Skip to main content

Sodium Channel Blockers and Activators

  • Chapter
  • 336 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

Abstract

Impulse conduction in brain and peripheral nerves, skeletal and cardiac muscle is sustained by transient increases in membrane permeability to sodium ions. This function resides in a family of integral membrane proteins, the voltage-gated Na+ channels. Sodium channel blockers are an important class of therapeutic agents as anticonvulsants, local anesthetics, and antiarrhythmic drugs. The blockers have also proved to be important tools for structure-function studies of the Na+ channel. The activators of Na+ channels are potentially useful tools to study the mechanism of activation and inactivation. They may also form the basis for the development of novel positive inotropic agents and insecticides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert LA, Fozzard HA, Hanck DA, Makielski JC (1989) Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257:H79¡ªH84

    Google Scholar 

  • Anno T, Hondeghem LM (1990) Interaction of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery Circ Res 66:789–803

    CAS  Google Scholar 

  • Armstrong CM, Bezanilla F, Rogas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    Article  PubMed  CAS  Google Scholar 

  • Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248–251

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, Robinson KA (1975) Chemical modification of crab nerves can make them insensitive to the local anaesthetics tetrodotoxin and saxitoxin. Nature 257:412414

    Google Scholar 

  • Balser JR, Nuss HB, Orias DW, Johns DC, Marban E, Thomaselli GF, Lawrence JH (1996) Local anesthetics as effectors of allosteric gating. J Clin Invest 98:28742886

    Google Scholar 

  • Barber MJ, Wendt DJ, Starmer CF, Grant AO (1992) Blockade of cardiac sodium channels. Competition between the permeant ion and antiarrhythmic drugs. J Clin Invest 90:368–381

    Article  PubMed  CAS  Google Scholar 

  • Barnes S, Hille B (1988) Veratridine modifies open sodium channels. J Gen Physiol 91:421–443

    Article  PubMed  CAS  Google Scholar 

  • Baruscotti M, Westenbroek R, Catterall WA, Difrancesco D, Robinson WA (1997) The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. J Physiol 4983:641–648

    Google Scholar 

  • Bellet S, Hamdan G, Somlyo A, Lara R (1959a) A reversal of cardiotoxic effects of procainamide. Am J Med Sci 237:177–189

    Article  Google Scholar 

  • Bellet S, Hamdan G, Somlyo A, Lara R (1959b) The reversal of cardiotoxic effects of quinidine by molar sodium lactate: an experimental study. Am J Med Sci 237:165–176

    Article  Google Scholar 

  • Benndorf K (1994) Properties of single cardiac Na channels at 35 ¡ãC. J Gen Physiol 104:801–820

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB, Woosley RL, Hondeghem LM (1988) Competition between lidocaine and one of its metabolites, glycylxylidide for cardiac sodium channels. Circulation 78:692–700

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB, Valenzuela C, Chen L-Q, Kallen RG (1995) On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Circ Res 77:584–592

    Article  PubMed  CAS  Google Scholar 

  • Benz I, Kohlhardt M (1991) Responsiveness of cardiac Na’ channels to antiarrhythmic drugs: the role of inactivation. J Membrane Biol 122:267–278

    Article  CAS  Google Scholar 

  • Benz I, Kohlhardt M (1992) Differential response of DPI-modified cardiac Na’ channels to antiarrhythmic drugs: no flicker blockade by lidocaine. J Membrane Biol 126:257–263

    Article  CAS  Google Scholar 

  • Buggisch D, Isenberg G, Ravens U, Scholtysik G (1985) The role of sodium channels in the effects of the cardiotonic compound DPI 201–106 on contractility and membrane potentials in isolated mammalian heart preparations. Europ J Pharm 118:201–106

    Article  CAS  Google Scholar 

  • Cahalan M (1980) Molecular properties of sodium channels in excitable membranes. In: Cotman CW, Poste G, Nicolson GL (eds) The cell surface and neuronal function. Elsevier/North-Holland Biomedical Press, pp 1–47

    Google Scholar 

  • Cahalan MD, Almers W (1979) Interaction between quaternary lidocaine, the sodium channel gates and tetrodotoxin. Biophys J 27:39–56

    Article  PubMed  CAS  Google Scholar 

  • Campbell TJ (1983) Kinetics of onset of rate-dependent effects of class 1 antiarrhythmic drugs are important in determining their effects on refractoriness in guinea pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res 17:344–352

    Article  PubMed  CAS  Google Scholar 

  • Campbell TJ, Vaughan Williams EM (1983) Voltage-and time-dependent depression of maximum rate of depolarization of guinea-pig ventricular action potential by two new antiarrhythmic drugs, flecainide and lorcainide. Cardiovasc Res 17: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet E, Nilius B, Vereecke J (1989) Properties of the block of single Na+ channels in guinea-pig ventricular myocytes by the local anesthetic penticainide. J Physiol 409:241–262

    PubMed  CAS  Google Scholar 

  • Catterall WA, Coppersmith J (1981) Pharmacological properties of sodium channels in cultured rat heart cells. Mol Pharmacol 20:533–542

    PubMed  CAS  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72:515–548

    Google Scholar 

  • Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit purkinje fibres: interaction between toxin binding and channel gating. J Gen Physiol 78:383–411

    Article  PubMed  CAS  Google Scholar 

  • Cohen SA, Barchi RL (1993) Voltage-dependent sodium channels. Internat Rev Cytol 137C:55–103

    CAS  Google Scholar 

  • Coronado R, Miller C (1979) Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature 280:807–810

    Article  CAS  Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins the discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    PubMed  CAS  Google Scholar 

  • Dudley SC Jr, Todt H, Lipkind G, Fozzard HA (1995) A m-conotoxin-insensitive Na’ channel mutant: possible localization of a binding site at the outer vestibule. Biophysical J 69:1657–1665

    Article  CAS  Google Scholar 

  • El-Sherif N, Fozzard HA, Hanck DA (1992) Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATX11. Circ Res 70:285–301

    Article  PubMed  CAS  Google Scholar 

  • Fozzard H, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiolog Rev 76:887926

    Google Scholar 

  • Gingrich KJ, Beardsley D, Yue DT (1993) Ultra-deep blockade of Na+ channels by a quaternary ammonium ion: catalysis by a transition-intermediate state? J Physiol 471:319–341

    PubMed  CAS  Google Scholar 

  • Grant AO, Strauss LJ, Wallace AG, Strauss HC (1982) The influence of pH on the electrophysiological effects of lidocaine in guinea pig ventricular myocardium. Circ Res 47:542–550

    Article  Google Scholar 

  • Grant AO, Starmer CF, Strauss HC (1984) Antiarrhythmic drug action. Blockade of the inward sodium current. Circ Res 55:427–439

    Article  PubMed  CAS  Google Scholar 

  • Grant AO, Dietz MA, Gilliam FR III, Starmer CF (1989) Blockade of cardiac sodium channels by lidocaine: single channel analysis. Circ Res 65:1247–1262

    Article  PubMed  CAS  Google Scholar 

  • Grant AO, Wendt DJ, Zilberter Y, Starmer CF (1993) Kinetics of interaction of disopyramide with the cardiac sodium channel: fast dissociation from open channels at normal rest potentials. J Membrane Biol 136:199–214

    Article  CAS  Google Scholar 

  • Grant AO, John JE, Nesterenko VV, Starmer CF (1996) The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels. Molec Pharmacol 50:1643–1650

    CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Wang JH (1972) Solubilization of a specific tetrodotoxin-binding com-ponent from garfish olfactory nerve membrane. Biochemistry 11:4565–4569 Henderson R, Ritchie JM, Strichartz GR (1973) The binding of labelled saxitoxin to the sodium channels in nerve membranes. J Physiol 235:4565–4569

    Google Scholar 

  • Henderson R, Ritchie JM, Strichartz GR (1974) Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. Proc Natl Acad Sci 71:3936–3940

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1977a) The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol 69:475–496

    Article  Google Scholar 

  • Hille B (1977b) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Holloway SF, Salgado VL, Wu CH, Narahashi T (1989) Kinetic properties of single sodium channels modified by fenvalerate in mouse neuroblastoma cells. Pflugers Arch 414:613–621

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim et Biophys Acta 472:373–398

    Article  CAS  Google Scholar 

  • Horn R, Patlak J, Stevens CF (1981) The effect of tetramethylammonium on single sodium channel currents. Biophys J 36:321–327

    Article  PubMed  CAS  Google Scholar 

  • Isom LL, De Jongh KS, Patton DE, Reber BFX, Oxford J, Charbonneau H, Walsh K, Goldin, AL, Catterall WA (1992) Primary structure and functional expression of the b1 subunit of the rat brain sodium channel. Science 256:839–842

    Article  PubMed  CAS  Google Scholar 

  • Khodorov BI (1985) Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog Biophys Molec Biol 45:57–68

    Article  CAS  Google Scholar 

  • Kirsch GE, Skattebol A, Possani LD, Brown AM (1989) Modification of Na channel gating by an a scorpion toxin from Tityus serrulatus. J Gen Physiol 93:67–83

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Wu CH, Yoshii M, Narahashi T, Nakamura H, Kobayashi J, Ohizumi Y (1986) Preferential block of skeletal muscle sodium channels by geographutoxin II, a new peptide toxin from Conus geographus. Pflugers Arch 407:241–243

    Article  PubMed  CAS  Google Scholar 

  • Kohlhardt M, Froebe U, Herzig JW (1986) Modification of single cardiac Na’ channels by DPI201–106. J Membrane Biol 89:201–106

    Article  CAS  Google Scholar 

  • Kohlhardt M, Fichtner H (1988) Block of single cardiac Na’ channels by antiarrhythmic drugs: the effects of amiodarone, propafenone and diprafenone. J Membrane Biol 102:105–119

    Article  CAS  Google Scholar 

  • Kohlhardt M, Fichtner H, Froebe U, Herzig JW (1989) On the mechanism of drug-induced blockade of Na’ current: interaction of antiarrhythmic compounds with DPI-modified single cardiac Na+ channels. Circ Res 64:867–881

    Article  PubMed  CAS  Google Scholar 

  • Koumi S, Sato R, Katori R, Hisatome I, Nagasawa K, Hayakawa H (1992) Sodium channel states control binding and unbinding behaviour of antiarrhythmic drugs in cardiac myocytes from the guinea pigCardiovasc Res 26:1199–1205

    CAS  Google Scholar 

  • Kuo C-C (1994) Bean BP Na+ channels must deactivate to recover from inactivation. Neuron 12:819–829

    Article  PubMed  CAS  Google Scholar 

  • Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66:1–13

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wendt DJ, Grant AO (1994) Relationship between structure and sodium channel blockade by lidocaine and its amino-alkyl derivatives. J Cardiovasc Pharmacol 24:803–812

    Article  PubMed  CAS  Google Scholar 

  • Makita N, Bennett PB Jr, George AL Jr (1994) Voltage-gated Na’ channel bl subunit mRNA expressed in adult human skeletal muscle, heart and brain is encoded by a single gene. J Biolog Chem 269:7571–7578

    CAS  Google Scholar 

  • Matsuki N, Quandt FN, Ten Eick RE, Yeh JZ (1984) Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther 228:523–530

    PubMed  CAS  Google Scholar 

  • McDonald TV, Courtney KR, Clusin WT (1989) Use-dependent block of single chan-nels by lidocaine in guinea pig ventricular myocytes. Biophys J 55:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catteral WA (1994) A mutation in segment IVSA disrupts fast inactivation of sodium channels. Proc Natl Acad Sci 91:12346–12350

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Garber SS, Miller C (1984a) Batrachotoxin-activated Na+ channels in planar lipid bilayers. J Gen Physiol 84:665–686

    Article  Google Scholar 

  • Moczydlowski E, Hall S, Garber SS, Strichartz GS, Miller C (1984b) Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins. J Gen Physiol 84:687–704

    Article  Google Scholar 

  • Moczydlowski E, Olivera BM, Gray WR, Strichartz GR (1986) Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and m-conotoxins. Proc Natl Acad Sci 83:5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965–974

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1998a) Toxins that modulate the sodium channel gating mechanism. Ann NY Acad Sci 479:133–151

    Article  Google Scholar 

  • Narahashi T (1998b) Chemical modulation of sodium channels. In: Soria B, Cea V (eds) Ion channel pharmacology. Oxford University Press pp 23–73

    Google Scholar 

  • Nilius B, Benndorf K, Markwardt F (1987) Effects of lidocaine on single cardiac sodium channels. J Mol Cell Cardiol 19:865–874

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Vereecke J, Carmeliet E (1989) Different conductance states of the bursting Na channel in guinea-pig ventricular myocytes. Pflugers Arch 413:242–248

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Suzuki S, Numa S, Stuhmer WA (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett 259:213–216

    Article  PubMed  CAS  Google Scholar 

  • Nuss HB, Chiamvimonvat N, Perez-Garcia MT, Tomaselli GF, Marban E (1995) Functional association of the bl subunit with human cardiac (hH1) and rat skeletal muscle (ml) sodium channel a subunits expressed in Xenopus oocytes. J Gen Physiol 106:1171–1191

    Article  PubMed  CAS  Google Scholar 

  • Patton DE, West JW, Catterall WA, Goldin AL (1992) Amino acid residues required for fast Na+-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci 89:10905–10909

    Article  PubMed  CAS  Google Scholar 

  • Pentel P, Benowitz N (1984) Efficacy and mechanism of action of sodium bicarbonate in the treatment of desipramine toxicity in rats. J Pharmacol Exp Ther 230:12–19

    PubMed  CAS  Google Scholar 

  • Quandt FN, Narahashi T (1982) Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci 79:6732–6736

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catteral WA (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265:17241728

    Google Scholar 

  • Ragsdale DS, Mephee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci USA 93:9270–9275

    Article  PubMed  CAS  Google Scholar 

  • Romey G, Quast U, Pauron D, Frelin C, Renaud JF, Lazdunski M (1987) Na+ channels as sites of action of the cardioactive agent DPI201–106 with agonist and antagonist enantiomers. Proc Natl Acad Sci 84:201–106

    Article  PubMed  CAS  Google Scholar 

  • Satin J, Kyle JW, Chen M, Bell P, Cribbs LL, Fozzard HA, Rogart R B (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256:1202–1205

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Ishida Y, Wakamatsu K, Kato R, Honda H, Ohizumi Y, Nakamura H, Ohya M, Lancelin J-M, Kohda D, Inagaki F (1991) Active site of m-Conotoxin GIIIA, a peptide blocker of muscle sodium channels. J Biol Chem 266:16,989–16,991

    Google Scholar 

  • Schild L, Moczydlowski E (1991) Competitive binding interaction between Znz+ and saxitoxin in cardiac Na’ channels. Biophys J 59:523–5370

    Article  PubMed  CAS  Google Scholar 

  • Scholtysik G, Saltzmann R, Berthold R, Herzig JW, Quast U, Markstein R (1985) DPI 201–106, a novel cardioactive agent. Combination of cAMP-independent positive inotropic, negative chronotropic, action potential prolonging and coronary dilatory properties. Naunyn-Schmied Arch Pharmacol 985:201–106

    Google Scholar 

  • Sheldon RS, Cannon NJ, Duff HJ (1987) A receptor for type 1 antiarrhythmic drugs associated with rat cardiac sodium channels. Circ Res 61:492–497

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RS, Hill RJ,Taouis M, Wilson LM (1991) Aminoalkyl structural requirements for interaction of lidocaine with the class I antiarrhythmic drug receptor on rat cardiac myocytes. Molec Pharmacol 39:609–614

    CAS  Google Scholar 

  • Shrager P, Profera C (1973) Inhibition of the receptor for tetrodotoxin in nerve membranes by reagents modifying carboxyl groups. Biochimica et Biophysica Acta 318:141–146

    Article  PubMed  CAS  Google Scholar 

  • Sigworth FJ, Spaulding BC (1980) Chemical modification reduces the conductance of sodium channels in nerve. Nature 283:293–295

    Article  PubMed  CAS  Google Scholar 

  • Sivilotti L, Okuse K, Akopian AN, Moss S, Wood JN (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett 409:49–52

    Article  PubMed  CAS  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  PubMed  CAS  Google Scholar 

  • Song J-H, Narahashi T (1995) Selective block of tetramethrim-modified sodium chan-nels by (¡À)-a-tocopherol (vitamin E). J Pharm Exp Ther 275:1402–1411

    CAS  Google Scholar 

  • Song J-H, Narahashi T (1996) Modulation of sodium channels of rat cerebellar purk-inje neurons by the pyrethroid tetramethrin. J Pharm Exp Ther 277:445–453

    CAS  Google Scholar 

  • Spalding BC (1980) Properties of toxin-resistant sodium channels produced by chem-ical modification in frog skeletal muscle. J Gen Physiol 305:485–500

    CAS  Google Scholar 

  • Starmer CF, Grant AO, Strauss HC (1984) Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46:15–27

    Article  PubMed  CAS  Google Scholar 

  • Starmer CF, Grant AO (1985) Phasic ion channel blockade: a kinetic and parameterestimation procedure. Mol Pharmacol 28:348–356

    PubMed  CAS  Google Scholar 

  • Starmer CF, Nesterenko VV, Gilliam FR, Grant AO (1990) Use of ionic currents to identify and estimate parameters in models of channel blockade. Am J Physiol 259:H626–H634

    PubMed  CAS  Google Scholar 

  • Starmer CF, Nesterenko VV, Undrovinas AI, Grant AO, Rosenshtraukh LV (1991) J Mol Cell Cardiol 23 Suppl 1:73–83

    Google Scholar 

  • Stephan MM, Potts JF, Agnew WS (1994) The mI skeletal muscle sodium channel: mutation E403Q eliminates sensitivity to tetrodotoxin but not to m-conotoxins GIIIA and GIIIB. J Membrane Biol 137:1–8

    Article  CAS  Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57

    Article  PubMed  CAS  Google Scholar 

  • Stuehmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S (1993) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  Google Scholar 

  • Sunami A, Dudley SC Jr, Fozzard HA (1997) Sodium channel selectivity filter regu-lates antiarrhythmic drug binding. Proc Natl Acad Sci 94:14,126–14,131

    Google Scholar 

  • Sutro JB (1986) Kinetics of veratridine action on Na channels of skeletal muscle. J Gen Physiol 87:1–24

    Article  PubMed  CAS  Google Scholar 

  • Terlau H, Heinemann SH, Stuehmer W, Pusch M, Conti F, Imato K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93–96

    Google Scholar 

  • Thomsen WJ, Catterall WA (1989) Localization of the receptor site for a-scorpion toxins by antibody mapping: Implications for sodium channel topology. Proc Natl Acad Sci 86:10161–10165

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela C, Snyders DJ, Bennett PB, Tamargo J, Hondeghem LM (1995) Stereoselective block of cardiac sodium channels by bupivaciaine in guinea pig ventricular myocytes. Circulation 92:3014–3024

    Article  PubMed  CAS  Google Scholar 

  • Vassilev P, Scheuer T, Catterall WA (1989) Inhibition of single sodium channels by a site-directed antibody. Proc Natl Acad Sci USA 86:8147–8151

    Article  PubMed  CAS  Google Scholar 

  • Von Dach B, Streuli RA (1988) Lidocainbehandlung einer Vergiftung mit eibennadeln (Taxus baccata I) Schweiz Med Wochenschript 118:1113–1116

    Google Scholar 

  • Wang GK, Brodwick MS, Eaton DC (1987) Inhibition of sodium currents by local anesthetics in Chloramine-T-treated squid axons. J Gen Physiol 89:645–667

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT (1995a) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Human Molec Genetics 4:1603–1607

    Article  Google Scholar 

  • Wang Q, Shen J, Splawski I, Atkinson D, Li A, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995b) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811

    Article  Google Scholar 

  • Wasserstrom JA, Liberty K, Kelly J, Santucci P, Myers M (1993) Modification of cardiac Na’ channels by batrachotoxin: effects on gating, kinetics and local anesthetic binding. Biophys J 65:386–395

    Article  PubMed  CAS  Google Scholar 

  • Weiss RE, Horn R (1986) Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science 233:361–364

    Article  PubMed  CAS  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic aminoacid residues required for fast Na’-channel inactivation. Proc Natl Acad Sci 89:10910–10914

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb DC, Gilliam FR III, Starmer CF, Grant AO (1989) Marked QRS complex abnormalities and sodium channel blockade by propoxyphene reversed with lidocaine. J Clin Invest 84:L1629–1643

    Article  Google Scholar 

  • White MM, Chen L, Kleinfield R, Kallen RG, Barchi RL (1991) SkM2, a Na’ channel cDNA clone from denervated skeletal muscle, encodes a tetrodotoxin-sensitive Na+ channel. Molec Pharmacol 39:604–608

    CAS  Google Scholar 

  • Wright SN, Wang S-Y, Kallen RG, Wang GK (1997) Differences in steady-state inactivation between channel isoforms affect local anesthetic binding affinity. Biophysical J 73:779–788

    Article  CAS  Google Scholar 

  • Wynn J, Fingerhood M, Keefe D, Maza S, Miura D, Somberg JC (1986) Refractory ventricular tachycardia with flecainide. Am Heart J 112:174–175

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D (1986) Dynamics of strychnine block of single sodium channels in bovine chromaffin cells. J Physiol 370:395–407

    PubMed  CAS  Google Scholar 

  • Zaborovskaya LD, Khodorov BI (1984) The role of inactivation in the cumulative blockage of voltage-dependent sodium channels by local anesthetics and antiarrhythmics. Gen Physiol Biophys 3:517–520

    PubMed  CAS  Google Scholar 

  • Zamponi GW, Doyle DD, French RJ (1993a) Fast lidocaine block of cardiac and skeletal muscle sodium channels: one site with two routes of access. Biophys J 65:80–90

    Article  Google Scholar 

  • Zamponi GW, Doyle DD, French RJ (1993b) State-dependent block underlies the tissue specificity of lidocaine action on batrachotoxin-activated cardiac sodium channels. Biophys J 65:91–100

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, A.O. (2000). Sodium Channel Blockers and Activators. In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics