Skip to main content

Nutritional Support in Acute Respiratory Failure

  • Chapter
  • 362 Accesses

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 34))

Abstract

Mechanical ventilation is applied to at least half of intensive care patients to treat respiratory failure with or without lung injury. Ventilator‐dependence refers to the need of a patient for prolonged support by a ventilator, which is the case in approximately 15% of ICU patients [1]. Patients with trauma, burns, sepsis, acute respiratory distress syndrome (ARDS) and multiple organ dysfunction (MODS) present a hypermetabolic and catabolic state leading to extensive endogenous protein breakdown and major loss of muscle mass, including respiratory muscles. As a result, these patients are prone to respiratory muscle fatigue and/or failure, leading to unsuccessful weaning attempts from the ventilator [2]. In chronic obstructive pulmonary disease (COPD) patients requiring mechanical ventilation, weaning from the ventilator can be extremely difficult, due to the additive effects of chronic malnutrition, increased work of breathing, increased load on inspiratory muscles, hypoxia and hypercapnia [3, 4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takala J (1993) Nutrition and metabolism in acute respiratory failure, In: D. Wilmore and Y. Carpentier, Metabolic support of the critically ill patient, Springer-Verlag: Berlin, Heidelberg, New York. p 390–406

    Chapter  Google Scholar 

  2. Roussos C, Zakynthinos S (1996) Fatigue of the respiratory muscles. Intensive Care Med 22: 134–155

    Article  PubMed  CAS  Google Scholar 

  3. Fiaccadori E, Del Canale S, Coffrini E, et al. (1988) Hypercapnic-hypoxemic chronic obstructive pulmonary disease (COPD): influence of severity of COPD on nutritional status. Am J Clin Nutr 48: 680–685

    PubMed  CAS  Google Scholar 

  4. Jounieaux V, Mayeux I (1995) Oxygen cost of breathing in patients with emphysema or chronic bronchitis in acute respiratory failure. Am J Respir Crit Care Med 152: 2181–2184

    PubMed  CAS  Google Scholar 

  5. Schols AM (1997) Nutrition and outcome in chronic respiratory disease. Nutrition 13: 161–3

    Article  PubMed  CAS  Google Scholar 

  6. Schols AM, Slangen J, Volovics L, Wouters EF (1998) Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157: 1791–7

    PubMed  CAS  Google Scholar 

  7. Aubier M, Murciano D, Lecocguic Y, et al. (1985) Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 313: 420–4

    Article  PubMed  CAS  Google Scholar 

  8. Aubier M, Viires N, Piquet J, et al. (1985) Effects of hypocalcemia on diaphragmatic strength generation. J Appl Physiol 58: 2054–61

    PubMed  CAS  Google Scholar 

  9. Dhingra S, Solven F, Wilson A, McCarthy DS (1984) Hypomagnesemia and respiratory muscle power. Am Rev Respir Dis 129: 497–8

    PubMed  CAS  Google Scholar 

  10. Arora NS, Rochester DF (1982) Effect of body weight and muscularity on human diaphragm muscle mass, thickness, and area. J Appl Physiol 52: 64–70

    PubMed  CAS  Google Scholar 

  11. Di Francia M, Barbier D, Mege JL, Orehek J (1994) Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150: 1453–5

    PubMed  Google Scholar 

  12. Pouw EM, Schols AM, Deutz NE, Wouters EF (1998) Plasma and muscle amino acid levels in relation to resting energy expenditure and inflammation in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158: 797–801

    PubMed  CAS  Google Scholar 

  13. Hunter A, Carey M, Larsh H (1981) The nutritional status of patients with chronic obstructive plumonary disease. Am Rev Respir Dis 124: 376–381

    PubMed  CAS  Google Scholar 

  14. Driver A, McAlevy M, Smith J (1982) Nutritional assessment of patients with chronic obstructive pulmonary disease and acute respiratory failure. Chest 82: 568–571

    Article  PubMed  CAS  Google Scholar 

  15. Schols A, Soeters P, Mostert R, Saris W, Wouters E (1991) Energy balance in chronic obstructive pulmonary disease. Am Rev Resp Dis 143: 1248–1252

    PubMed  CAS  Google Scholar 

  16. Schols AM, Soeters PB, Mostert R, Saris WH, Wouters EF (1991) Energy balance in chronic obstructive pulmonary disease. Am Rev Respir Dis 143: 1248–52

    PubMed  CAS  Google Scholar 

  17. Field S, Kelly S, Macklem P (1982) The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 126: 9–13

    PubMed  CAS  Google Scholar 

  18. Schols A, Mostert R, Cobben N, Soeters P, Wouters E (1991) Transcutaneous oxygen saturation and carbon dioxide tension during meals in patients with chronic obstructive pulmonary disease. Chest 100: 1287–92

    Article  PubMed  CAS  Google Scholar 

  19. Pison CM, Chauvin C, Perrault H, et al. (1998) In vivo hypoxic exposure impairs metabolic adaptations to a 48 h fast in rats. Eur Respir J 12: 658–65

    Article  PubMed  CAS  Google Scholar 

  20. Goldstein S, Askanasi J, Weissman C, Thomashow B, Kiney J (1987) Energy expenditure in patients with chronic obstructive pulmonary disease. Chest 91: 222–224

    Article  PubMed  CAS  Google Scholar 

  21. Voerman HJ, Groeneveld AB, de Boer H, et al. (1993) Time course and variability of the endocrine and metabolic response to severe sepsis. Surgery 114: 951–9

    PubMed  CAS  Google Scholar 

  22. Kinney J (1995) Metabolic responses of the critically ill patient. Crit Care Clin 11: 569–585

    PubMed  CAS  Google Scholar 

  23. Shangraw R, Jahoor F, Wolfe R, Lang C (1996) Pyruvate dehydrogenase inactivity is not responsible for sepsis-induced insulin resistance. Crit Care Med 24: 566–574

    Article  PubMed  CAS  Google Scholar 

  24. Lang C, Dobrescu C, Bagby G (1992) Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 130: 43–52

    Article  PubMed  CAS  Google Scholar 

  25. Leverve X (1998) Metabolic and nutritional consequences of chronic hypoxia. Clin Nutr 17: 241–51

    Article  PubMed  CAS  Google Scholar 

  26. Bazzy AR, Akabas SR, Hays AP, Haddad GG (1988) Respiratory muscle response to load and glycogen content in type I and II fibers. Exp Neurol 101: 17–28

    Article  PubMed  CAS  Google Scholar 

  27. Meraihi Z, Lutz O, Scheftel JM, et al. (1991) Decreased lipolytic activity in tissues during infectious and inflammatory stress. Nutrition 7: 93–7; discussion 98

    PubMed  CAS  Google Scholar 

  28. Read TE, Grunfeld C, Kumwenda Z, et al. (1995) Triglyceride-rich lipoproteins improve survival when given after endotoxin in rats. Surgery 117: 62–7

    Article  PubMed  CAS  Google Scholar 

  29. Mansoor O, Cayol M, Gachon P, et al. (1997) Albumin and fibrinogen syntheses increase while muscle protein synthesis decreases in head-injured patients. Am J Physiol 273: E898–902

    PubMed  CAS  Google Scholar 

  30. Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE (1988) Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Archives of Surgery 123: 992–999

    Article  PubMed  CAS  Google Scholar 

  31. Fürst P, Stehle P (1993) Are we giving unbalanced amino acid solutions?, In: D. Wilmore and Y. Carpentier, Metabolic support of the critically ill patient, Springer-Verlag: Berlin, Heidelberg, New York. p. 119–136

    Chapter  Google Scholar 

  32. Helweg-Larsen P, Hoffmeyer H, Kieler J, et al. (1952) Famine diseases in German concentration camps. Complications and sequels. Acta Medica Scandinavica 144 suppl: 274

    Google Scholar 

  33. Tobin M, Perez W, Guenther S, et al. (1986) The pattern of breathing during successful and unsuccessful trials of weaning from mechanical ventilation. Am Rev Respir Dis 134: 1111–1118

    PubMed  CAS  Google Scholar 

  34. Duchateau J, Hainaut K (1987) Electrical and mechanical changes in immobilized human muscle. J Appl Physiol 62: 2168–2173

    CAS  Google Scholar 

  35. Watling S, Dasta J (1994) Prolonged paralysis in intensive care unit patients after the use of neuromuscular blocking agents: a review of the litterature. Crit Care Med 22: 884–893

    Article  PubMed  CAS  Google Scholar 

  36. Arora N, Rochester D (1982) Effect of chronic obstructive pulmonary disease on diaphragm muscle dimensions. Am Rev Respir Dis 123: A176

    Google Scholar 

  37. Arora NS, Rochester DF (1982) Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am Rev Respir Dis 126: 5–8

    PubMed  CAS  Google Scholar 

  38. Pichard C, Vaughan C, Struk R, Armstrong R, Jeejeebhoy K (1988) Effect of dietary manipulation (fasting, hypocaloric feeding and subsequent refeeding) on rat muscles energetics as assessed by nuclear magnetic resonance spectroscope. J Clin Invest 82: 895–901

    Article  PubMed  CAS  Google Scholar 

  39. Goldstone J, Moxham J (1991) Weaning from mechanical ventilation. Thorax 46: 56–62

    Article  PubMed  CAS  Google Scholar 

  40. Rossi A, Polese G, Brandi G, Conti G (1995) Intrinsic positive end-expiratory pressure. Intensive Care Med 21: 522–536

    Article  PubMed  CAS  Google Scholar 

  41. George D (1995) Epidemiology of nosocomial pneumonia in intensive care unit patients. Clin Chest Med 16: 29–44

    PubMed  CAS  Google Scholar 

  42. Annat G, Viale J, Dereymez C, et al. (1990) Oxygen cost of breathing and diaphragmatic pressure-time index. Measurement in patients with COPD during weaning with pressure support ventilation. Chest 98: 411–414

    Article  PubMed  CAS  Google Scholar 

  43. Manning E, Shenkin A (1995) Nutritional assessment in the critically ill. Crit Care Clin 11: 603–634

    PubMed  CAS  Google Scholar 

  44. Chioléro RL, Gay LJ, Cotting J, Gurtner C, Schutz Y (1993) Assessment of changes in body water by bioimpedance in acutely ill surgical patients. Critical Care Medicine 18: 322–326

    Google Scholar 

  45. Buchman A, Moukarzel A, Bhuta S, et al. (1995) Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN 19: 453–460

    Article  CAS  Google Scholar 

  46. Hadfield R, Sinclair D, Houldsworth P, Evans T (1995) Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am J Respir Crit Care Med 152: 1545–1548

    PubMed  CAS  Google Scholar 

  47. Weekes E, Elia M (1996) Observations on the patterns of 24-h energy expenditure changes in body composition and gastric emptying in head-injured patients receiving nasogastric tube feeding. JPEN 20: 31–37

    Article  CAS  Google Scholar 

  48. Zaloga G, Black K, Prielipp P (1992) Effect of rate of enteral nutrient supply on gut mass. JPEN 16: 39–42

    Article  CAS  Google Scholar 

  49. Dive A, Moulart M, Jonard P, Jamart J, Mahieu P (1994) Gastroduodenal motility in mechanically ventilated critically ill patients: a manometric study. Crit Care Med 22: 441–447

    Article  PubMed  CAS  Google Scholar 

  50. Spapen H, Duinslaeger L, Diltoer M, et al. (1995) Gastric emptying in critically ill patients is accelerated by adding cisapride to a standard enteral feeding protocol: results of a prospective, randomized, controlled trial. Crit Care Med 23: 481–485

    Article  PubMed  CAS  Google Scholar 

  51. Long C, Kinney J, Geiger J (1976) Nonsuppressibility of gluconeogenesis by glucose in septic patients. Metabolism 25: 193–201

    Article  PubMed  CAS  Google Scholar 

  52. Wojnar M, Hawkins W, Lang C (1995) Nutritional support of the septic patient. Crit Care Clin 11: 717–733

    PubMed  CAS  Google Scholar 

  53. Talpers S, Romberger D, Bunce S, Pingleton S (1992) Nutritionally associated increased carbon dioxide production: excess total calories vs. high proportion of carbohydrate calories. Chest 102: 551–555

    Article  PubMed  CAS  Google Scholar 

  54. Venus B, Smith R, Patel C, Sandoval E (1989) Hemodynamic and gas exchange alterations during Intralipid infusion in patients with adult respiratory distress syndrome. Chest 95: 1278–1281

    Article  PubMed  CAS  Google Scholar 

  55. Weissman C, Chioléro R, Askanasi J, et al. (1988) Intravenous infusion of a medium-chain triglyceride-enriched lipid emulsion. Crit Care Med 16: 1183–1190

    Article  PubMed  CAS  Google Scholar 

  56. Griffiths RD (1997) Outcome of critically ill patients after supplementation with glutamine. Nutrition 13: 752–4

    Article  PubMed  CAS  Google Scholar 

  57. Pichard C, Kyle U, Chevrolet J, et al. (1996) Lack of effects on muscle function of recombinant growth hormone in patients requiring prolonged mechanical ventilation: a prospective randomized controlled study. Crit Care Med 24: 403–413

    Article  PubMed  CAS  Google Scholar 

  58. Takala J, Ruokonen E, Webster NR, et al. (1999) Increased mortality associated with growth hormone treatment in critically ill adults [see comments]. N Engl J Med 341: 785–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leverve, X.M., Barnoud, D., Pichard, C. (2002). Nutritional Support in Acute Respiratory Failure. In: Pichard, C., Kudsk, K.A. (eds) From Nutrition Support to Pharmacologic Nutrition in the ICU. Update in Intensive Care Medicine, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57119-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57119-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42604-2

  • Online ISBN: 978-3-642-57119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics