Skip to main content

Inhibitors of Thrombin and Factor Xa

  • Chapter
Book cover Proteases as Targets for Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 140))

Abstract

In medicine today, much effort is being made to develop new protease inhibitors for use as anticoagulants in multiple disease states. Deep venous thrombosis and pulmonary embolism, in particular, are major medical problems in the developed world. Similarly, myocardial infarction, stroke, and peripheral vascular disease are arterial thromboses for which the addition of anticoagulant/antiplatelet agents have resulted in reduction of adverse events upon presentation and improved treatment outcomes. Therapies for both venous and arterial thrombosis represent major growth areas in the pharmaceutical industry. The basis for many of these anticoagulant agents has arisen from naturally occurring protease inhibitors in man and in other creatures. This interest arises from a need in clinical medicine to improve anticoagulant therapeutics for both naturally occurring disease processes and new medical therapeutic interventions. Characterization of nature’s inhibitors can provide for the development of important therapeutics. Development of novel anticoagulants needs to consider the major clot-forming enzymes in the hemostatic system, thrombin and factor Xa. Thus, protease inhibitors to these two enzymes have the potential to serve as anticoagulants, i.e., to inhibit hemostatic clot formation. In this manuscript, the term “anticoagulants” will be used to describe agents that interfere with proteins that participate in the plasma coagulation system which has been traditionally termed the coagulation cascade. The term “antiplatelet agents” will be used to describe entities that specifically interfere with platelet activation only. Both anticoagulants and antiplatelet agents prevent thrombosis in blood vessels. The term “antithrombotics” will be used in this manuscript to indicate combined anticoagulant and antiplatelet activity of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altieri DC (1994) Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for protease factor Xa. J Biol Chem 269:3139–3142

    PubMed  CAS  Google Scholar 

  • Altieri DC (1995) Xa receptor EPR-1. FASEB J 9:860–865

    PubMed  CAS  Google Scholar 

  • Annich G, White T, Damm D, Zhao Y, Mahdi F, Meinhardt J, Rebello S, Lucchesi BR, Bartlett RH, Schmaier AH (1998) Recombinant Kunitz protease inhibitor domain of the amyloid β-protein precursor as an anticoagulant for extracorporeal circulation in rabbits. Circulation 98[Suppl l]:1–728

    Google Scholar 

  • Antman EM (1994) Hirudin in acute myocardial infarction. Safety report from the thrombolysis and thrombin inhibition in myocardial infarction (TIMI) 9A trial. Circulation 90:1624–1630

    Article  PubMed  CAS  Google Scholar 

  • Antman EM, Handin R (1998) Low-molecular weight heparins. An intriguing new twist with profound implications. Circulation 98:287–289

    Article  PubMed  CAS  Google Scholar 

  • Bajzar L, Manuel R, Nesheim ME (1995) Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 270:14477–14484

    Article  PubMed  CAS  Google Scholar 

  • Bajzar L, Mörser J, Nesheim ME (1996) TAFI, or plasma procarboxypeptidase B, couples in the coagulation and fibrinolytic cascades through the thrombinthrombomodulin complex. J Biol Chem 271:16603–16608

    Article  PubMed  CAS  Google Scholar 

  • Berg DT, Wiley MR, Grinnell BW (1996) Enhanced protein C activation and inhibition of fibrinogen cleavage by a thrombin modulator. Science 273:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Bernatowicz MS, Klimas CE, Hartl KS, Peluso M, Allegretto NJ, Seiler SM (1996) Development of potent thrombin receptor antagonist peptides. J Med Chem 39:4879–4887

    Article  PubMed  CAS  Google Scholar 

  • Berry C, Girardot C, Lecoffre C, Lunven C (1994) Effects of the synthetic thrombin inhibitor argatroban on fibrin-or clot-incorporated thrombin: comparison with heparin and recombinant hirudin. Thromb Haemost 72:381–386

    PubMed  CAS  Google Scholar 

  • Bjork I, Lindahl V (1982) Mechanism of the anticoagulant action of heparin. Mol Cell Biochem 48:161–182

    Article  PubMed  CAS  Google Scholar 

  • Bjork I, Jackson C, Jornvall H, Lavine KK, Nordling K, Salsgiver WJ (1982) The active site of antithrombin. Release of the same proteolytically cleaved form of the inhibitor from complexes with factor IXa, factor Xa, and thrombin. J Biol Chem 257:2406–2411

    PubMed  CAS  Google Scholar 

  • Bjork I, Ylinenjarvi K, Olson ST, Bock PE (1992) Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformation stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the inhibitor. J Biol Chem 267:1976–1892

    PubMed  CAS  Google Scholar 

  • Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of singlestranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  PubMed  CAS  Google Scholar 

  • Bock PE, Olson ST, Bjork I (1997) Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I. J Biol Chem 272:19837–19845

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J (1989) The refined 1.9A crystal structure of human α-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Trp insertion segment. EMBO J 8:3467–3475

    PubMed  CAS  Google Scholar 

  • Bode W, Turk D, Karshikov AJ (1992) The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1:426–471

    Article  PubMed  CAS  Google Scholar 

  • Bradford HN, Dela Cadena RA, Kunapuli SP, Dong J-F, Lopez JA, Colman RW (1997) Human kininogens regulate thrombin binding to platelets through the glycoprotein Ib-IX-V complex. Blood 90:1508–1515

    PubMed  CAS  Google Scholar 

  • Broze GJ (1998) The tissue factor pathway of coagulation. In: Loscalzo J, Schafer AI (eds) Thrombosis and hemorrhage, 2nd edn. Williams & Wilkins, Baltimore, pp 77–104

    Google Scholar 

  • Broze GJ, Warren LA, Novotny WF (1988) The lipoprotein-associated coagulation factor inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71:335–343

    PubMed  CAS  Google Scholar 

  • Bouchard BA, Catcher CS, Thrash BR, Adida C, Tracy PB. (1997) Effector cell protease receptor-1, a platelet activation dependent membrane protein, regulates prothrombinase-catalyzed thrombin generation. J Biol Chem 272:9244–9251

    Article  PubMed  CAS  Google Scholar 

  • Cappello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ (1995) Ancylostoma canninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa. Proc Natl Acad Sci 92:6152–6156

    Article  PubMed  CAS  Google Scholar 

  • Chong BH, Ismail F, Cade J, Gallus AS, Gordon S, Chesterman CN (1989) Heparininduced thrombocytopenia: studies with a new low molecular weight heparinoid, Org 10172. Blood 73:1592–1596

    PubMed  CAS  Google Scholar 

  • Cirino G, Cicala C, Bucci M, Sorrentino L, Ambrosini G, DeDominicis G, Altieri D (1997) Factor xa as an interface between coagulation and inflammation. Molecular mimicry of factor Xa association with effector cell protease receptor-1 induces acute inflammation in vivo. J Clin Invest 99:2446–2451

    Article  PubMed  CAS  Google Scholar 

  • Cohen M, Demers C, Gurflnkel EP, Turpie AGG, Fromell GJ, Goodman S, Langer A, Califf RM, Fox KAA, Premmereur J, Bigonzi F (1997) A comparison of lowmolecular-weight heparin with unfractionated heparin for unstable coronary artery disease. N Engl J Med 337:447–452

    Article  PubMed  CAS  Google Scholar 

  • Collen D, Matsuo O, Stassen JM, Kettner C, Shaw E (1982) In vivo studies of a synthetic inhibitor of thrombin. J Lab Clin Med 99:76–83

    PubMed  CAS  Google Scholar 

  • Colwell NS, Tollefson DM, Blinder MA (1997) Identification of a monoclonal thrombin inhibitor associated with multiple myeloma and a severe bleeding disorder. Br J Haematol 97:219–226

    Article  PubMed  CAS  Google Scholar 

  • Colwell NS, Blinder MA, Bock PE, Tollefsen DM (1998) Allosteric effects of a monoclonal antibody against thrombin exosite II. Circulation 98[Supple I]:I–519

    Google Scholar 

  • Cook JJ, Sitko GR, Bednar B, Condra C, Mellott MJ, Feng D-M, Nutt RF, Shafer JA, Gould RJ, Connolly TM (1995) An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African Green Monkey. Circulation 91:2961–2971

    Article  PubMed  CAS  Google Scholar 

  • Coughlin PB, Tetaz T, Salem HH (1993) Identification and purification of a novel serine proteinase inhibitor. J Biol Chem 268:9541–9547

    PubMed  CAS  Google Scholar 

  • Craig PA, Olson ST, Shore JD (1989) Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. J Biol Chem 264:5452–5461

    PubMed  CAS  Google Scholar 

  • Cunningham DD, Farrell DH (1986) Thrombin interactions with cultured fibroblasts: relationship to mitogenic stimulation. Ann N Y Acad Sci 485:240–248

    Article  PubMed  CAS  Google Scholar 

  • De Boer HC, de Groot PG, Bouma BN, Preissner KT (1993) Ternary vitronectinthrombin-antithrombin III complexes in human plasma. J Biol Chem 268: 1279–1283

    PubMed  Google Scholar 

  • Di Cera E, Guinto ER, Vindigni A, Dang QD, Ayala YM, Wuyil M, Tulinsky A (1995) The Na+ binding site of thrombin. J Biol Chem 270:22089–22092

    Article  PubMed  Google Scholar 

  • Dunwiddie C, Thornberry NA, Bull HG (1989) Antistasin, a leech-derived inhibitor of factor Xa. Kinetic analysis of enzyme inhibition and identification of the reactive site. J Biol Chem 264:16694–16699

    PubMed  CAS  Google Scholar 

  • Dunwiddie CT, Waxman L, Vlasuk GP, Friedman PA (1993) Purification and characterization of inhibitors of blood coagulation factor Xa from hematophagous organisms. Methods Enzymol 223:291–312

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T, Kroger B, Bialojan S, Lemaire HG, Hoffken HW, Reuschenbach P, Otte M, Dodt J (1993) A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem 268:16216–16222

    PubMed  CAS  Google Scholar 

  • Gibbs CS, Coutre SE, Tsiang M, Li W-X, Jain AK, Dunn KE, Law VS, Mao CT, Matsumura SY, Mejza SJ, Paborsky LR, Leung LLK (1995) Conversion of thrombin into an anticoagulant by protein engineering. Nature 378:413–416

    Article  PubMed  CAS  Google Scholar 

  • Gitlin SD, Deeb GM, Yann C, Schmaier AH (1998) Intraoperative monitoring of danaparoid sodium (Orgaran) anticoagulation during cardiovascular surgery. J Vase Surg 27:568–575

    Article  CAS  Google Scholar 

  • Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LLK (1993) In vivo anticoagulation properties of a novel nucleotide-based thrombin inhibitor and demonstration of region anticoagulation in extracorporeal circuits. Blood 81:3271–3276

    PubMed  CAS  Google Scholar 

  • Gronke RS, Bergman BL, Baker JB (1987) Thrombin interaction with platelets. Influence of a platelet protease nexin. J Biol Chem 262:3030–3036

    PubMed  CAS  Google Scholar 

  • Gusto IIa Investigators (1994) Randomized trial of intravenous heparin versus recombinant hirudin for acute coronary syndromes. Circulation 90:1631–1637

    Article  Google Scholar 

  • Hanson SR, Harker LA (1988) Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci USA 85:3184–3188

    Article  PubMed  CAS  Google Scholar 

  • Haralbopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME (1997) Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol 273:C239–C245

    Google Scholar 

  • Harker L, Hanson SR, Kelly AB (1995) Antithrombotic benefits and hemorrhagic risks of direct thrombin inhibitors. Thromb Haemost 74:464–472

    PubMed  CAS  Google Scholar 

  • Hasan AAK, Amenta S, Schmaier AH (1996) Bradykinin and its metabolite, ARG-PRO-PRO-GLY-PHE, are selective inhibitors of α-thrombin-induced platelet activation. Circulation 94:517–528

    Article  PubMed  CAS  Google Scholar 

  • Hasan AAK, Krishnan R, Tulinsky A, Schmaier AH (1998) The mechanism of thrombostatin’s inhibition of thrombin-induced platelet activation. Circulation 98[Suppl l]:I–800

    Google Scholar 

  • Hasan AAK, Rebello SS, Smith E, Srikanth S, Werns S, Driscoll E, Faul J, Brenner D, Normolle D, Lucchesi BR, Schmaier AH (1999) Thrombostatin inhibits induced canine coronary thrombosis. Thromb Haemost 82:in press

    Google Scholar 

  • Hayes KL, Leong L, Henriksen RA, Bouchard BA, Ouellette L, Church WR, Tracy PB (1994) α-Thrombin-induced human platelet activation results solely from formation of a specific enzyme-substrate complex. J Biol Chem 269:28606–28612

    PubMed  CAS  Google Scholar 

  • Hung DT, Vu T-KH, Wheaton VI, Charo IF, Nelken NA, Esmon N, Esmon CT, Coughlin SR (1992) “Mirror image” antagonists of thrombin-induced platelet activation based on thrombin receptor structure. J Clin Invest 89:444–450

    Article  PubMed  CAS  Google Scholar 

  • Ill CR, Ruoslahti E (1985) Association of thrombin-antithrombin III complex with vitronectin in serum. J Biol Chem 260:15610–15615

    PubMed  CAS  Google Scholar 

  • Imura Y, Stassen J-M, Vreys I, Lesaffre E, Gold HK, Collen D (1992) Synergistic antithrombotic properties of G4120, a RGD-containing synthetic peptide, and argatroban, a synthetic thrombin inhibitor, in a hamster femoral vein platelet-rich thrombosis model. Thromb Haemost 68:336–340

    PubMed  CAS  Google Scholar 

  • Jenny NS, Mann KG (1998) Coagulation cascade: an overview. In: Loscalzo J, Schäfer AI (eds) Thrombosis and hemorrhage, 2nd edn. Williams & Wilkins, Philadelphia, p 11

    Google Scholar 

  • Kakkar VV, Corrigan TP, Fossard DP, Sutherland I, Shelton MG, Thirlwall J (1975) Prevention of fatal postoperative pulmonary embolism by low doses of heparin. Lancet 11:45–51

    Google Scholar 

  • Kelly AB, Marzec UM, Krupski W, Bass A, Cadroy Y, Hanson SR, Harker LA (1991) Hirudin interruption of heparin-resistant arterial thrombus formation in baboons. Blood 77:1006–1012

    PubMed  CAS  Google Scholar 

  • Kelly AB, Maraganore JM, Bourdon P, Hanson SR, Harker LA (1992) Antithrombotic effects of synthetic targeting various functional domains of thrombin. Proc Natl Acad Sci 89:6040–6044

    Article  PubMed  CAS  Google Scholar 

  • Kettner C, Mersinger L, Knabb R (1990) The selective inhibition of thrombin by peptides of boroarginine. J Biol Chem 265:18289–18297

    PubMed  CAS  Google Scholar 

  • Kikumoto R, Tamao Y, Tezuka T, Tonomura S, Hara H, Ninomiya K, Hijikata A, Okamoto S (1984) Selective inhibition of thrombin by (2R,4R)-4-methyl-l-[N2-(3(RS)-methyl-l,2,3,4,-tetrahydro-8-quinolinyl)sulfonyl]-L-arginyl]-2-piperidinecarboxylic acid. Biochemistry 23:85–90

    Article  PubMed  CAS  Google Scholar 

  • Knabb RM, Kettner CA, Timmermans PBMWM, Reilly TM (1992) In vivo characterization of a new synthetic thrombin inhibitor. Thromb Haemost 67:56–59

    PubMed  CAS  Google Scholar 

  • Knapp A, Degenhardt T, Dodt J (1992) Hirudisins. Hirudin-derived thrombin inhibitors with disintegrin activity. J Biol Chem 267:24230–24234

    PubMed  CAS  Google Scholar 

  • Lazar JB, Winant RC, Johnson PH (1991) Hirudin: amino-terminal residues play a major role in the interaction with thrombin. J Biol Chem 266:685–688

    PubMed  CAS  Google Scholar 

  • Lerea KM (1991) Thrombin-induced effects are selectively inhibited following treatment of intact human platelets with okadaic acid. Biochemistry 30:6819–6824

    Article  PubMed  CAS  Google Scholar 

  • Li EHH, Fenton JW II, Feinman RD (1976) The role of heparin in the thrombinantithrombin III reaction. Arch Biochem Biophys 175:153–159

    Article  PubMed  CAS  Google Scholar 

  • Mahdi F, Van Nostrand WE, Schmaier AH (1995) Protease nexin-2/amyloid β-protein precursor inhibits factor Xa in the prothrombinase complex. J Biol Chem 270:23468–23474

    Article  PubMed  CAS  Google Scholar 

  • Maryanoff BE, Qui X, Padmanabhan KP, Tulinsky A, Almond HR, Andrade-Gordon P, Greco MN, Kauffman JA, Nicolaou KC, Liu A, Brungs PH, Fusetani N (1993) Molecular basis for the inhibition of human α-thrombin by macrocyclic peptide cyclotheonamide A. Proc Natl Acad Sci 90:8048–8052

    Article  PubMed  CAS  Google Scholar 

  • Meloni FJ, Schmaier AH (1991) Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation. J Biol Chem 266:6786–6794

    PubMed  CAS  Google Scholar 

  • Morenweiser R, Auerswald EA, de Locht A, Fritz H, Sturzebaecher J, Stubbs MT (1997) Structure-based design of a potent chimeric thrombin inhibitor. J Biol Chem 272:19938–19942

    Article  PubMed  CAS  Google Scholar 

  • Naski MC, Fenton JW III, Maraganore JM, Olson ST, Shafer JA (1990) The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of α-thrombin on fibrinogen. J Biol Chem 265:13484–13489

    PubMed  CAS  Google Scholar 

  • Naski MC, Lawrence DA, Mosher DF, Rodor TJ, Ginsburg D (1993) Kinetics of inactivation of α-thrombin by plasminogen activator. J Biol Chem 268:12367–12373

    PubMed  CAS  Google Scholar 

  • Nienaber VL, Amparo EC (1996) A noncleavable retro-binding peptide that spans the substrate binding cleft of serine proteases. Atomic structure of nazumamide A: human thrombin. J Am Chem Soc 118:6807–6810

    Article  CAS  Google Scholar 

  • Nierodzik ML, Chen K, Takeshita K, Li J-J, Huang Y-Q, Feng X-S, D’Andrea MR, Andrade-Gordon P, Karpatkin S (1998) Protease-activated receptor 1 (PARI) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 92:3694–3700

    PubMed  CAS  Google Scholar 

  • Neuhaus K-L, Essen Rv, Tebbe U, Jessel A, Heinrichs H, Maurer W, Döring W, Harmjanz D, Kotter V, Kalhammer E, Simon H, Horacek T (1994) Safety observations from the pilot phase of the randomized r-hirudin for improvement of thrombolysis (HIT-III) study. Circulation 90:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Nicholson AC, Nachman RL, Altieri DC, Summers BD, Ruf W, Edgington TS, Hajjar DP (1996) Effector cell protease receptor-1 is a vascular receptor for coagulation factor Xa. J Biol Chem 271:28407–28413

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Hijikata A, Kikumoto R, Tonomara S, Hara H, Ninomiya K, Maruyama A, Sugano M, Tamao Y (1981) Potent inhibition of thrombin by the newly synthesized arginine derivative no. 805. The importance of sterostructure of its hydrophobic caroxamide portion. Biochem Biophys Res Commun 101:440–446

    Article  PubMed  CAS  Google Scholar 

  • Olson ST (1988) Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Linkage of protease-inhibitor-heparin interactions in the reaction with thrombin. J Biol Chem 263:1698–1708

    PubMed  CAS  Google Scholar 

  • Olson ST, Bjork I (1991) Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem 266:6353–6364

    PubMed  CAS  Google Scholar 

  • Olson ST, Shore JD (1982) Demonstration of a two-step reaction mechanism for inhibition of α-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem 257:14891–14895

    PubMed  CAS  Google Scholar 

  • Olson ST, Shore JD (1986) Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. The reaction step limiting heparin turnover in thrombin neutralization. J Biol Chem 261:13151–13159

    PubMed  CAS  Google Scholar 

  • Olson ST, Halvorson HR, Bjork I (1991) Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific models. J Biol Chem 266:6342–6352

    PubMed  CAS  Google Scholar 

  • Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombinproteinase reactions. J Biol Chem 267:12528–12538

    PubMed  CAS  Google Scholar 

  • Paborsky LR, McCurdy SN, Griffin LC, Toole JJ, Leung LLK (1993) The singlestranded DNA aptamer-binding site of human thrombin. J Biol Chem 268: 20808–20811

    PubMed  CAS  Google Scholar 

  • Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268:17651–17654

    PubMed  CAS  Google Scholar 

  • Pages G, Lenormand P, L’Allemain G, Chambard J-C, Meloche S, Pouyssegur J (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90:8319–8323

    Article  PubMed  CAS  Google Scholar 

  • Pejler G, Karlstrom A (1993) Thrombin is inactivated by mast cell secretory granule chymase. J Biol Chem 268:11817–11822

    PubMed  CAS  Google Scholar 

  • Puri RN, Zhou F, Hu C-J, Colman RF, Colman RW (1991) High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets. Blood 77:500–507

    PubMed  CAS  Google Scholar 

  • Rao AK, Sun L, Chesebro JH, Fuster V, Harrington RA, Schwartz D, Gallo P, Matos D, Topol EJ (1996) Distinct effects of recombinant desulfatohirudin (Revasc) and heparin on plasma levels of fibrinopeptide A and protrhombin fragment F1.2 in unstable angina. A multicenter trial. Circulation 94:2389–2395

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RD, Damus PS (1973) The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 248:6490–6505

    PubMed  CAS  Google Scholar 

  • Rydel TJ, Ravichandran KG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton JW II (1990) The structure of a complex of recombinant hirudin and human α-thrombin. Science 249:277–280

    Article  PubMed  CAS  Google Scholar 

  • Seiler SM (1997) Thrombin receptor antagonists. Semin Thromb Hemost 22:223–232

    Article  Google Scholar 

  • Seymour J, Lindquist RN, Dennis MS, Moffat B, Yansura D, Reilly D, Wessinger ME, Lazarus RA (1994) Ecotin is a potent anticoagulant and reversible tight-binding inhibitor of factor Xa. Biochemistry 33:3949–3958

    Article  PubMed  CAS  Google Scholar 

  • Shankar R, de la Motte C, Poptic EJ, DiCorleto PE (1994) Thrombin-receptoractivating peptides differentially stimulate platelet-derived growth factor production, monocyte cell adhesion, and E-selectin expression inhuman umbilical vein endothelial cells. J Biol Chem 269:13936–13941

    PubMed  CAS  Google Scholar 

  • Sheehan JP, Sadler JE (1994) Molecular mapping of the heparin-binding exosite of thrombin. Proc Natl Acad Sci USA 91:5518–5522

    Article  PubMed  CAS  Google Scholar 

  • Sheehan JP, Wu Q, Tollefsen DM, Sadler JE (1993) Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. J Biol Chem 268:3639–3645

    PubMed  CAS  Google Scholar 

  • Sheehan JP, Tollefsen DM, Sadler JE (1994) Heparin cofactor II is regulated allosterically and not primarily by template effects. J Biol Chem 269:32747–32751

    PubMed  CAS  Google Scholar 

  • Sower LE, Froelich CJ, Carney DH, Fenton II JW, Klimpel GR (1995) Thrombin induced IL-6 production in fibroblasts and epithelial cells. J Immunol 155:895–901

    PubMed  CAS  Google Scholar 

  • Sprecher CA, Kisiel W, Amathewes S, Foster D (1994) Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway-inhibitor. Proc Natl Acad Sci USA 91:3353–3357

    Article  PubMed  CAS  Google Scholar 

  • Stone SR, Maraganore JM (1993) Hirudin and hirudin-based peptides. Methods Enzymol 223:312–336

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Nishioka J (1991) A thrombin-based peptide corresponding to the sequence of the thrombomodulin-binding site blocks the procoagulant activities of thrombin. J Biol Chem 266:18498–18501

    PubMed  CAS  Google Scholar 

  • Tollefsen DM, Majerus DW, Blank MK (1982) Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem 257:2162–2169

    PubMed  CAS  Google Scholar 

  • Tabernero L, Chang CYY, Ohringer SL, Lau WF, Iwanowicz EJ, Han W-C, Wang TC, Seiler SM, Roberts DGM, Sack JS (1995) Structure of a retro-binding peptide inhibitor complexed with human α-thrombin. J Mol Biol 246:14–20

    Article  PubMed  CAS  Google Scholar 

  • Vijayalakshmi J, Padmanabhan KP, Mann KG, Tulinsky A (1994) The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Protein Sci 3:2254–2271

    Article  PubMed  CAS  Google Scholar 

  • Vu T-K, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Wang KY, McCurdy S, Shea RG, Swaminathan S, Bolton PH (1993) A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Waxman L, Smith DE, Arcuri KE, Vlasuk GP (1990) Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248:593–596

    Article  PubMed  CAS  Google Scholar 

  • Weitz JI (1997) Low-molecular weight heparins. N Engl J Med 337:688–698

    Article  PubMed  CAS  Google Scholar 

  • Weitz JI, Hudoba M, Massel D, Marganore J, Hirsh J (1990) Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin Ill-independent inhibitors. J Clin Invest 86:385–391

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Sheehan JP, Tsiang M, Lentz SR, Birktoft JJ, Sadler JE (1991) Proc Natl Acad Sci USA 88:6775–6779

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Tsiang M, Sadler JE (1992) Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. J Biol Chem 267:24408–24412

    PubMed  CAS  Google Scholar 

  • Xu W-F, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci 95:6642–6646

    Article  PubMed  CAS  Google Scholar 

  • Zivelin A, Rao LVM, Rapaport SI (1993) Mechanism of anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual procoagulant vitamin K-dependent clotting factors. J Clin Invest 92:2131–2140

    Article  PubMed  CAS  Google Scholar 

  • Zoldhelyi P, Chesebro JH, Owen WG (1993) Hirudin as a molecular probe for thrombin in vitro and during systemic coagulation in the pig. Proc Natl Acad Sci USA 90:1819–1823

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmaier, A.H. (2000). Inhibitors of Thrombin and Factor Xa. In: von der Helm, K., Korant, B.D., Cheronis, J.C. (eds) Proteases as Targets for Therapy. Handbook of Experimental Pharmacology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57092-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57092-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63023-1

  • Online ISBN: 978-3-642-57092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics