Skip to main content

Structure and Function of ATP-Sensitive K+ Channels

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

Abstract

ATP-sensitive K+channels(KATPchannels) were first described by NOMA (1983) in cardiac muscle using the patch clamp technique. KATP channels are characterized by channel inhibition with an increase in intracellular ATP concentration and stimulation with an increase in intracellular MgADP concentration (DUNNE and PETERSEN 1986; KAKEI et al. 1986; MISLER et al. 1986). KATP channels are also found in many other tissues including pancreatic ß-cells (COOK and HALES 1984; ASHCROFT and RORSMAN 1989), skeletal muscles (DAVIES et al. 1991), neurons, kidney, and various smooth muscles (KURIYAMA et al. 1995; QUAYLE et al. 1997), and also in mitochondria (INOUE et al. 1991; PAUCEK et al. 1992). In several tissues, however, the presence of KATPATP channels has not been shown directly by electrophysiology, but by other physiological and pharmacological methods. For example, the presence of KATPATP channels in brain (GRIGG and ANDERSON 1989; POLITI and ROGAWSKI 1991; MURPHY and GREENFIELD 1991; JIANG et al. 1992; TROMBA et al. 1992) and vascular tissues (VON BECKERATH et al. 1991; SILBERBERG and VAN BREEMEN 1992: DART and STANDEN 1995; KATNIK and ADAMS 1995) has been shown by the increase of K+ conductance in energy depleting conditions and pharmacological modifications of the response. Similarly, an increase in K+ conductance after the addition of KATPATP channel openers such as diazoxide or cromakalim (Fig. 1), or a decrease in conductance by the addition of KATPatp channel blockers, sulfonylureas such as glibenclamide or tolbutamide (Fig. 1) which are widely used in the treatment of non-insulin dependent diabetes mellitus (NIDDM), has also revealed the presence of KATPatp channels in brain and various smooth muscle cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement IV JP, Boyd AE III, González G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the ß cell high affinity sulfonylurea receptor: A regulator of insulin secretion. Science 268: 423--426

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Bryan L, Clement IV JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    PubMed  CAS  Google Scholar 

  • Allard B, Lazdunski M (1992) Nucleotide diphosphates activate the ATP-sensitive potassium channel in mouse skeletal muscle. Pflügers Arch 422:185–192

    Article  PubMed  CAS  Google Scholar 

  • Allard B, Lazdunski M (1993) Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Eur J Pharmacol 236:419–426

    Article  PubMed  CAS  Google Scholar 

  • Ämmälä C, Moorhouse A, Ashcroft FM (1996) The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. J Physiol (Lond) 494:709–714

    Google Scholar 

  • Arch JRS, Buckle DR, Bumstead J, Clarke GD, Taylor JF, Taylor SG, (1988) Evaluation of the potassium channel activator cromakalim (BRL 34915) as a bronchodilator in the guinea-pig: comparison with nifedipine. Br J Pharmacol 95:763–770

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic /3-cells. Nature 312:446–448

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic /3-cell. Prog Biophys Molec Biol 54:87–143

    Article  CAS  Google Scholar 

  • Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive potassium channels. Trends Neurosci (in press)

    Google Scholar 

  • Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K’ channels. Pflügers Arch 415:479–483

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Jolley R, Davies NW (1997) Kinetic analysis of the inhibitory effect of glibenclamide on KATP channels of mammalian skeletal muscle. J Membr Biol 155: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Beech DJ, Zhang H, Nakao K, Bolton TB (1993) Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br J Pharmacol 110:583–590

    Article  PubMed  CAS  Google Scholar 

  • Belles B, Hescheler J, Trube G (1987) Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflügers Arch 409:582–588

    Article  PubMed  CAS  Google Scholar 

  • Black JL, Armour CL, Johnson RA, Alouan LA, Barnes PJ (1990) The action of a potassium channel activator, BRL 38227 (lemakalim), on human airway smooth muscle. Am Rev Respir Dis 142:1384–1389

    PubMed  CAS  Google Scholar 

  • Burton F, Dorstelmann U, Hutter OF (1988) Single-channel activity in salcolemmal vesicles from human and other mammalian muscles. Muscle Nerve 11:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Chutkow WA, Simon MC, Le Beau MM, Burant CF (1996) Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 45:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Clement JP IV, Kunjilwar K, Gonzales G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of KATP channel subunits. Neuron 18:827–838

    Article  PubMed  CAS  Google Scholar 

  • Cook DL, Hales N (1984) Intracellular ATP directly blocks K’ channels in pancreatic B-cells. Nature 311:271–273

    Article  PubMed  CAS  Google Scholar 

  • Dart C, Standen NB (1995) Activation of ATP-dependent K’ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol (Lond) 483:29–39

    CAS  Google Scholar 

  • Davies NW (1990) Modulation of ATP-sensitive K* channels in skeletal muscle by intracellular protons. Nature 343:375–377

    Article  PubMed  CAS  Google Scholar 

  • Davies NW, Standen NB, Stanfield PR (1991) ATP-dependent potassium channels of muscle cells: Their properties, regulation and possible functions. J Bioenerge Biomembr 23:509–535

    Article  CAS  Google Scholar 

  • Dunne MJ, Petersen MJ (1986) Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett 208:59–62

    Article  PubMed  CAS  Google Scholar 

  • Engleman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Ann Rev Biophys Biophy Chem 15:321–354

    Article  Google Scholar 

  • Escande D, Thuringer D, Leguern S, Cavero I (1988) The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K’ channels in isolated cardiac myocytes. Biochem Biophys Res Commun 154:620–625

    Article  PubMed  CAS  Google Scholar 

  • Findlay I (1992) Inhibition of ATP-sensitive K’ channels in cardiac muscle by the sulphonylurea drug glibenclamide. J Pharmacol Exp Ther 261:540–545

    PubMed  CAS  Google Scholar 

  • Gehlert DR, Mais DE, Gackenheimer SL, Krushinski JH, Robertson DW (1990) Localization of ATP sensitive potassium channels in the rat brain using a novel radioligand, [25I]iodoglibenclamide. Eur J Pharmacol 186:373–375

    Article  PubMed  CAS  Google Scholar 

  • Gribble FM, Ashfield R, Ammälä C, Ashcroft FM (1997a) Properties of cloned ATP-sensitive K’ currents expressed inXenopusoocytes. J Physiol (Lond) 498:87–98

    CAS  Google Scholar 

  • Gribble FM, Tucker SJ, Ashcroft FM (1997b) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16:1145–1152

    Article  CAS  Google Scholar 

  • Gribble FM, Tucker SJ, Ashcroft FM (1997c) The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed inXenopusoocytes: a reinterpretation. J Physiol (Lond) 504:35–45

    Article  CAS  Google Scholar 

  • Grigg JJ, Anderson EG (1989) Glucose and sulfonylureas modify different phases of the membrane potential change during hypoxia in rat hippocampal slices. Brain Res 489:302–310

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama N, Wang Q, Goyal RK, Akbarali HI (1995) Muscarinic suppression of ATP-sensitive K+ channel in rabbit esophageal smooth muscle. Am J Physiol 268:C877–C885

    PubMed  CAS  Google Scholar 

  • Hehl S, Moser C, Weik R, Neumcke B (1994) Internal Ca’ ions inactivate and modify ATP-sensitive potassium channels in adult mouse skeletal muscle. Biochim Biophys Acta 1190:257–263

    Article  PubMed  CAS  Google Scholar 

  • Higgins (1992) ABC transporters: from microorganisms to man. Ann Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  PubMed  CAS  Google Scholar 

  • Horie M, Irisawa H, Noma A (1987) Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol (Lond) 387:251–272

    CAS  Google Scholar 

  • Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Seino Y, Seino S (1995a) Cloning and functional expression of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islet, pituitary, skeletal muscle, and heart. J Biol Chem 270:5691–5694

    Article  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement IV JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995b) Reconstitution ofIKATP:An inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  CAS  Google Scholar 

  • Inagaki N, Inazawa J, Seino S (1995c) cDNA sequence, gene structure, and chromosomal localization of human ATP-sensitive potassium channel, uKATP-1 gene (KCNJ8). Genomics 30:102–104

    Article  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement IV JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic ß-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236

    Article  PubMed  CAS  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K’ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  PubMed  CAS  Google Scholar 

  • Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K’ channel. J Biol Chem 271:24321–24324

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Vereecke J, Carmeliet E (1994) Mode of regulation by G protein of the ATP-sensitive K’ channel in guinea-pig ventricular cell membrane. J Physiol (Lond) 478:101–107

    CAS  Google Scholar 

  • Ito K, Kanno T, Suzuki K, Masuzawa-Ito K, Takewaki T, Ohashi H, Asano M, Suzuki H (1992) Effects of cromakalim on the contraction and the membrane potential of the circular smooth muscle of guinea-pig stomach. Br J Pharmacol 105:335–40

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Xia Y, Haddad GG (1992) Role of ATP-sensitive K+ channels during anoxia: major differences between rat (newborn and adult) and turtle neurons. J Physiol (Lond) 448:599–612

    CAS  Google Scholar 

  • Kajioka S, Kitamura K, Kuriyama H (1991) Guanosine diphosphate activates an adenosine 5’-triphosphate-sensitive K’ channel in the rabbit portal vein. J Physiol (Lond) 444:397–418

    CAS  Google Scholar 

  • Kakei M, Kelly RP, Ashcroft AJH, Ashcroft FM (1986) The ATP-sensitivity of K’ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett 208:63–66

    Article  PubMed  CAS  Google Scholar 

  • Kakei M, Noma A, Shibasaki T (1985) Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 363:441–462

    CAS  Google Scholar 

  • Kamouchi M, Kitamura K (1994) Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein. Am J Physiol 266:H1687—H1698

    PubMed  Google Scholar 

  • Kane C, Shepherd RM, Squires PE, Johnson PRV, James RFL, Milla PJ, Aynsley-Green A, Lindley KJ, Dunne MJ (1996) Loss of functional KATP channels in pancreatic /3-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nature Medicine 2:1344–1347

    Article  PubMed  CAS  Google Scholar 

  • Katayama N, Huang SM, Tomita T, Brading AF (1993) Effects of cromakalim on the electrical slow wave in the circular muscle of guinea-pig gastric antrum. Br J Pharmacol 109:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Katnik C, Adams DJ (1995) An ATP-sensitive potassium conductance in rabbit arterial endothelial cells. J Physiol (Lond) 485:595–606

    CAS  Google Scholar 

  • Kortezova N, Bayguinov O, Boev K, Papasova M (1992) Effect of cromakalim on the smooth muscle of the cat gastric antrum. J Pharm Pharmacol 44:875–878

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama H, Kitamura K, Nabata H (1995) Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev 47:387–573

    PubMed  CAS  Google Scholar 

  • Light PE, French RJ (1994) Glibenclamide selectively blocks ATP-sensitive K+ channels reconstituted from skeletal muscle. Eur J Pharmacol. 259:219–222

    Article  PubMed  CAS  Google Scholar 

  • Lindeman KS, Fernandes LB, Croxton TL, Hirshman CA (1994) Role of potassium channels in hypoxic relaxation of porcine bronchi in vitro. Am J Physiol 266: L232—L237.

    PubMed  Google Scholar 

  • Longmore J, Bray KM, Weston AH (1991) The contribution of Rb-permeable potassium channels to the relaxant and membrane hyperpolarizing actions of cromakalim, RP49356 and diazoxide in bovine tracheal smooth muscle. Br J Pharmacol 102:979–85

    Article  PubMed  CAS  Google Scholar 

  • Lorenz E, Alekseev AE, Krapivinsky GB, Carrasco AJ, Clapham DE, Terzic A (1998) Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K* channel. Mol Cell Biol 18:1652–1659

    PubMed  CAS  Google Scholar 

  • Lorenz JN, Schnermann J, Brosius FC, Briggs JP, Furspan PB (1992) Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit. J Clin Invest 90:733–740

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Mackinnon R (1994) Electrical tuning of Mg’ affinity in an inward rectifier K+ channel. Nature 371:243–246

    Article  PubMed  CAS  Google Scholar 

  • Makhina EN, Nichols CG (1998) Independent trafficking of KATP channel subunits to the plasma membrane. J Biol Chem 273:3369–3374

    Article  PubMed  CAS  Google Scholar 

  • McPherson GA, Angus JA (1990) Characterization of responses to cromakalim and pinacidil in smooth and cardiac muscle by use of selective antagonists. Br J Pharmacol 100:201–206

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Tashiro F, Iwanaga T, Nagashima K, Yoshitomi H, Aihara H, Nitta Y, Gonoi T, Inagaki N, Miyazaki J, Seino S (1997) Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl Acad Sci USA 94:11969–11973

    Article  PubMed  CAS  Google Scholar 

  • Misler S, Falke LC, Gillis K, McDaniel ML (1986) A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci U S A 83:7119–7123

    Article  PubMed  CAS  Google Scholar 

  • Mourre C, Ben-Ari Y, Bernardi H, Fosset M, Lazdunski M (1989) Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486:159–164

    Article  PubMed  CAS  Google Scholar 

  • Murphy KPSJ, Greenfield SA (1991) ATP-sensitive potassium channels counteract anoxia in neurones of the substantia nigra. Exp Brain Res 84:355–358

    Article  PubMed  CAS  Google Scholar 

  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799—C822

    PubMed  Google Scholar 

  • Nestorowicz A, Inagaki N, Gonoi T, Schoor KP, Wilson BA, Glaser B, Landau H, Stanley CA, Thornton PS, Seino S, Permutt MA (1997) A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46:1743–1748

    Article  PubMed  CAS  Google Scholar 

  • Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP IV, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787

    Article  PubMed  CAS  Google Scholar 

  • Nielsen-Kudsk JE, Bang L, Bronsgaard AM (1990) Glibenclamide blocks the relaxant action of pinacidil and cromakalim in airway smooth muscle. Eur J Pharmacol 180: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K’ channels in cardiac muscle. Nature 305:147–148 Ohno-Shosaku T, Yamamoto C (1992) Identification of an ATP-sensitive K’ channel in rat cultured cortical neurons. Pflügers Arch 422:147–148

    Google Scholar 

  • Okuyama Y, Yamada M, Kondo C, Satoh E, Isomoto S, Shindo T, Horio Y, Kitakaze M, Hori M, Kurachi Y (1998) The effects of nucleotides and potassium channel openers on the SUR2 A/Kir6.2 complex K’ channel expressed in a mammalian cell line, HEK 293 T cells. Pflügers Arch (in press)

    Google Scholar 

  • Osterrieder W (1988) Modification of K’ conductance of heart cell membrane by BRL 34915. Naunyn Schmiedebergs Arch Pharmacol 337:93–97

    Article  PubMed  CAS  Google Scholar 

  • Paucek P, Mironova G, Mandi F, Beavis AD, Woldegiorgis G, Garlid KG (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K’ channel from rat liver and beef heart mitochondria. J Biol Physiol 267:26062–26069

    CAS  Google Scholar 

  • Paucek P, Yarov-Yarovoy V, Sun X, Garlid K (1996) Inhibition of the mitochondria] KATP channel by long-chain acyl-CoA esters and activation by guanine nucleotides. J Biol Chem 271:32084–32088

    Article  PubMed  CAS  Google Scholar 

  • Permutt MA, Nestorowicz A, Benjamin G (1996) Familial hyperinsulinism: an inherited disorder of spontaneous hypoglycemia in neonates and infants. Diabetes Reviews 4:347–355

    Google Scholar 

  • Politi DM, Rogawski MA (1991) Glyburide-sensitive K’ channels in cultured rat hippocampal neurons: activation by cromakalim and energy-depleting conditions. Mol Pharmacol 40:308–315

    PubMed  CAS  Google Scholar 

  • Post JM, Stevens RJ, Sanders KM, Hume JR (1991) Effect of cromakalim and lemakalim on slow waves and membrane currents in colonic smooth muscle. Am J Physiol 260:C375–382

    PubMed  CAS  Google Scholar 

  • Proks P, Ashcroft FM (1997) Phentolamine block of KATP channels is mediated by Kir6.2. Proc Natl Acad Sci USA 94:11716–11720

    Article  PubMed  CAS  Google Scholar 

  • Quayle JM, Nelson MT, Standen NB (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77:1165–1232

    PubMed  CAS  Google Scholar 

  • Raeburn D, Brown TJ (1991) RP49356 and cromakalim relax airway smooth muscle in vitro by opening a sulphonylurea-sensitive K’ channel: a comparison with nifedipine. J Pharmacol Exp Ther 256:480–485

    PubMed  CAS  Google Scholar 

  • Ribalet B, Eddelstone GT (1995) Characterization of the G protein coupling of a somatostatin receptor to the KATP channel in insulin-secreting mammalian HIT and RIN cell lines. J Physiol (Lond) 485:73–86

    CAS  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose dependent K’-channels in pancreatic ß-cells are regulated by intracellular ATP. Pflügers Arch 405:305–309

    Article  PubMed  CAS  Google Scholar 

  • Sakura H, Ammälä C, Smith PA, Gribble FM, Ashcroft FM (1995) Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 377:338–344

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Scott AL, Zingaro GJ, Siegl PK (1988) BRL 34915 (cromakalim) activates ATP-sensitive K’ current in cardiac muscle. Proc Natl Acad Sci USA 85: 8360–8364

    Article  PubMed  CAS  Google Scholar 

  • Schwanstecher C, Basse D (1997) KATP-channel on the somata of spiny neurones in rat caudate nucleus: regulation by drugs and nucleotides. Br J Pharmacol 121:193–198

    Article  PubMed  CAS  Google Scholar 

  • Schwanstecher C, Panten U (1993) Tolbutamide-and diazoxide-sensitive K` channel in neurons of substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol 348:113–117

    Article  PubMed  CAS  Google Scholar 

  • Schwanstecher C, Panten U (1994) Identification of an ATP-sensitive K+ channel in spiny neurons of rat caudate nucleus. Pflügers Arch 427:187–189

    Article  PubMed  CAS  Google Scholar 

  • Shyng SL, Ferrigni T, Nichols CG (1997a) Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J Gen Physiol 110:141–153

    Article  CAS  Google Scholar 

  • Shyng SL, Ferrigni T, Nichols CG (1997b) Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 110:643–654

    Article  CAS  Google Scholar 

  • Shyng SL, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    Article  PubMed  CAS  Google Scholar 

  • Silberberg SD, van Breemen C (1992) A potassium current activated by lemakalim and metabolic inhibition in rabbit mesenteric artery. Pflügers Arch 420:118–120

    Article  PubMed  CAS  Google Scholar 

  • Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML (1997) Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390:521–525

    Article  PubMed  CAS  Google Scholar 

  • Spruce AE, Standen NB, Stanfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316:736–738

    Article  PubMed  CAS  Google Scholar 

  • Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyper-polarizing vasodilators activate ATP-sensitive K’ channels in arterial smooth muscle. Science 245:177–180

    Article  PubMed  CAS  Google Scholar 

  • Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC (1994) A single aspartate residue is involved in both intrinsic gating and blocking by Mg’ of the inward rectifier, IRK1. J Physiol (Lond) 478:1–6

    CAS  Google Scholar 

  • Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford ML (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 95:83–94

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kotake K, Fujikura K, Inagaki N, Suzuki T, Gonoi T, Seino S, Takata K (1998) Kir6.1: a possible subunit of ATP-sensitive K’ channels in mitochondria. Biochemi Biophys Res Commun 241:693–697

    Article  Google Scholar 

  • Szewczyk A, Wojcik G, Lobanov NA, Nalecz MJ (1997) The mitochondrial sulfonylurea receptor: identification and characterization. Biochem Biophys Res Commun 230:611–615

    Article  PubMed  CAS  Google Scholar 

  • Sánchez JA, Gonoi T, Inagaki N, Katada T, Seino S (1998) Modulation of reconstituted ATP-sensitive K’ channels by GTP-binding proteins in a mammalian cell line. J Physiol (Lond) 507:315–324

    Article  Google Scholar 

  • Terzic A, Tung RT, Inanobe A, Katada T, Kurachi Y (1994) G proteins activate ATP-sensitive K’ channels by antagonizing ATP-dependent gating. Neuron 12:885–893

    Article  PubMed  CAS  Google Scholar 

  • Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, Rabl W, Aguilar-Bryan L, Gagel RF, Bryan J (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426–429

    Article  PubMed  CAS  Google Scholar 

  • Thomas PM, Wohllk N, Huang E, Kuhnle U, Rabl W, Gagel RF, Cote GJ (1996a) Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 59:510–518

    CAS  Google Scholar 

  • Thomas PM, Ye Y, Lightner E (1996b) Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5:1809–1812

    Article  CAS  Google Scholar 

  • Trapp S, Tucker SJ, Ashcroft FM (1997) Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci US 94:8872–8877

    Article  CAS  Google Scholar 

  • Tromba C, Salvaggio A, Racagni G, Volterra A (1992) Hypoglycemia-activated K’ channels in hippocampal neurons. Neurosci Lett 143:185–189

    Article  PubMed  CAS  Google Scholar 

  • Trube G, Hescheler J (1984) Inwardly-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflügers Arch 401:178–184

    Article  PubMed  CAS  Google Scholar 

  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Bakos E, Váradi A, Sarkadi B (1997) Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett 402:1–3

    Article  PubMed  Google Scholar 

  • Ueda K, Inagaki N, Seino S (1997) MgADP antagonism to Mgr’-independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 272:22983–22986

    Article  PubMed  CAS  Google Scholar 

  • Vivaudou M, Forestier C (1995) Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition. J Physiol (Lond) 486:629–645

    CAS  Google Scholar 

  • von Beckerath N, Cyrys S, Dischner A, Daut J (1991) Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms. J Physiol (Lond) 442:297–319

    Google Scholar 

  • Walker JE, Saraste MJ, Runswick MJ, Gay NJ (1982) Distantly related sequences in the A- and B-subunits of ATP synthase, myoson, kinase and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Weik R, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. J Membr Biol 110:217–226

    Article  PubMed  CAS  Google Scholar 

  • Weik R, Neumcke B (1990) Effects of potassium channel openers in mouse skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol 342:258–263

    Article  PubMed  CAS  Google Scholar 

  • Wile BA, Taglialatela M, Ficker E, Brawn AM (1994) Gating of inwardly rectifying K` channels localized to a single negatively charged residue. Nature 371:246–249

    Article  Google Scholar 

  • Woll KH, Lonnendonker U, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: different modes of blockage by internal cations. ATP and tolbutamide. Pflügers Arch 414:622–628

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, Kurachi Y (1997) Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K’ channel. J Physiol (Lond) 499:715–720

    CAS  Google Scholar 

  • Yarov-Yarovoy V, Paucek P, Jaburek M, Garlid KD (1997) The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol. Biochim Biophys Acta 1321:128–136

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bolton TB (1995) Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Br J Pharmacol 114:662–672

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Bolton TB (1996) Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells. Br J Pharmacol 118:105–114

    Article  PubMed  CAS  Google Scholar 

  • Zünkler BJ, Lenzen S, Manner K, Panten U, Trube G (1988) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K’ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol 337:225–230

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gonoi, T., Seino, S. (2000). Structure and Function of ATP-Sensitive K+ Channels. In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics