Skip to main content

Voltage-Gated Calcium-Modulated Potassium Channels of Large Unitary Conductance: Structure, Diversity, and Pharmacology

  • Chapter
Pharmacology of Ionic Channel Function: Activators and Inhibitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

Abstract

Calcium-sensitive and voltage-dependent channels of large unitary conductance (BKca) are found ubiquitously distributed in different cells and tissues where they participate in regulating many cellular processes (Latorre et al. 1989). Because cytosolic Ca2+activates BKcachannels they play an important role in coupling chemical to electrical signaling. In neurons they contribute to action potential repolarization (e.g., Sah 1996) and in presynaptic terminals they appear to modulate transmitter release (Robitaille et al. 1993; Knaus et al. 1996; Yazejian et al. 1997; but see Warbington et al. 1996). BKcachannels are present abundantly in virtually all types of smooth muscle cells and they are crucial in controlling smooth muscle tone (Anwer et al. 1993; Brayden and Nelson 1992; Nelson et al. 1995; for reviews see Nelson and Quayle 1995; Sanders 1992). These channels also control fluid secretion (Peterson 1986) and fluid reabsorption (Guggino et al. 1987). In chick cochleae different variants of the BKcachannel may help to determine the characteristic frequency of each hair cell helping to establish the tonotopic map (Dhasakumar et al. 1997; Rosenblatt et al. 1997; Ramanathan et al. 1999). BKcachannels were cloned fromDrosophilataking advantage of the existence of the mutant slowpoke (Slo)in which this potassium current is absent (Elkins et al. 1986; Gho and Mallard 1986). The primary sequence of theSlo protein showed that that BKcachannels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ Channel. 1996 Neuron 1996, 16:1169–1177

    Article  Google Scholar 

  • Alioua A, Huggins JP, Rousseau E (1995) PKG-Ia phosphorylates the a-subunit and upregulates reconstituted GKca channels from tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 268:L1057—L1066

    Google Scholar 

  • Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L (1998) The large conductance voltage-dependent and calcium-sensitive K+ channel, hSlo, is target of a GMP-dependent protein kinase phosphorilation in vivo. J Biol Chem 273:32950–32956

    Article  PubMed  CAS  Google Scholar 

  • Anwer K, Oberti C, Pérez, GJ, Perez-Reyes N, McDougall JK, Monga M, Sanborn BM, Stefani E, Toro L (1993) Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol Cell Physiol 265:C976—C985

    Google Scholar 

  • Archer SL, Huang JMC, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91:75837587

    Google Scholar 

  • Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555

    Article  PubMed  CAS  Google Scholar 

  • Baker OS, Larsson HP, Mannuzzu LM, Isacoff EY (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker K` channel gating. Neuron 20:1283–1294.

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla E (2000) The voltage sensor in voltage-dependention channels. Physiol Rev (In Press)

    Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  PubMed  CAS  Google Scholar 

  • Bontems F, Roumestand C, Menez A, Toma F (1991) Refined structure of charybdotoxin:common motifs in scorpion toxins and insect defensins. Science 254:15211523

    Google Scholar 

  • Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224

    Article  PubMed  CAS  Google Scholar 

  • Bychkov RM, Gollasch T, Steinke C, Ried FC, Luft J, Haller H (1998) Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries J Pharmacol Exp Ther 285:293–298

    PubMed  CAS  Google Scholar 

  • Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potentblocker of the large conductance Ca“-activated K` channel. Biophys J 63:583–590

    Article  PubMed  CAS  Google Scholar 

  • Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Chang CP, Dworetzky SI, Wang J, Goldstien ME (1997) Differential expression of the a and 0 subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity. Brain Res Mol Brain Res 45:33–40

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Dopico AM, Lemos JR, Triestman SN (1998) Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers. Mol Pharmacol 54:397–406

    PubMed  CAS  Google Scholar 

  • Chung S, Reinhart PH, Martin BL, Brautigan D, Levitan IB (1991) Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science 253:560–562

    Article  PubMed  CAS  Google Scholar 

  • Cox DH, Cui J, Aldrich RW (1997) Allosteric gating of a large conductance Cat“-activated K’ channel. J Gen Physiol 110:257–281

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Cox DH, Aldrich RW (1997) Intrinsic voltage dependence and Ca’ regulation of mslo large conductance Ca-activated K+ channels. J Gen Physiol 109:647–673

    Article  PubMed  CAS  Google Scholar 

  • Denson DD, Duchatelle P, Eaton DC (1994) The effect of racemic ketamine on the large conductance Ca“-activated potassium channel (BK) channels in GH3 cells. Brain Res 638:61–68

    Article  PubMed  CAS  Google Scholar 

  • Dhasakumar S, Navaratnam S, Bell TJ, Dinh Tu T, Cohen EL, Oberholtzer JC (1997) Differential distribution of Ca’-activated K+ channel splice variants among hair cells along the tonopic axis of the chick cochlea. Neuron 19:1077–1085

    Article  Google Scholar 

  • Diaz L, Meera P, Amigo J, Stefani E, Alvarez O, Toro L, Latorre R (1998) Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J Biol Chem 273:32430–32436

    Article  PubMed  CAS  Google Scholar 

  • DiChiara T, Reinhart PH (1997) Redox modulation of hslo Ca“-activated K+ channels. J Neurosci 17:4942–4955

    PubMed  CAS  Google Scholar 

  • Ding JP, Li ZW, Lingle CJ (1998) Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. 1998 Biophys J 74:268–289

    Article  CAS  Google Scholar 

  • Dopico AM, Lemos JR,Treitman SN (1996) Ethanol increases the activity of large conductance Ca“-activated K’ channels in isolated neurohypophysial terminals. Mol Pharmacol 49:40–48

    PubMed  CAS  Google Scholar 

  • Dopico AM, Anantharam V, Treitman SN (1998) Ethanol increases the activity of large conductance Ca“-dependent K’ (mSlo) channels: functional interaction with cytosolic Ca’. J Pharmacol Exp Ther 284:258–268

    PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MavKinnon R (1998) The structure of the potassium channel: molecular basis of K’ conduction and selectivity. Science 280:69–81

    Article  PubMed  CAS  Google Scholar 

  • Dworetzky SI, Boissard CG, Lum-Ragan JT, Mckay MC, Post-Munson DJ, Trojnacki JY, Chang C-P, Gribkoff VK (1996) Phenotypic alteration of a human BK (hslo) channels by hSlo subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci 16:4543–4550

    PubMed  CAS  Google Scholar 

  • Farrukh IS, Peng W, Orlinska U, Hoidal JR (1998) Effect of dehydroepiandrosterone on hypoxic pulmonary vasoconstriction: a Ca(2+)-activated K(+)-channel opener. Am J Physiol Lung Cell Mol Physiol 274:L186—L195

    Google Scholar 

  • Ferrer J, Wasson J, Salkoff L, Permutt MA (1996) Cloning of human pancreatic islet large conductance Ca“-activated K’ channel (Hslo) cDNA’s: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39:891–898

    Article  PubMed  CAS  Google Scholar 

  • Foster CD, Chung S, Zagotta WN, Aldrich RW, Levitan IB (1992) A peptide derived from the Shaker B K’ channel produces short and long blocks of reconstituted Ca’-dependent K’ channels. Neuron 9:229–236

    Article  PubMed  CAS  Google Scholar 

  • Garcia ML, Garcia-Calvo M, Hidalgo P, Lee A, MacKinnon R (1994) Purification and characterization of three inhibitors of voltage-dependent potassium channels from Leirus quinquestriatus var. hebraeus venom. Biochemistry 33:6834–6839

    Article  PubMed  CAS  Google Scholar 

  • Garcia ML, Knaus H, Munujos P, Slaughter RS, Kaczorowski GJ (1995) Charybdotoxin and its effects on potassium channels. Am J Physiol Cell Physiol 269:C1—C10

    Google Scholar 

  • Garcia-Calvo M, Knaus HG, Mc Manus OB, Giangiacomo KM, Kaczorowski GJ, Garcia ML, Knaus HG (1994) Purification and reconstitution of the high-conductance, calcium activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269:3921–3924

    PubMed  Google Scholar 

  • Giangiacomo KM, Garcia ML, McManus OB (1992) Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle. Biochemistry 31:6719–6727

    Article  PubMed  CAS  Google Scholar 

  • Giangiacomo KM, Kamassah A, McManus OB (1998) Mechanism of maxi-K channel activation by dehydrosaponin-I. J. Gen. Physiol. 112:485–501

    Article  PubMed  CAS  Google Scholar 

  • Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K’ channels, types Kv1.1, 1.2, 1.3, 1.5 and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234

    PubMed  CAS  Google Scholar 

  • Gribkoff VK, Lum-Ragan JT, Boisssard CG, Post-Munson DJ, Meanwell NA, Starret JE, Kowslowski ES, Romine JL, Trojnacki JT, Craig McKay M, Zhong J, Dworetzky SI (1996) Effect of channel modulators on cloned large-conductance calcium-activated potassium channels. Mol Pharmacol 50:206–217

    PubMed  CAS  Google Scholar 

  • Hanner M, Schmalhofer WA, Munujos P, Knaus HG, Kaczorowski GJ, Garcia ML (1997) The 13 subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Natl Acad Sci USA 94:2853–2858

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham L, MacKinnon R (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8:483–491

    Article  PubMed  CAS  Google Scholar 

  • Holm NR, Christophersen P, Olesen SP, Gammeltoft S (1997) Activation of calcium-dependent potassium channels in mouse brain neurons by neurothrophin-3 and nerve growth factor. Proc Natl Acad Sci USA 94:1002–1006

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1992) Tracing the roots of ion channels. Cell 69:715–719

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Ann Rev Neurosci 20:91–123

    Article  PubMed  CAS  Google Scholar 

  • Jiang G-J, Zidanic M, Michaels RL, Griguer C, Fuchs PA (1997) cSlo encodes calcium-activated potassium channels in the chick’s cochlea. Proc R Soc Lond B 264:731–737

    Article  CAS  Google Scholar 

  • Jiang Z, Wallner M, Meera P (1999) Human and rodent MaxiK channel ß subunit genes: cloning and characterization. Genomics 55:57–67

    Article  PubMed  CAS  Google Scholar 

  • Jones EM, Laus C, Fettiplace R (1998) Identification of CaZ+-activated K’ channel splice variants and their distribution in the turtle cochlea. Proc R Soc Lond B 265:685–692

    Article  CAS  Google Scholar 

  • Knaus H-G, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994) Primary sequence and immunological characterization of subunit of high conductance Ca’-activated K+ channel from smooth muscle. J Biol Chem 269:17274–17278

    PubMed  CAS  Google Scholar 

  • Knaus H-G, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Hekms LMH, Sanchez M, Giangiacomo K, Reuben JP, Smith III AB, Kaczorowski GJ, Garcia ML (1994) Tremorgenic indole alkaloids potently inhibit smooth muscle high conductance CaZ+-activated K+ channels. Biochemistry 33:5819–5828

    Article  PubMed  CAS  Google Scholar 

  • Koh D-S, Reid G, Vogel W (1994) Activating effect of the flavoid phloretin on Ca“- activated K+ channels in myelinated nerve fibres of Xenopus laevis. Neurosci Lett 165:167–170

    Article  PubMed  CAS  Google Scholar 

  • Koschak A, Koch RO, Liu J, Kaczorowski GJ, Rienhardt P, Garcia ML, Knaus H-G (1997) [125I]Iberiotoxin-D19Y/Y36F, the first selective, high specific activity radioligand for high-conductance calcium-activated potassium channels. Biochemistry 36:1943–1952

    Article  PubMed  CAS  Google Scholar 

  • Krause JD, Foster CD, Reinhart PH (1996) Localization of Ca’ domains in human (hslo) CaZ+- activated K+ channels. Soc Neurosci Abstract # 473.1, 22:1194

    Google Scholar 

  • Krause JD, Gross JM, Foster CD, Reinhart PH (1997) Localization of Ca’ domains in human (hslo) Ca’- activated K’ channels. Soc Neurosci Abstract 680.3, 23:1737

    Google Scholar 

  • Kukuljan M, Labarca P, Latorre R (1995) Molecular determinants of ion conduction and inactivation in K+ channels. 1995 Am J Physiol Cell Physiol 37:C535–0556

    Google Scholar 

  • Kirber MT, Ordway RW, Clapp LH, Walsh JV Jr, Singer JJ (1992) Both membrane stretch and fatty acids directly activate large conductance Ca“-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297:24–28

    Article  PubMed  CAS  Google Scholar 

  • Kume H, Graziano MP, Kotlikoff MI (1992) Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Proc Natl Acad Sci USA 89:11051–11055

    Article  PubMed  CAS  Google Scholar 

  • Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI (1994) ß-Adrenergic agonists regulate Kea channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93:371–379

    Article  PubMed  CAS  Google Scholar 

  • Lagrutta A, Shen KZ, North RA, Adelman JP (1994) Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activate potassium channel. J Biol Chem 269:20347–20351

    PubMed  CAS  Google Scholar 

  • Larsson PH, Baker OS, Dhillon DS, Isacoff EY (1996) Transmembrane movement of the Shaker K+ channel S4. Neuron 16:387–397

    Article  PubMed  CAS  Google Scholar 

  • Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Ann Rev Physiol 51:385–399

    Article  CAS  Google Scholar 

  • Latorre R (1994) Molecular workings of large conductance (Maxi) Ca“-activated K+ channels. In: Peracchia C (ed) Handbook of Membrane Channels: Molecular and Cellular Physiology Academic Press, Inc. San Diego, Ca pp 79–102

    Google Scholar 

  • Lee MY, Chung S, Bang HW, Baek BK, Uhm D (1997) Modulation of large conductance Ca’-activated K+ channel by Galphah (transglutaminase II) in the vascular smooth muscle cell. Pflugers Arch 433:671–673

    Article  PubMed  CAS  Google Scholar 

  • Lemos VS, Takeda K (1995) Neuropeptide Y2-type receptor-mediated activation of large-conductance CaZ+-sensitive K+ channels in a human neuroblastoma cell line. Pflugers Arch 430:534–540

    Article  PubMed  CAS  Google Scholar 

  • Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212

    Article  PubMed  CAS  Google Scholar 

  • Li PL, Campbell WB (1997) Epoxyeicosatrienoic acids activate K’ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ Res 80:877–884

    Article  PubMed  CAS  Google Scholar 

  • Li PL, Jin MW, Campbell WB (1998) Effect of selective inhibition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle. Hypertension 31:303–308

    Article  PubMed  CAS  Google Scholar 

  • Lingle CJ, Solaro CR, Prakriya M, Ding JP (1996) Calcium-activated potassium channels in adrenal chromaffin cells. In Ion Channels. Edited by Narahashi T, Plenum Press, NY, 4:261–301

    Google Scholar 

  • Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. 1996 Science 271:213–216

    CAS  Google Scholar 

  • MacKinnon R (1991) Using mutagenesis to study potassium channel mechanisms. J Bioenerg Biomembr 23:647–663

    Article  PubMed  CAS  Google Scholar 

  • Marrion NV, Tavalin SJ (1998) Selective activation of Ca“-activated K’ channels bycolocalized Ca’ channels in hippocampal neurons. Nature 395:900–904

    Article  PubMed  CAS  Google Scholar 

  • McManus OB (1991) Calcium-activated potassium channels: regulation by calcium.J Bioenerg Biomembr 23:537–560

    Article  PubMed  CAS  Google Scholar 

  • McManus OB, Harris GH, Giangiacomo KM, Feigenbaum P, Reuben JP, Addy ME, Burka JF, Kaczorowski GJ, Garcia ML (1993) An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 32:6128–6133

    Article  PubMed  CAS  Google Scholar 

  • McManus OB, Helms LM, Pallank M, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650

    Article  PubMed  CAS  Google Scholar 

  • Meera P, Wallner M, Jiang Z, Toro L (1996) A calcium switch for the functional coupling between a (hslo) and ¡3 subunits (Kv, cap) of maxi K channels. Febs Lett 382:84–88

    Article  PubMed  CAS  Google Scholar 

  • Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage-and calcium-dependent K’ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci USA 94:1406614071

    Google Scholar 

  • Minami KY, Hirata Y, Tokumura A, Nakaya Y, Fukuzawa K (1995) Protein kinase C-independent inhibition of the Ca(2+)-activated K+ channel by angiotensin II and endothelin-1. Biochem Pharmacol 49:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Latorre R (1983) Gating kinetics of Ca“-activated K’ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca’ binding reactions. J Gen Physiol 82:511–542

    Article  PubMed  CAS  Google Scholar 

  • Moreau R, Hurst AM, Lapointe JY, Lajeunesse D (1996) Activation of maxi-K channels by parathyroid hormone and prostaglandin E2 in human osteoblast bone cells. J Membr Biol 150:175–184

    Article  PubMed  CAS  Google Scholar 

  • Moss GWJ, Marshall J, Moczydlowski E (1996) Hypothesis for a serine proteinase-like domain at the COOH terminus of slowpoke calcium-activated potassium channels. J Gen Physiol 108:473–484

    Article  PubMed  CAS  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    Article  PubMed  CAS  Google Scholar 

  • Noceti F, Baldelli P, Wei X, Qin N, Toro L, Birnbaumer L, Stefani E (1996) Effective gating charges per channel in voltage dependent K’ and Ca’ channels. J Gen Physiol 108:143–155

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser A, Alvarez O, Latorre R (1988) Activation by divalent cations of a Ca“-activated K’ channel from skeletal muscle membrane. J Gen Physiol 92:6786

    Article  Google Scholar 

  • Olesen S-P, Munch E, Moldt P, Drejer J (1994) Selective activation of Ca2tdependent K’ channels by novel benzimidazolone. Eur J Pharmacol 251:53–59

    Article  PubMed  CAS  Google Scholar 

  • Ottolia M, Toro L (1994) Potentiation of large-conductance K. channels by niflumic, flufenamic and mefenamic acids. Biophys J 67:2272–2279

    Article  PubMed  CAS  Google Scholar 

  • Pancrazio JJ, Park WK, Lynch IIIC (1992) Effects of enflurane on the voltage-gated membrane currents of bovine adrenal chromaffin cells. Neurosci Lett 146:147–151

    Article  PubMed  CAS  Google Scholar 

  • Peng W, Hoidal JR, Farrukh IS (1996) Regulation of Ca(2+)-activated K+ channels in pulmonary vascular smooth muscle cells: role of nitric oxide. J Appl Physiol 81:1264–1272

    PubMed  CAS  Google Scholar 

  • Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT (1998) Frequency modulation of Ca’ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol Cell Physiol 274: C1346–1355

    CAS  Google Scholar 

  • Ramanathan K, Michael TH, Jiang G-J, Hiel H, Fuchs PA (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283:215–217

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan R, Lewis JH, MacKinnon R (1996) Spatial localization of the K’ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16:131–139

    Article  PubMed  CAS  Google Scholar 

  • Reinhard PH, Levitan IB (1995) Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 15:4572–4579

    Google Scholar 

  • Robertson BE, Schubert R, Hescheler J, Nelson MY (1993) cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 265:C299—C303

    Google Scholar 

  • Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645–655

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt KP, Sun Z-P, Heller S, Hudspeth AJ (1997) Distribution of Ca“-activated K’ channel isoforms along the tonopic gradient of the chicken cochlea. Neuron 19:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Rothberg BS, Magleby KL (1998) Kinetic structure of large conductance Ca“-activated channels suggest that the gating includes transitions through intermediate or secondary states. A mechanism for flickers. J Gen Physiol 111:751–780

    Article  PubMed  CAS  Google Scholar 

  • Rothberg BS, Bello RA, Song L, Magleby KL (1996) High Ca’ concentrations induce a low activity mode and reveal Ca“-independent long shut intervals in BK channels from rat muscle. J Physiol 493.3:673–689

    Google Scholar 

  • Sah P (1996) Ca“-activated K’ currents in neurones: types, physiological roles and modulation. TINS 19:150–154

    PubMed  CAS  Google Scholar 

  • Saito M, Nelson C, Salfkoff L, Lingle CJ (1997) A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem 18:11710–11717

    Article  Google Scholar 

  • Sanchez M, McManus OB (1996) Paxilline inhibition of the alpha-subunit of the high conductance calcium-activated potassium channel. Neuropharmacology 35: 963–968

    Article  PubMed  CAS  Google Scholar 

  • Schoppa NE, McCormack K, Tanouye MA, Sigworth FJ (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715

    Article  PubMed  CAS  Google Scholar 

  • Schopperle WM, Holquvist MH, Zhou Y, Wang J, Wang Z, Griffith LC, Keselman I, Kusinitz F, Dagan D, Levitan IB (1998) Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron 20:565–573

    Article  PubMed  CAS  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Schreiber M, Wei A, Yuan A, Gaut J, Saito M, Salkoff L (1998) Slo3, a novel pH-dependent sensitive K’ channel from mammalian spermatocytes. J Biol Chem 273:3509–3516

    Article  PubMed  CAS  Google Scholar 

  • Schubert R, Noack T, Serebryakov VN (1999) Protein kinase C reduces the KCa current of rat tail artery smooth mucle cells. Am J Physiol 276:C648—C658

    PubMed  Google Scholar 

  • Scornik FS, Codina J, Birnbaumer L, Toro L (1993) Modulation of coronary smooth muscle Kca channels by Gsa independent of phosphorylation by protein kinase A. Am J Physiol Lung Cell Mol Physiol 265:H1460–H1465

    CAS  Google Scholar 

  • Scornik FS, Toro L (1992) U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery. Am J Physiol Cell Physiol 262:C708—C713

    CAS  Google Scholar 

  • Seoh S-A, Sigg D, Papazian D, Bezanilla F (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K channel. 1996 Neuron 16:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Shen K-Z, Lagrutta A, Davies NW, Standen NB, Adelman JP, North RA (1994) Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes:Evidence for tetrameric channel formation. Pflugers Arch 426:440–445

    Article  PubMed  CAS  Google Scholar 

  • Shih TM, Goldin al. (1997) Topology of the Shaker potassium channel probed with hydrophilic epitope insertions. J Cell Biol 136:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Chung S, Park EJ, Uhm DY, Suh CK (1997) Nitric oxide directly activates calcium-activated potassium channels from rat brain reconstituted into planar lipid bilayer. FEBS Lett 415:299–302

    Article  PubMed  CAS  Google Scholar 

  • Silberberg SD, Lagrutta A, Adelman JP, Magleby KL (1996) Wanderlust kinetics and variable Ca’-sensitivity of Drosophila, a large conductance Ca’-activated K’ channel, expressed in oocytes. Biophys J 70:2640–2651

    Article  PubMed  CAS  Google Scholar 

  • Solaro CR, Ding JP, Li ZW, Lingle CJ (1997) The cytosolic inactivation domains of BK, channels in rat chromaffin cells do not behave like simple, open channel blockers. Biophys J 73:819–830

    Article  PubMed  CAS  Google Scholar 

  • Stefani E, Ottolia M, Noceti F, Olcese R, Wallner M, Latorre R, Toro L (1997) Voltage-controlled gating in a large conductance Cat+-sensitive K’ channel (hslo). Proc Natl Acad Sci USA 94:5427–5431

    Article  PubMed  CAS  Google Scholar 

  • Stockand JD, Sansom SC (1996a) Role of large Ca(2+)-activated K+ channels in regulation of mesangial contraction by nitroprusside and ANP. Am J Physiol Cell Physiol 270:C1773–1779

    CAS  Google Scholar 

  • Stockand JD, Sansom SC (1996b) Mechanism of activation by cGMP-dependent protein kinase of large Ca(2+)-activated K+ channels in mesangial cells. Am J Physiol Cell Physiol 271:C1669–1677

    CAS  Google Scholar 

  • Tanaka Y, Meera P, Song M, Knaus HG, Toro L (1997) Molecular constituents of maxi Kca channels in human coronary smooth muscle: predominant a + f3 subunit complexes. J Physiol 502:545–557

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Toro L (1996) Inhibitory effect by thromboxane A2 agonist on Kca channel activity in human coronary artery smooth muscle cells. Biophys J 70:A396

    Google Scholar 

  • Thuringer D, Findlay I (1997) Contrasting effects of intracellular redox couples on the regulation of maxi-K’ channels in isolated myocytes from rabbit pulmonary artery. J Physiol 500:583–592

    PubMed  CAS  Google Scholar 

  • Toro L, Amador M, Stefani E (1990) ANG II inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol Heart Circul Physiol 258:H912—H915

    Google Scholar 

  • Toro L, Ramos-Franco J, Stefani E (1990) GTP-dependent regulation of myometrial KCa channels incorporated into lipid bilayers. J Gen Physiol 96:373–394

    Article  PubMed  CAS  Google Scholar 

  • Toro L, Stefani E (1993) Modulation of maxi calcium-activated K channels. Role of ligands, phosphorylation and G-proteins. In: Dickey B, Birnbaumer L (eds) Handbook of Experimental Pharmacology. Vol. 108 “GTPases in Biology”. Springer-Verlag, New York pp. 561–579

    Google Scholar 

  • Toro L, Stefani E, Latorre R (1992) Internal blockade of a Cat+-activated K’ channel by Shaker B inactivating “ball” peptide. Neuron 9:237–245

    Article  PubMed  CAS  Google Scholar 

  • Toro L, Vaca L, Stefani E (1991) Calcium-activated potassium channels from coronary smooth muscle reconstituted in lipid bilayers. Am J Physiol Heart Circul Physiol 260:H1779—H1789

    Google Scholar 

  • Toro L, Wallner M, Meera P, Tanaka Y (1998) Maxi Kca, a unique member of the voltage-gated K channel superfamily. News Physiol Sci 13:112–117

    PubMed  CAS  Google Scholar 

  • Tseng-Crank J, Foster CD, Jrause JD, Mertz R, Godinot R, DiChiara TJ, Reinhart PH (1994) Cloning, expression, and distribution of functionally distinct Cat+-activated K’ channel isoforms from human brain. Neuron 13:1315–1330

    Article  PubMed  CAS  Google Scholar 

  • Tseng-Crank J, Godinot N, Johansen TE, Ahring PK, Strobaer D, Mertz R, Foster CD, Olesen S-P, Reinhart PH (1996) Cloning, expression and distribution of Caz+-activated K’ channel from subunit from human brain. Proc Natl Acad Sci USA 92:9200–9205

    Article  Google Scholar 

  • Tukao M, Mason HS, Briton FC, Kenyon JL, Horowitz B, Keet KD (1999) Cyclic GMP protein-dependent kinase activates cloned BKca channels expressed in mammalian cells by direct phosphorylation of serine 1072. J Biol Chem 74:1092710935

    Google Scholar 

  • Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of Maxi-K channels (hSlo) by estradiol binding to the /3 subunit. Science 285:1929–1931

    Article  PubMed  CAS  Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1988) Calcium-activated potassium channels. Curr Op Neurobiol (in press)

    Google Scholar 

  • Vergara C, Alvarez O, Latorre R (1999) Localization of the K’ lock-in and the Bat+ binding sites in a voltage-gated calcium modulated channel: implications for survival of K+ permeability. J Gen Physiol (In press)

    Google Scholar 

  • Villarroel A, Alvarez O, Oberhauser A, Latorre R (1988) Probing a Ca’ activated K’ channel with quaternary ammonium ions. Pflüger Arch 413:118–126

    Article  CAS  Google Scholar 

  • Wallner M, Meera P, Ottolia M, Kaczorowski G, Latorrre R, Garcia ML, Stefani E, Toro L (1995) Cloning, expression and modulation by a /3-subunit of a human maxi K. channel cloned from human myometrium. Receptors and Channels 3:185–199

    PubMed  CAS  Google Scholar 

  • Wallner M, Meera P, Toro L (1996) Determinant for subunit regulation in high-conductance voltage-activated and Caz+-sensitive K’ channels: An additional trans-membrane region at the N terminus. Proc Natl Acad Sci USA 93:14922–14927

    Article  CAS  Google Scholar 

  • Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca“-activated K’ channels: a transmembrane ß subunit homolog. Proc Natl Acad Sci USA 96:4137–4142

    Article  PubMed  CAS  Google Scholar 

  • Walsh KB, Wilson SP, Long KJ, Lemon SC (1996) Stimulatory regulation of the large-conductance calcium-activated potassium channel by G proteins in bovine adrenal chromaffin cells. Mol Pharmacol 49:379–386

    PubMed  CAS  Google Scholar 

  • Wang R, Wu L (1997) The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 272:8222–8226

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Wu L, Wang Z (1997) The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch 434:285–291

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-X, Fleischmann BK, Kotlikoff MI (1997) Modulation of maxi-K’ channels by Ca’voltage dependent Cachannels and methacholine in single airway myoccytes. Am J Phys 272:C1151—C1159

    Google Scholar 

  • Wang Z-W, Nara M, Wang Y-X, Kotlikoff ML (1997) Redox regulation of large conductance Ca’-activated K+ channels in smooth muscle. J Gen Physiol 110: 35–44

    Article  PubMed  CAS  Google Scholar 

  • Warbington F, Hillman T, Adams C, Stern M (1996) Reduced transmitter release conferred by mutations in the slowpoke-encoded Caz+ -activated K+ channel gene of Drosophila. Invert Neurosci 2:51–60

    Article  PubMed  CAS  Google Scholar 

  • Wei A, Solaro CR, Lingle CJ, Salkoff L (1994) Calcium sensitivity of BK-type KCa channels determined by a separable domain. 1994 Neuron 13:671–681

    Article  PubMed  CAS  Google Scholar 

  • Wei A, Jegla T, Salkoff L (1996) Conserved classes of potassium channel genes identi-fied from the Caenorhabditis elegans genome. Neuropharmacology 35:805–829

    Article  PubMed  CAS  Google Scholar 

  • White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL (1993) Potassium channel stimulation by natriuretic peptides through cGMPdependent dephosphorylation. Nature 361:263–266

    Article  PubMed  CAS  Google Scholar 

  • Williams DL Jr, Katz GM, Roy-Contancin L, Reuben JP (1988) Guanosine 5’monophosphate modulates gating of high-conductance Ca“-activated K’ channels in vascular smooth muscle cells. Proc Natl Acad Sci USA 85:9360–9364

    Article  PubMed  CAS  Google Scholar 

  • Wu JV,Trevor J, Stampe P (1997) Clustered distribution of calcium sensitivities: an indication of heterotetrameric gating components in Ca“-activated K’ channels reconstituted from avian nasal gland cells. J Membr Biol

    Google Scholar 

  • Xia X, Hirschberg B, Smolik S, Forte M, Adelman JP (1998) dSlo interacting protein 1, a novel prorein that interacts with large-conductance calcium-activated potassium channels. J Neurosci 18:2360–2369

    PubMed  CAS  Google Scholar 

  • Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446

    Article  PubMed  CAS  Google Scholar 

  • Yazejian B, DiGregorio DA, Vergara J, Poage RE, Meriney SD, Grinnel AD (1997) Direct measurement of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci 17:2990–3001

    PubMed  CAS  Google Scholar 

  • Yellen G (1984) Ionic permeation and blockade in Ca-activated K-channels of bovine chromaffin cells. J Gen Physiol 84:157–186

    Article  PubMed  CAS  Google Scholar 

  • Yuan XJ, Sugiyama T, Goldman WF, Rubin LJ, Blaustein MP (1996) A mitochondrial uncoupler increases KCa currents but decreases KV currents in pulmonary artery myocytes. Am J Physiol Cell Physiol 270:C321–C331

    CAS  Google Scholar 

  • Zhou XB, Ruth P, Schlossmann J, Hofmann F, Korth M (1996) Protein phosphatase 2 A is essential for the activation of Ca’-activated K+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem 271:19760–19767

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Latorre, R., Vergara, C., Alvarez, O., Stefani, E., Toro, L. (2000). Voltage-Gated Calcium-Modulated Potassium Channels of Large Unitary Conductance: Structure, Diversity, and Pharmacology. In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics