Woodley DT, Kim YH (1992) A double-blind comparison of adhesive bandages with the use of uniform suction blister wound. Arch Dermatol 128:1354-1357

    Article  PubMed  CAS  Google Scholar 

  • Woodley DT, Bachman PM, O’Keefe EF (1988) Laminin inhibits human keratinocyte migra-tion. J Cell Physiol 136:140-146

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gottrup, F., Ă…gren, M., Karlsmark, T. (2000). Wound Healing. In: Gabard, B., Surber, C., Elsner, P., Treffel, P. (eds) Dermatopharmacology of Topical Preparations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57145-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57145-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62960-0

  • Online ISBN: 978-3-642-57145-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics