Skip to main content

P2X Receptors for ATP: Classification, Distribution, and Function

  • Chapter
Pharmacology of Ionic Channel Function: Activators and Inhibitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

  • 331 Accesses

Abstract

P2 receptors for ATP may be subclassified into ligand gated P2X receptor cation channels and metabotropic G-protein coupled P2Y receptors. ATP can be released from a variety of cell types including neurons (VON KUGELGEN and STARKE 1991; SILINSKY and REDMAN1996) and endothelial cells (YANGet al. 1994; BODIN and BURNSTOCK 1996) or as a result of local tissue damage and cell lysis (BURNSTOCK 1996). P2X receptors mediate fast synaptic transmission between neurons in the periphery (EVANS et al. 1992; GALLIGAN and BERTRAND 1995), the central nervous system (EDWARDS et al.1992), and between sympathetic nerves and smooth muscle (EVANS and SURPRENANT 1992). In addition P2X receptors are expressed in a variety of cell types ranging from immune cells to cochlear hair cells (BUELL et al. 1996a; RAYBOULD and HOUSLEY 1997). The aim of this chapter is to give an overview of the properties and distribution of cloned P2X receptors and how this corresponds to native P2X receptor phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assaf SY, Chung S (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    PubMed  CAS  Google Scholar 

  • Balcar VJ, Li Y, Killinger S, Bennett MR (1995) Autoradiography of P2X ATP receptors in rat brain. Br J Pharmacol 115:302–306

    PubMed  CAS  Google Scholar 

  • Barajas-Lopez C, Espinosa-Luna R, Gerzanich V (1994) ATP closes a potassium and opens a cationic conductance through different receptors in neurons of guinea pig submucous plexus. J Pharm Exp Ther 268:1396–1402

    CAS  Google Scholar 

  • Barajas-Lopez C, Huizinga JD, Collins SM, Gerzanich V, Espinosa-Luna R, Peres AL (1996) P2X-purinoceptors of myenteric neurones from the guinea-pig ileum and their unusual pharmacological properties. Br J Pharmacol 119:1541–1548

    PubMed  CAS  Google Scholar 

  • Benham CD (1989) ATP-activated channels gate calcium entry in single smooth muscle cells from rabbit ear artery. J Physiol 419:689–701

    PubMed  CAS  Google Scholar 

  • Benham CD,Tsien RW (1987) A novel receptor-operated Ca’-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    PubMed  CAS  Google Scholar 

  • Bland-Ward PA, Humphrey PPA (1997) Acute nociception mediated by hindpaw P2X receptor activation in the rat. Br J Pharmacol 122:365–371

    PubMed  CAS  Google Scholar 

  • Bo X, Simon J, Burnstock G, Barnard EA (1992) Solubilization and molecular size determination of the P2X purinoceptor from rat vas deferens. J Biol Chem 25:17581–17587

    Google Scholar 

  • Bo X, Fischer B, Maillard M, Jacobson KA, Burnstock G (1994) Comparative studies on the affinities of ATP derivatives for P2X-purinoceptors in rat urinary bladder. Br J Pharmacol 112:1151–1159

    PubMed  CAS  Google Scholar 

  • Bo X, Burnstock G (1994) Distribution of [3H] a,ß-ethyleneATP binding sites in rat brain and spinal cord. Neuroreport 5:1601–1604

    PubMed  CAS  Google Scholar 

  • Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Letts 375:129–133

    CAS  Google Scholar 

  • Bodin P, Burnstock G (1996) ATP-stimulated release of ATP by human endothelial cells. J. Card Pharmacol 27:872–875

    CAS  Google Scholar 

  • Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    PubMed  CAS  Google Scholar 

  • Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner H-P, Glowatzki E (1997) Desensitisation of the P2X2 receptor controlled by alternative splicing. FEBS Letts 404:294–298

    CAS  Google Scholar 

  • Buell G, Michel A, Lewis C, Collo G, Humphrey PPA, Surprenant A (1996a) P2X, receptor activation in HL60 cells. Blood 7:2659–2664

    Google Scholar 

  • Buell G, Lewis C, Collo G, North RA, Surprenant A (1996b) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62

    CAS  Google Scholar 

  • Buell G, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE (1998) Gene strucutre and chromosomal location of the human P2X7 receptor. Receptors and Channels (in press)

    Google Scholar 

  • Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605

    PubMed  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacol 36:1127–1139

    CAS  Google Scholar 

  • Chen C, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    PubMed  CAS  Google Scholar 

  • Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Tr Neurosci 15:396–402

    CAS  Google Scholar 

  • Chessel IP, Michel AD, Humphrey PPA (1997) Functional evidence for multiple purinoceptor subtypes in the rat medial vestibular nucleus. Neurosci 77:783–791

    Google Scholar 

  • Cloues R, Jones S, Brown DA (1993) Zn’ potentiates ATP-activated currents in rat sympathetic neurons. Pflugers Arch - Eur J Physiol 424:152–158

    CAS  Google Scholar 

  • Cloues R (1995) Properties of ATP-gated channels recorded from rat sympathetic neurons: voltage dependence and regulation by Zn’ ions. J Neurophysiol 73:312–319

    PubMed  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  • Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacol 36:1277–1283

    CAS  Google Scholar 

  • Cook S.P, Vulchanova L, Hargreaves KM, Elde RP, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387:505–508

    PubMed  CAS  Google Scholar 

  • Driessen B, Reimann W, Selve N, Friderichs E, Bultmann R (1994) Antinociceptive effect of intrathecally administered P2-purinoceptor antagonists in rats. Brain Res 666:182–188

    PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    PubMed  CAS  Google Scholar 

  • Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman G (1995) Site-directed muta-genesis of P2U purinoceptors. J Biol Chem 270:4185–4188

    PubMed  CAS  Google Scholar 

  • Evans RJ (1996) Single channel properties of ATP-gated cation channels (P2X receptors) heterologously expressed in Chinese hamster ovary cells. Neurosci Letts 212:212–214

    CAS  Google Scholar 

  • Evans RJ, Surprenant A (1992) XXX Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATE Br J Pharmacol 106:242–249

    CAS  Google Scholar 

  • Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    PubMed  CAS  Google Scholar 

  • Evans RJ, Kennedy C (1994) Characterization of P2-purinoceptors in the smooth muscle of the rat tail artery: a comparison between contractile and electrophysiological responses. Br J Pharmacol 113:853–860

    PubMed  CAS  Google Scholar 

  • Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol 48:178–183

    PubMed  CAS  Google Scholar 

  • Evans RJ, Surprenant A (1996) P2X receptors in autonomic and sensory neurons. Sem Neurosi 8:217–223

    CAS  Google Scholar 

  • Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497:413–422

    PubMed  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S, Dal Susio M, Collo G, Buell G, di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacol 36:1295–1301

    CAS  Google Scholar 

  • Fieber LA, Adams DJ (1991) Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J Physiol 434:239–256

    PubMed  CAS  Google Scholar 

  • Funk GD, Kanjhan R, Walsh C, Lipski J, Comer AM, Parkis MA, Housley GD (1997) P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis. J Neurosci 17:6325–6337

    PubMed  CAS  Google Scholar 

  • Galligan JJ, Bertrand PP (1995) ATP mediates fast synaptic potentials in enteric neurons. J Neurosci 14:7563–7571

    Google Scholar 

  • Garcia-Guzman M, Soto F, Laube B, Stuhmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Letts 388:123–127

    CAS  Google Scholar 

  • Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund P-E, Stuhmer W (1997a) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118

    CAS  Google Scholar 

  • Garcia-Guzman M, Stuhmer W, Soto F (1997b) Molecular characterization and phar-macological properties of the human P2X3 purinoceptor. Mol Br Res 47:59–66

    CAS  Google Scholar 

  • Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    PubMed  CAS  Google Scholar 

  • Housley GD, Greenwood D, Bennett T, Ryan AF (1995) Identification of a short form of the P2XR1-purinoceptor subunit produced by alternative splicing in the pituitary and cochlea. BBRC 212:501–508

    PubMed  CAS  Google Scholar 

  • Jahr CE, Jessell TM (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304:730–733

    PubMed  CAS  Google Scholar 

  • Kanjhan R, Housley GD, Thorne PR, Christie DL, Palmer DJ, Luo L, Ryan AF (1996) Localization of ATP-gated ion channels in cerebellum using P2X2R subunit-specific antisera. Neuroreport 7:2665–2669

    PubMed  CAS  Google Scholar 

  • Khakh BS, Humphrey PPA, Surprenant A (1995) Electrophysiological properties of P2X-purinoceptors in rat superior cervical, nodose and guinea-pig coeliac neurones. J Physiol 484:385–396

    PubMed  CAS  Google Scholar 

  • Khakh BS, Humphrey PPA, Henderson G (1997) ATP-gated cation channels (P2X purinoceptors) in trigeminal mesencephalic nucleus neurones of the rat. J Physiol 498:709–715

    PubMed  CAS  Google Scholar 

  • Kidd EJ, Grahames CBA, Simon J, Michel AD, Barnard EA, Humphrey PPA (1995) Localization of P2X purinoceptor transcripts in the rat nervous system. Mol Pharmacol 48:569–573

    PubMed  CAS  Google Scholar 

  • King BF, Ziganshin LE, Pintor J, Burnstock G (1996) Full sensitivity of P2X2 purinoceptor revealed by changing extracellular pH. Br J Pharmacol 117:1371–1373

    PubMed  CAS  Google Scholar 

  • Krishtal OA, Marchenko SM, Obukhov AG (1988a) Cationic channels activated by extracellular ATP in rat sensory neurons. Neurosci 3:995–1000

    Google Scholar 

  • Krishtal OA, Marchenko SM, Obukhov AG, Volkova TM (1988b) Receptors for ATP in rat sensory neurones: the structure-function relationship for ligands. Br J Pharmacol 95:1057–1062

    CAS  Google Scholar 

  • Le K, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Letts 418:195–199

    CAS  Google Scholar 

  • Lewis, C.J. (1998) Actions of ATP receptors and NPY receptors in the peripheral nervous system. Ph.D. thesis Flinders University, Australia.

    Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Li Z, Weight FF (1993) Zn’ potentiates excitatory action of ATP on mammalian neurons. Proc Natl Acad Sci USA 90:8264–8267

    PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Weight FF (1996) Proton potentiation of ATP-gated ion channel responses to ATP and Zn’ in rat nodose ganglion neurons. J Neurophysiol 76:3048–3058

    PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Weight FF (1998) Ethanol-induced inhibition of a neuronal P2X purinoceptor by an allosteric mechanism. Br J Pharmacol 123:1–3

    PubMed  CAS  Google Scholar 

  • Liu R, Sharom FJ (1997) Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter. Biochem 36:2836–2843

    CAS  Google Scholar 

  • Longhurst PA, Schwegel T, Folander K, Swanson R (1996) The human P2X, receptor: molecular cloning, tissue distribution, and localization to chromosome 17. Biochem Biophys Acta 1308:185–188

    PubMed  Google Scholar 

  • MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271:2879–2881

    PubMed  CAS  Google Scholar 

  • Michel A, Humphrey PPA (1993) Distribution and characterisation of [3H]a,P- methylene ATP binding sites in the rat. Naunyn Schmiedeberg’s Arch Pharmacol 348:608–617

    CAS  Google Scholar 

  • Michel AD, Humphrey PPA (1994) Effects of metal cations on [3H]a,ß-methylene ATP binding in rat vas deferens. Naunyn Schmiedeberg’s Arch Pharmacol 350:113–122

    CAS  Google Scholar 

  • Michel AD, Miller KJ, Lundstrom K, Buell G, Humphrey PPA (1997) Radiolabeling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors. Mol Pharmacol 51:524–532

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Fujimori K, Takanaka A, Inoue K (1990) An ATP-activated conductance in phaeochromocytoma cells and its suppression by extracellular calcium. J Physiol 428:257–272

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Fujimori K, Takanaka A, Inoue K (1991) Comparison of adenosine triphosphate-and nicotine-activated inward currents in rat phaeochromocytoma cells. J Physiol 434:647–660

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Hess P (1993) Block by calcium of ATP-activated channels in pheochromocytoma cells. J Gen Physiol 101:377–392

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Liu M, Inoue K, Ohno Y (1997) Potent inhibition by trivalent cations of ATP-gated channels. Eur J Pharmacol 325:237–243

    PubMed  CAS  Google Scholar 

  • Naumov AP, Kaznacheyeva EV, Kiselyov KI, Kuryshev YA, Mamin AG, Mozhayeva GN (1995) ATP-activated inward current and calcium permeable channels in rat macrophage plasma membranes. J Physiol 486:323–337

    PubMed  CAS  Google Scholar 

  • Neuhaus R, Reber BFX, Reuter H (1991) Regulation of bradykinin-and ATP-activated Ca’ permeable channels in rat pheochromocytoma (PC12) cells. J Neurosci 11:3984–3990

    PubMed  CAS  Google Scholar 

  • North RA (1996) Families of ion channels with two hydrophobic segments. Curr Opinions Cell Biol 8:474–483.

    CAS  Google Scholar 

  • Radford KM, Virginio C, Surprenant A, North RA, Kawashima E (1997) Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J Neurosci 17:6529–6533

    PubMed  CAS  Google Scholar 

  • Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997a) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 18:3446–3454

    Google Scholar 

  • Rassendren F, Buell G, Virginio C, Collo G, North RA, Surprenant A (1997b) The permeabilizing ATP receptor, P2X7. J Biol Chem 272:5482–5486

    CAS  Google Scholar 

  • Raybould NP, Housley GD (1997) Variation in expression of the outer hair cell P2X receptor conductance along the guinea-pig cochlea. J Physiol 498:717–727

    PubMed  CAS  Google Scholar 

  • Ren L, Burnstock G (1997) Prominent sympathetic purinergic vasoconstriction in the rabbit splenic artery: potentiation by 2,2’-pyridylisatogen tosylate. Br J Pharmacol 120:530–536

    PubMed  CAS  Google Scholar 

  • Robertson SJ, Rae MG, Rowan EG, Kennedy C (1996) Characterization of a P2Xpurinoceptor in cultured neurones of the rat dorsal root ganglia. Br J Pharmacol 118:951–956

    PubMed  CAS  Google Scholar 

  • Rogers M, Dani JA (1995) Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys J 68:501–506

    PubMed  CAS  Google Scholar 

  • Schachter JB, Harden TK (1997) An examination of deoxyadenosine 5’(a-thio)triphosphate as a ligand to define P2Y receptors and its selectivity as a low potency partial agonist of the P2Y1 receptor. Br J Pharmacol 121:338–344

    PubMed  CAS  Google Scholar 

  • Schneider P, Hopp HH, Isenberg G (1991) Ca’ influx through ATP-gated channels increments [Cal, and activated Ica in myocytes from guinea-pig urinary bladder. J Physiol 440:479–496

    PubMed  CAS  Google Scholar 

  • Seguela P, Haghighi A, Soghomonian J, Cooper E (1996) A novel neuronal P2X ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455

    PubMed  CAS  Google Scholar 

  • Shen K, North RA (1993) Excitation of rat locus coeruleus neurons by adenosine 5’-triphosphate: ionic mechanis and receptor characterization. J Neurosci 13:894–899

    PubMed  CAS  Google Scholar 

  • Silinsky E.M, Redman RS (1996) Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. J Physiol 492:815–822

    PubMed  CAS  Google Scholar 

  • Simon J, Kidd EJ, Smith FM, Chessel IP, Murrell-Lagnado R, Humphrey PPA, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248

    PubMed  CAS  Google Scholar 

  • Somasundaram B, Mahaut-Smith MP (1994) Three cation influx currents activated by purinergic receptor stimulation in rat megakaryocytes. J Physiol 480:225–231

    PubMed  CAS  Google Scholar 

  • Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996a) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688

    CAS  Google Scholar 

  • Soto F, Garcia-Guzman M, Karschin C, Stuhmer W (1996b) Cloning and tissue distribution of a novel P2X receptor from rat brain. BBRC 223:456–460

    CAS  Google Scholar 

  • Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840

    PubMed  CAS  Google Scholar 

  • Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. TINS 18:224–229

    PubMed  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor P2X7. Science 272:735–738

    PubMed  CAS  Google Scholar 

  • Tanaka J, Murate M, Wang C, Seino S, Iwanaga T (1996) Cellular distribution of the P2X4 ATP receptor mRNA in the brain and non-neuronal organs of rats. Arch Histol Cytol 59:485–490

    PubMed  CAS  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222:9–19

    PubMed  CAS  Google Scholar 

  • Trezise DJ, Bell NJ, Kennedy I, Humphrey PPA (1994) Effects of divalent cations on the potency of ATP and related agonists in rat isolated vagus nerve: implications for P2 purinoceptor classification. Br J Pharmacol 113:463–470

    PubMed  CAS  Google Scholar 

  • Trezise DJ, Michel AD, Grahames CBA, Khakh BS, Surprenant A, Humphrey PPA (1995) The selective P2X purinoceptor agonist, beta,gamma-methylene-adenosine 5’-triphosphate, discriminates between smooth muscle and neuronal P2X purinoceptors. Naunyn Schmiedeberg’s Arch Pharmacol 351:603–609

    CAS  Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extraxcellular ATP. Nature 371:516–519

    PubMed  CAS  Google Scholar 

  • Valera S, Talabot F, Evans RJ, Gos A, Antonarakis SE, Morris MA, Buell G (1995) Characterization and chromosomal localization of a human P(2X) receptor from the urinary bladder. Receptors and Channels 3:283–289

    PubMed  CAS  Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacol 36:1285–1294

    CAS  Google Scholar 

  • von Kugelgen I, Bultmann R, Starke K (1989) Effects of suramin and a,ß-methylene ATP indicate noradrenaline-ATP co-transmission in the response of the mouse vas deferens to single low frequency pulses. Naunyn Schmiedeberg’s Arch Pharmacol 340:760–763

    Google Scholar 

  • von Kugelgen I, Starke K (1991) Release of noradrenaline and ATP by electrical stimulation and nicotine in guinea-pig vas deferens. Naunyn Schmiedeberg’s Arch Pharmacol 344:419–429

    Google Scholar 

  • Vulchanova L, Arvidsson U, Riedl M, Buell G, Surprenant A, North RA, Elde RP (1996) Differential distribution of two ATP-gated ion channels (P2X receptors) determined by immunohistochemistry. Proc Natl Acad Sci USA 93:8063–8067

    PubMed  CAS  Google Scholar 

  • Vulchanova L, Riedl M, Shuster SJ, Buell G, Surprenant A, North RA, Elde RP (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacol 36:1229–1242

    CAS  Google Scholar 

  • Wang CW, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor widely expressed in brain and peripheral tissues including various endocrine tissues. BBRC 220:196–202

    PubMed  CAS  Google Scholar 

  • Werner P, Seward EP, Buell G, North RA (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci USA 93:15485–15490

    PubMed  CAS  Google Scholar 

  • Wildman SS, King BF, Burnstock G (1997) Potentiation of ATP-responses at recombinant P2X2 receptor by neurotransmitters and related substances. Br J Pharmacol 120:221–224

    PubMed  CAS  Google Scholar 

  • Wiley JS, Chen R, Wiley MJ, Jamieson GP (1992) The ATP4- receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Arch Biochem Biophys 292:411–418

    PubMed  CAS  Google Scholar 

  • Wright JM, Li C (1995) Zn2+ potentiated steady state ATP activated currents in rat nodose ganglion neurons by increasing the burst duration of a 35 pS channel. Neurosci Letts 193:177–180

    CAS  Google Scholar 

  • Yang SY, Cheek DJ, Westfall DP, Buxton ILO (1994) Purinergic axis in cardiac blood vessels. Cire Res, 74:401–407

    CAS  Google Scholar 

  • Zhou X, Galligan JJ (1996) P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol 496:719–729

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, R.J. (2000). P2X Receptors for ATP: Classification, Distribution, and Function. In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics