Skip to main content

Overview of Potassium Channel Families: Molecular Bases of the Functional Diversity

  • Chapter
Pharmacology of Ionic Channel Function: Activators and Inhibitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

Abstract

The structural and functional diversity is one of the most characteristic features of K+ channels among other ion channels. In the K+ channel superfamily there are some distinctly different families, and each family consists of many subfamilies. As the number of members in each subfamily is also large in number, total numbers of genes for K+ channels are vast. The electrophysiological properties of each member are different and the function is also highly diversified. This functional diversity enables fine regulation of membrane potential and electrical excitability of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Towards understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    PubMed  CAS  Google Scholar 

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    PubMed  CAS  Google Scholar 

  • Ammala C, Moorhouse A, Gribble F, et al. (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 379:545–548

    PubMed  CAS  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and 1sK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80

    PubMed  CAS  Google Scholar 

  • Baukrowitz T, Yellen G (1995) Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15:951–960

    PubMed  CAS  Google Scholar 

  • Chen H, Kubo Y, Hoshi T, Heinemann SH (1998) Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels in Xenopus oocytes. FEBS letters 422:307–310

    PubMed  CAS  Google Scholar 

  • Chuang H, Jan YN, Jan LY (1997) Regulation of IRK3 inward rectifier K+ channel by ml acetylcholine receptor and intracellular magnesium. Cell 89:1121–1132

    PubMed  CAS  Google Scholar 

  • Ciorba MA, Heinemann SH, Weissbach H, Brot H, Hoshi T. (1997) Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci USA 94:9932–9937

    PubMed  CAS  Google Scholar 

  • Clement JP, Kunjilwar K, Gonzalez G, et al. (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838

    PubMed  CAS  Google Scholar 

  • Cohen NA, Brenman JE, Snyder SH, Bredt DS (1996) Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17:759–767

    PubMed  CAS  Google Scholar 

  • Dascal N (1997) Signaling via the G-protein-activated K+ channels. Cell Signal. 9:551–573

    PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Fakler B, Brandle U, Glowatzki E, Zenner HP, Ruppersberg JP (1994) Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13:1413–1420

    PubMed  CAS  Google Scholar 

  • Fink M, Duprat F, Lesage F, et al. (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862

    PubMed  CAS  Google Scholar 

  • Goldstein SA, Miller C (1991) Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron 7:403–408

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol 67:621–638

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Yoshii M (1979) Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. J Physiol 292:251–265

    PubMed  CAS  Google Scholar 

  • Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta-subunits from rat brain. J Physiol 493:625–633

    PubMed  CAS  Google Scholar 

  • Hibino H, Horio Y, Inanobe A, et al. (1997) An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17:4711–4721

    PubMed  CAS  Google Scholar 

  • Ho K, Nichols CG, Lederer WJ, et al. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    PubMed  CAS  Google Scholar 

  • Horio Y, Hibino H, Inanobe A, et al. (1997) Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD95/SAP90. J Biol Chem 272:12885–12888

    PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–53

    PubMed  CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    PubMed  CAS  Google Scholar 

  • Huang CL, Slesinger PA, Casey PJ, Jan YN, Jan LY (1995) Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15:1133–1143

    PubMed  CAS  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gßy. Nature 391:803–806

    PubMed  CAS  Google Scholar 

  • Hugnot JP, Salinas M, Lesage F, et al. (1996) Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J 15:3322–3331

    PubMed  CAS  Google Scholar 

  • Iizuka M, Kubo Y, Tsunenari I, Pan CX, Akiba I, Kono T (1995) Functional characterization and localization of a cardiac-type inwardly rectifying K+ channel. Receptors Channels 3:299–315

    PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, et al. (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017

    PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, et al. (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236

    PubMed  CAS  Google Scholar 

  • Inagaki N, Tsuura Y, Namba N, et al. (1995) Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 270:5691–5694

    PubMed  CAS  Google Scholar 

  • Ishihara K, Hiraoka M, Ochi R (1996) The tetravalent organic cation spermine causes the gating of the IRK1 channel expressed in murine fibroblast cells. J Physiol 491:367–381

    PubMed  CAS  Google Scholar 

  • Ishihara K, Mitsuie T, Noma A, Takano M (1989) The Mg2+block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol 419:297–320

    PubMed  CAS  Google Scholar 

  • Isomoto S, Kondo C, Kurachi Y (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol 47:11–39

    PubMed  CAS  Google Scholar 

  • Isomoto S, Kondo C, Yamada M, et al. (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271:24321–24324

    PubMed  CAS  Google Scholar 

  • Ito M, Inanobe A, Horio Y, et al. (1996) Immunolocalization of an inwardly rectifying K+ channel, K(AB)-2 (Kir4.1), in the basolateral membrane of renal distal tubular epithelia. FEBS Lett 388:11–15

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1992) Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54:537–555

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    PubMed  CAS  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    PubMed  CAS  Google Scholar 

  • Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88

    PubMed  CAS  Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    PubMed  CAS  Google Scholar 

  • Kubo Y (1994) Towards the elucidation of the structural-functional relationship of inward rectifying K+ channel family. Neurosci-Res 21:109–117

    PubMed  CAS  Google Scholar 

  • Kubo Y (1996) Effects of extracellular cations and mutations in the pore region on the inward rectifier K+ channel IRK1. Receptors Channels 4:73–83

    PubMed  CAS  Google Scholar 

  • Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993a) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    CAS  Google Scholar 

  • Kubo Y, Iizuka M (1996) Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating. Biochem Biophys Res Commun 227:240–247

    PubMed  CAS  Google Scholar 

  • Kubo Y, Miyashita T, Kubokawa K (1996) A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification. J Biol Chem 271:15,729–15,735

    Google Scholar 

  • Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY (1993b) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806

    CAS  Google Scholar 

  • Kurachi Y (1995) G protein regulation of cardiac muscarinic potassium channel. Am J Physiol 269:C821–830

    PubMed  CAS  Google Scholar 

  • Larsson HP, Baker OS, Dhillon DS, Isacoff EY (1996) Transmembrane movement of the Shaker K+ channel S4. Neuron 16:387–397

    PubMed  CAS  Google Scholar 

  • Larsson O, Ammala C, Bokvist K, Fredholm B, Rorsman P (1993) Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic beta-cells. J Physiol 463:349–365

    PubMed  CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, et al. (1995) Molecular properties of neuronal Gprotein-activated inwardly rectifying K+ channels. J Biol Chem 270:28,660–28,667

    Google Scholar 

  • Lesage F, Guillemare E, Fink M, et al. (1996a) A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem 271:4183–4187

    CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, et al. (1996b) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011

    CAS  Google Scholar 

  • Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1230

    PubMed  CAS  Google Scholar 

  • Li M, Unwin N, Stauffer KA, Jan YN, Jan LY (1994) Images of purified Shaker potas-sium channels. Curr Biol 4:110–115

    PubMed  CAS  Google Scholar 

  • Liman ER, Hess P, Weaver F, Koren G (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353:752–756

    PubMed  CAS  Google Scholar 

  • Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    PubMed  CAS  Google Scholar 

  • Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16:859–867

    PubMed  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K’ channel in heart. Nature 325:321–326

    PubMed  CAS  Google Scholar 

  • Logothetis DE, Movahedi S, Satler C, Lindpaintner K, Nadal Ginard B (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K` channel result in corresponding decreases in gating charge. Neuron 8:531–540

    PubMed  CAS  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    PubMed  CAS  Google Scholar 

  • Lopez GA, Jan YN, Jan LY (1991) Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron 7:327–336

    PubMed  CAS  Google Scholar 

  • Lopez GA, Jan YN, Jan LY (1994) Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore. Nature 367:179–182

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore rgion on C-type inactivation of Shaker potassium channels. Receptors and Channels 1:61–71

    PubMed  CAS  Google Scholar 

  • Luchian T, Dascal N, Sessauer C, Platzer D, Davidson N, Lester HA, Schreibmayer W (1997) A C-terminal peptide of the GIRK1 subunits directly blocks the G protein-activated K’ channel (GIRK) expressed in Xenopus oocytes. J Physiol 505:13–22

    PubMed  CAS  Google Scholar 

  • Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271: 213–216

    PubMed  CAS  Google Scholar 

  • Mathur R, Zheng J, Yan Y, Sigworth FJ (1997) Role of the S3–S4 linker in Shaker potassium channel activation. J Gen Physiol 109:S3–S4

    PubMed  CAS  Google Scholar 

  • Matsuda H (1988) Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol 397:237–258

    PubMed  CAS  Google Scholar 

  • Matsuda H (1991) Effects of external and internal K+ ions on magnesium block of inwardly rectifying K’ channels in guinea-pig heart cells. J Physiol 435:83–99

    PubMed  CAS  Google Scholar 

  • Matsuda H, Matsuura H, Noma A (1989) Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs’ and Rb’ block in guinea-pig heart cells. J Physiol 413:139–157

    PubMed  CAS  Google Scholar 

  • Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+’. Nature 325:156–159

    PubMed  CAS  Google Scholar 

  • McDonald TV, Yu Z, Ming Z, et al. (1997) A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature 388:289–292

    PubMed  CAS  Google Scholar 

  • McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K’ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088

    PubMed  CAS  Google Scholar 

  • Namba N, Inagaki N, Gonoi T, Seino Y, Seino S (1996) Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2. FEBS Lett 386:211–214

    PubMed  CAS  Google Scholar 

  • Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191

    PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K’ channels in cardiac muscle. Nature 305:147–148

    PubMed  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    PubMed  CAS  Google Scholar 

  • Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310

    PubMed  CAS  Google Scholar 

  • Pascual JM, Shieh C-C, Kirsch GE, Brown AM (1995) K’ pore structure revealed by reporter cysteins at inner and outer surfaces. Neuron 14:1055–1063

    PubMed  CAS  Google Scholar 

  • Planells Cases R, Ferrer Montiel AV, Patten CD, Montal M (1995) Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K’ channel selectively modulates channel gating. Proc Natl Acad Sci USA 92:9422–9426

    PubMed  CAS  Google Scholar 

  • Rettig J, Heinemann SH, Wunder F, et al. (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294

    PubMed  CAS  Google Scholar 

  • Reuveny E, Slesinger PA, Inglese J, et al. (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 370:143–146

    PubMed  CAS  Google Scholar 

  • Roeper J, Sewing S, Zhang Y, Sommer T, Wanner SG, Pongs O (1998) NIP domain prevents N-type inactivation in voltage-gated potassium channels. Nature 391: 390–393

    PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, et al. (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    PubMed  CAS  Google Scholar 

  • Schonherr R, Heinemann SH (1996) Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol 493: 635–642

    PubMed  Google Scholar 

  • Schreibmayer W, Dessauer CW, Vorobiov D, et al. (1996) Inhibition of an inwardly rectifying K+ channel by G-protein alpha-subunits. Nature 380:624–627

    PubMed  CAS  Google Scholar 

  • Schwalbe RA, Wang Z, Bianchi L, Brown AM (1996) Novel sites of N-glycosylation in ROMK1 reveal potative pore-forming segment H5 as extracellular. J Biol Chem 271:24201–24206

    PubMed  CAS  Google Scholar 

  • Sheng M, Liao YJ, Jan YN, Jan LY (1993) Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature 365:72–75

    PubMed  CAS  Google Scholar 

  • Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852

    PubMed  CAS  Google Scholar 

  • Shyng SL, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    PubMed  CAS  Google Scholar 

  • Slesinger PA, Jan YN, Jan LY (1993) The S4–S5 loop contributes to the ion-selective pore of potassium channels. Neuron 11:S4–S5

    PubMed  CAS  Google Scholar 

  • Slesinger PA, Reuveny E, Jan YN, Jan L Y (1995) Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron 15:11451156

    Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Davies NW, Shelton PA, et al. (1994) A single aspartate residue is involved in both intrinsic gating and blockage by Mg’ of the inward rectifier, IRK1. J Physiol 478:1–6

    PubMed  CAS  Google Scholar 

  • Starkus JG, Kuschel L, Rayer MD, Heinemann SH (1997) Ion conduction through C-type inactivated Shaker channels. J Gen Physiol 110:539–550

    PubMed  CAS  Google Scholar 

  • Taglialatela M, Wible BA, Caporaso R, Brown AM (1994) Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264:844–847

    PubMed  CAS  Google Scholar 

  • Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    PubMed  CAS  Google Scholar 

  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    PubMed  CAS  Google Scholar 

  • Unwin, N. (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    PubMed  CAS  Google Scholar 

  • Varnum MD, Busch AE, Bond CT, Maylie J, Adelman JP (1993) The min K+ channel underlies the cardiac potassium current IKs and mediates species-specific responses to protein kinase C. Proc Natl Acad Sci USA 90:11,528–11,532

    Google Scholar 

  • Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA 84:2560–2564

    PubMed  CAS  Google Scholar 

  • Velimirovic BM, Gordon EA, Lim NF, Navarro B, Clapham DE (1996) The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K’ channel. FEBS Lett 379:31–37

    PubMed  CAS  Google Scholar 

  • Wang KW, Tai KK, Goldstein SA (1996) MinK residues line a potassium channel pore. Neuron 16:571–577

    PubMed  CAS  Google Scholar 

  • Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neurophermacology 35:805–829

    CAS  Google Scholar 

  • Wible BA, Taglialatela M, Ficker E, Brown AM (1994) Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371:246–249

    PubMed  CAS  Google Scholar 

  • Wischmeyer E, Karschin A (1996) Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K’ channels by direct protein kinase A-mediated phosphorylation. Proc Natl Acad Sci USA 93:5819–5823

    PubMed  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995) Control of rectification and permeation by residues in two distinct domains in an inward rectifier K` channel. Neuron 14:1047–1054

    PubMed  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995) Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15:1441–1447

    PubMed  CAS  Google Scholar 

  • Yellen G, Jurman ME, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K’ channel. Science 251:939–942

    PubMed  CAS  Google Scholar 

  • Yool AJ, Schwarz TL (1991) Alteration of ionic selectivity of a K’ channel by mutation of the H5 region. Nature 349:700–704

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubo, Y. (2000). Overview of Potassium Channel Families: Molecular Bases of the Functional Diversity . In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics