Skip to main content

The Human Herpes-Virus Proteases

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 140))

Abstract

Viruses within the herpes-virus family are identified based primarily on morphology, as all herpes viruses contain a linear double-stranded DNA genome within an icosadeltahedral capsid, surrounded by a tegument and enclosed within a viral envelope. The tegument is a region between the capsid and envelope that has no distinct features in electron micrographs (ROIZMAN and FURLONG 1974). These viruses have both a lytic phase of their life cycle, resulting in the generation of infectious virus that may cause disease in the susceptible host, and a latent phase characterized by limited gene expression, during which no infectious virus can be isolated. Latent virus can be reactivated in response to a variety of stimuli, which may again result in disease manifestations (ROIZMAN 1993).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood NA, Schretzman LA, Flynn DL, Houseman KA, Wittwer AJ, Dilworth VM, Hippenmeyer PJ, Holwerda BC (1997) Inhibition of human cytomegalovirus protease by benzoxazinones and evidence of antiviral activity in cell culture. Bioorg Med Chem Lett 7:2105–2108

    Article  CAS  Google Scholar 

  • Babe LM, Craik CS (1997) Viral proteases: evolution of diverse structural motifs to optimize function. Cell 91:427–430

    Article  PubMed  CAS  Google Scholar 

  • Baum EZ, Bebernitz GA, Hulmes JD, Muzithras VP, Jones TR, Gluzman Y (1993) Expression and analysis of the human cytomegalovirus UL80-encoded protease: identification of autoproteolytic sites. J Virol 67:497–506

    PubMed  CAS  Google Scholar 

  • Beaulieu BL, Sullivan JL (1997) Epstein-Barr virus. In:Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. Churchill Livingstone, New York, p 485

    Google Scholar 

  • Bonneau PR, Grand-Maitre C, Greenwood DJ, Lagace L, LaPlante SR, Massariol MJ, Ogilvie WW, O’Meara JA, Kawai SH (1997) Evidence of a conformational change in the human cytomegalovirus protease upon binding of peptidyl-activated carbonyl inhibitors. Biochemistry 36:12644–12652

    Article  PubMed  CAS  Google Scholar 

  • Braun DK, Dominguez G, Pellett PE (1997) Human herpesvirus 6. Clin Microbiol Rev 10:521–567

    PubMed  CAS  Google Scholar 

  • Burck PJ, Berg DH, Luk TP, Sassmannshausen LM, Wakulchik M, Smith DP, Hsiung HM, Becker GW, Gibson W, Villarreal EC (1994) Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites. J Virol 68:2937–2946

    PubMed  CAS  Google Scholar 

  • Chen P, Tsuge H, Almassy RJ, Gribskov CL, Katoh S, Vanderpool DL, Margosiak SA, Pinko C, Matthews DA, Kan CC (1996) Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86:835–843

    Article  PubMed  CAS  Google Scholar 

  • Chu M, Mierzwa R, Truumees I, King A, Patel M, Pichardo J, Hart A, Dasmahapatra B, Das PR, Puar MS (1996) Tetrahedron Lett 37:3943–3946

    Article  CAS  Google Scholar 

  • Cole JL (1996) Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry 35:15601–15610

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski CE, Ashman SM, Fernandez AV, Gorczyca M, Lavery P, Parratt MJ, Serafinowska HT, Sternberg EJ,Tew DG, West A, Jarvest RJ (1998) Inhibition of herpesvirus proteases by novel thieno[2,3-d]oxazinones: demonstration of inhibition of virus protein processing and selective antiviral activity in cell culture. Antimicrob Agents Chemother (submitted)

    Google Scholar 

  • Darke PL, Chen E, Hall DL, Sardana MK, Veloski CA, LaFemina RL, Shafer JA, Kuo LC (1994) Purification of active herpes simplex virus-1 protease expressed in Escherichia coll J Biol Chem 269:18708–18711.

    PubMed  CAS  Google Scholar 

  • Darke PL, Cole JL, Waxman L, Hall DL, Sardana MK, Kuo LC (1996) Active human cytomegalovirus protease is a dimer. J Biol Chem 271:7445–7449

    Article  PubMed  CAS  Google Scholar 

  • Deckman IC, Hagen M, McCann PJ III (1992) Herpes simplex virus type 1 protease expressed in Escherichia coli exhibits autoprocessing and specific cleavage of the ICP35 assembly protein. J Virol 66:7362–7367

    PubMed  CAS  Google Scholar 

  • Dilanni CL, Drier DA, Deckman IC, McCann III PJ, Liu F, Roizman B, Colonno RJ, Cordingley MG (1993a) Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. J Biol Chem 268:2048–2051

    Google Scholar 

  • Dilanni CL, Mapelli C, Drier DA, Tsao J, Natarajan S, Riexinger D, Festin SM, Bolgar M, Yamanaka G, Weinheimer SP, Meyers CA, Colonno RJ, Cordingley MG (1993b) In vitro activity of the herpes simplex virus type 1 protease with peptide substrates. J Biol Chem 268:25449–25454

    Google Scholar 

  • Dilanni CL, Stevens JT, Bolgar M, O’Boyle DR II, Weinheimer SP, Colonno RJ (1994) Identification of the serine residue at the active site of the herpes simplex virus type 1 protease. J Biol Chem 269:12672–12676

    Google Scholar 

  • Eizuru Y (1998) Multidrug resistance in human cytomegalovirus. Int Antivir News 6:61–63

    Google Scholar 

  • Fynn DL, Becker DP, Dilworth VM, Highkin MK, Hippenmeyer PJ, Houseman KA, Levine LM, Li M, Moormann AE, Rankin A, Toth MV, Villamil CI, Wittwer AJ, Holwerda BC (1997) The herpes virus protease: mechanistic studies and discovery of inhibitors of the human cytomegalovirus protease. Drug Des Discov 15:3–15

    Article  Google Scholar 

  • Gao M, Matusick-Kumar L, Hurlburt W, DiTusa SF, Newcomb WW, Brown JC, McCann PJ III, Deckman I, Colonno RJ (1994) The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol 68:3702–3712

    PubMed  CAS  Google Scholar 

  • Gershon AA, Silverstein SJ (1997) Varicella-zoster virus. In: ai]Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. Churchill Livingstone, New York, p 421

    Google Scholar 

  • Griffiths PD (1995) Progress in the clinical management of herpesvirus infections. Antivir Chem Chemother 6:191–209

    CAS  Google Scholar 

  • Griffiths PD, Emery VC (1997) Cytomegalovirus. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. Churchill Livingstone, New York, p 445

    Google Scholar 

  • Hall DL, Darke PL (1995) Activation of the herpes simplex virus type 1 protease. J Biol Chem 270:22697–22700

    Article  PubMed  CAS  Google Scholar 

  • Holskin BP, Bukhtiyarova M, Dunn BM, Baur P, de Chastonay J, Pennington MW (1995) A continuous fluorescence-based assay of human cytomegalovirus protease using a peptide substrate. Anal Biochem 227:148–155

    Article  PubMed  CAS  Google Scholar 

  • Holwerda BC (1997) Herpesvirus proteases: targets for novel antiviral drugs. Antivir Res 35:1–21

    Article  PubMed  CAS  Google Scholar 

  • Hoog SS, Smith WW, Qiu X, Janson CA, Hellmig B, McQueney MS, O’Donnell K, O’Shannessy D, DiLella AG, Debouck C, Abdel-Meguid SS (1997) Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry 36:14023–14029

    Article  PubMed  CAS  Google Scholar 

  • Jarvest RL, Parratt MJ, Debouck CM, Gorniak JG, Jennings LJ, Serafinowska HT, Strickler JE (1996) Inhibition of HSV-1 protease by benzoxazinones. Bioorg Med Chem Lett 6:2463–2466

    Article  CAS  Google Scholar 

  • Jarvest RL, Connor SC, Gorniak JG, Jennings LJ, Serafinowska HT, West A (1997) Potent selective thienoxazinone inhibitors of herpes proteases. Bioorg Med Chem Lett 7:1733–1738

    Article  CAS  Google Scholar 

  • LaFemina RL, Bakshi K, Long WJ, Pramanik B, Veloski CA, Wolanski BS, Marcy AI, Hazuda DJ (1996) Characterization of a soluble stable human cytomegalovirus protease and inhibition by M-site peptide mimics. J Virol 70: 4819–4824

    PubMed  CAS  Google Scholar 

  • Liang PH, Doyle ML, Brun KA, O’Donnell K, Green SM, Baker AE, Feild JA, Blackburn MN, Abdel-Meguid SS (1998) Site-directed mutagenesis probing the catalytic role of arginines 165 and 166 of human cytomegalovirus protease. Biochemistry 37:5923–5929

    Article  PubMed  CAS  Google Scholar 

  • Liebowitz D, Kieff E (1993) Epstein-Barr virus. In: Roizman B, Whitley RJ, Lopez C (eds) The human herpesviruses. Raven, New York, p 107

    Google Scholar 

  • Liu F, Roizman B (1991a) The promoter, transcriptional unit, and coding sequence of herpes simplex virus 1 family 35 proteins are contained within and in frame with the UL26 open reading frame. J Virol 65:206–212

    PubMed  CAS  Google Scholar 

  • Liu F, Roizman B (1991b) The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol 65:5149–5156

    PubMed  CAS  Google Scholar 

  • Liu F, Roizman B (1992) Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proc Natl Acad Sci USA 89:2076–2080

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Roizman B (1993) Characterization of the protease and other products of aminoterminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol 67:1300–1309

    PubMed  CAS  Google Scholar 

  • Lopez C (1993) Human herpesviruses 6 and 7. In: Roizman B, Whitley RJ, Lopez C (eds) The human herpesviruses. Raven, New York, p 309

    Google Scholar 

  • Margosiak SA, Vanderpool DL, Sisson W, Pinko C, Kan C-C (1996) Dimerization of the human cytomegalovirus protease: kinetic and biochemical characterization of the catalytic homodimer. Biochemistry 35:5300–5307

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Chang Y (1997) Kaposi’s sarcoma-associated herpesvirus. In: ai]Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. Churchill Livingstone, New York, p 509

    Google Scholar 

  • Moore PS, Gao S-J, Dominguez G, Cesarman E, Lungu O, Knowles DM, Garber R, Pellett PE, McGeoch DJ, Chang Y (1996) Primary characterization of a her-pesvirus agent associated with kaposi’s sarcoma. J Virol 70:549–558

    PubMed  CAS  Google Scholar 

  • Patil A, Freyer AJ, Killmer L, Breen A, Johnson RK (1997) A cycloartanol sulfate from the green alga Tuemoya sp.: an inhibitor of VZV protease. Bioorg Med Chem Lett 7:1733–1738

    Article  Google Scholar 

  • Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337–360

    Article  PubMed  CAS  Google Scholar 

  • Person S, Laquerre S, Desai P, Hempel J (1993) Herpes simplex virus type 1 capsid protein, VP21, originates within the UL26 open reading frame. J Gen Virol 74: 2269–2273

    Article  PubMed  CAS  Google Scholar 

  • Pinko C, Margosiak SA, Vanderpool DL, Gutowski JC, Condon B, Kan CC (1995) Single-chain recombinant human cytomegalovirus protease. J Biol Chem 270: 23634–23640

    Article  PubMed  CAS  Google Scholar 

  • Pinto IL, West A, Debouck CM, DiLella AG, Gorniak JG, O’Donnell KC, O’Shannessy DJ, Patel A, Jarvest RL (1996) Novel, selective mechanism-based inhibitors of the herpes proteases. Bioorg Med Chem Lett 6:2467–2472

    Article  CAS  Google Scholar 

  • Preston VG, Coates JAV, Rixon FJ (1983) Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol 45:1056–1064

    PubMed  CAS  Google Scholar 

  • Preston VG, Rixon FJ, McDougall IM, McGregor M, Al Kobaisi MF (1992) Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virol 186:87–98

    Article  CAS  Google Scholar 

  • Qiu X, Culp JS, DiLella AG, Hellmig B, Hoog SS, Janson CA, Smith WW, Abdel-Meguid SS (1996) Unique fold and active site in cytomegalovirus protease. Nature 383: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Janson CA, Culp JS, Richardson SB, Debouck C, Smith WW, Abdel-Meguid SS (1997) Crystal structure of varicella-zoster virus protease. Proc Natl Acad Sci USA 94:2874–2879

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan R, Presta LG, Meyer EF Jr, Wildonger R (1987) Crystal structures of the complex of porcine pancreatic elastase with two valine-derived benzoxazinone inhibitors. J Mol Biol 198:417–424

    Article  PubMed  CAS  Google Scholar 

  • Roizman B (1993) The family herpesviridae. In: ai]Roizman B, Whitley RJ, Lopez C (eds) The human herpesviruses. Raven, New York, p 1

    Google Scholar 

  • Roizman B, Furlong D (1974) The replication of herpes viruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. (Vol 3) Plenum, New York, p 229

    Google Scholar 

  • Sardana VV, Wolfgang JA, Veloski CA, Long WJ, LeGrow J, Wolanski B, Emini EA, LaFemina RL (1994) Peptide substrate cleavage specificity of the human cytomegalovirus protease. J Biol Chem 269:14337–14340

    PubMed  CAS  Google Scholar 

  • Schmidt U, Darke PL (1997) Dimerization and activation of the herpes simplex virus type 1 protease. J Biol Chem 272:7732–7735

    Article  PubMed  CAS  Google Scholar 

  • Shieh HS, Kurumbail RG, Stevens AM, Stegeman RA, Sturman EJ, Pak JY, Wittwer AJ, Palmier MO, Wiegand RC, Holwerda BC, Stallings WC (1996) Threedimensional structure of human cytomegalovirus protease. Nature 383:279–282

    Article  PubMed  CAS  Google Scholar 

  • Shu YZ, Ye Q, Kolb JM, Huang S, Veitch JA, Lowe SE, Manly SP (1997) Bripiodionen, a new inhibitor of human cytomegalovirus protease from Streptomyces sp. WC76599. J Nat Prod 60:529–532

    Article  PubMed  CAS  Google Scholar 

  • Steffy KR, Schoen S, Chen C-M (1995) Nucleotide sequence of the herpes simplex virus type 2 gene encoding the protease and capsid protein ICP35. J Gen Virol 76: 1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Teshima T, Griffin JC, Powers JC (1982) A new class of heterocyclic serine protease inhibitors. Inhibition of human leukocyte elastase, porcine pancreatic elastase, cathepsin G, and bovine chymotrypsin A alpha with substituted benzoxazinones, quinazolines, and anthranilates. J Biol Chem 257:5085–5091

    PubMed  CAS  Google Scholar 

  • Tigue NJ, Matharu PJ, Roberts NA, Mills JS, Kay J, Jupp R (1996) Cloning, expression, and characterization of the proteinase from human herpesvirus 6. J Virol 70: 4136–4141

    PubMed  CAS  Google Scholar 

  • Tong L, Qian C, Massariol MJ, Bonneau PR, Cordingley MG, Lagace L (1996) A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383:272–275

    Article  PubMed  CAS  Google Scholar 

  • Unal A, Pray TR, Lagunoff M, Pennington MW, Ganem D, Craik CS (1997) The protease and the assembly protein of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71:7030–7038

    PubMed  CAS  Google Scholar 

  • Weinheimer SP, McCann III PJ, O’Boyle II DR, Stevens JT, Boyd BA, Drier DA, Yamanaka GA, Dilanni CL, Deckman IC, Cordingley MG (1993) Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. J Virol 67:5813–5822

    PubMed  CAS  Google Scholar 

  • Welch AR, McNally LM, Gibson W (1991a) Cytomegalovirus assembly protein nested gene family: four 3’-coterminal transcripts encode four in-frame, overlapping proteins. J Virol 65:4091–4100

    PubMed  CAS  Google Scholar 

  • Welch AR, Woods AS, McNally LM, Cotter RJ, Gibson W (1991b) A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc Natl Acad Sci USA 88:10792–10796

    Article  PubMed  CAS  Google Scholar 

  • Welch AR, McNally LM, Hall MRT, Gibson W (1993) Herpesvirus proteinase: sitedirected mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J Virol 67:7360–7372

    PubMed  CAS  Google Scholar 

  • Welch AR, Villarreal EC, Gibson W (1995) Cytomegalovirus protein substrate are not cleaved by the herpes simplex virus type 1 proteinase. J Virol 69:341–347

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Roizman B (1997) Herpes simplex viruses. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. Churchill Livingstone, New York, p 375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabrowski, C.E., Qiu, X., Abdel-Meguid, S.S. (2000). The Human Herpes-Virus Proteases. In: von der Helm, K., Korant, B.D., Cheronis, J.C. (eds) Proteases as Targets for Therapy. Handbook of Experimental Pharmacology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57092-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57092-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63023-1

  • Online ISBN: 978-3-642-57092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics