Skip to main content

The Assembly of Recombinant Signaling Systems and Their Use in Investigating Signaling Dynamics

  • Chapter
The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 148))

  • 200 Accesses

Abstract

Recombinant signaling systems are a basic component of research efforts concerned with the structure and function of members of the superfamily of membrane receptors coupled to heterotrimeric G proteins. The widespread use of such systems in pharmacology began in the mid 1980s following isolation of the complementary DNAs (cDNAs) encoding β-adrenergic receptors (ARs) and muscarinic receptors. The next decade witnessed the determination of the primary structure of several protein families involved in signal propagation, including receptors, G proteins and effectors. In the midst of this activity, transient and stable expression systems were used to determine the ligand-recognition properties and functional domains of the receptor protein in addition to the signal-transduction events initiated by agonist-activated receptors. Generally, this approach involved ectopic expression of the receptor in a mammalian cell line. With recent advances in gene technology, recombinant systems can also be generated in Saccharomyces cerevisae, aplysia, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, transgenic rodents and mini-swine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adham N, Ellerbrock B, Hartig P, Weinshank RL, Branchek T (1993) Receptor reserve masks partial agonist activity of drugs in a cloned rat 5-hydroxytryptamine1B receptor expression system. Mol Pharmacol 43:427–433

    PubMed  CAS  Google Scholar 

  • Albert PR (1994) Heterologous expression of G protein-linked receptors in pituitary and fibroblast cell lines. Vit Horm 48:59–109

    CAS  Google Scholar 

  • Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE (1997) Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem 272: 23382–233888

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky VY, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP Nature 357:416–417

    Article  PubMed  Google Scholar 

  • Ausiello DA, Stow JL, Cantiello HF, de Almeida JB, Benos DJ (1992) Purified epithelial Na+-channel complex contains the pertussis toxin-sensitive Gαi-3 protein. J Biol Chem 267:4759–4765

    PubMed  CAS  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG (1996) GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86:445–452

    Article  PubMed  CAS  Google Scholar 

  • Berstein G, Blank JL, Jhon D-Y, Exton JH, Rhee SG, Ross EM (1992) Phospholipase C-β1 is a GTPase activating protein for Gq/11, its physiologic regulator. Cell 70:411–418

    Article  PubMed  CAS  Google Scholar 

  • Boekhoff I, Touhara K, Danner S, Inglese J, Lohse MJ, Breer H, Lefkowitz RJ (1997) Phosducin, potential role in modulation of olfactory signalling. J Biol Chem 272: 4606–4612

    Article  PubMed  CAS  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386(6622):284–288

    Article  PubMed  CAS  Google Scholar 

  • Brauner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P (1996) Functional partial agonism at cloned human muscarinic acetylcholine. Eur J Pharmacol 313:145–150

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Brann MR (1997) Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol Pharmacol 51:312–319

    PubMed  CAS  Google Scholar 

  • Coulter S, Rodbell M (1992) Heterotrimeric G proteins in synaptoneurosome membranes are cross-linked by p-phenylenedimaleimide, yielding structures comparable in size to cross-linked tubulin and F-actin. Proc Natl Acad Sci USA 89: 5842–5846

    Article  PubMed  CAS  Google Scholar 

  • Coupry I, Duzic E, Lanier SM (1992) Factors determining the specificity of signal transduction by G protein-coupled receptors. II. Preferential coupling of the α2C-adrenergic receptor to the guanine nucleotide binding protein, Go. J Biol Chem 267:9852–9857

    PubMed  CAS  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the β(2)-adrenergic receptor to switching of the coupling of the β(2)-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    Article  PubMed  CAS  Google Scholar 

  • Danley DE, Chuang TH, Bokoch GM (1996) Defective Rho GTPase regulation by IL-lβ-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J Immunol 157:500–503

    PubMed  CAS  Google Scholar 

  • Dohlman HG, Thorner J (1997) RGS proteins and signalling by heterotrimeric G-proteins. J Biol Chem 272:3871–3874

    Article  PubMed  CAS  Google Scholar 

  • Dolph PJ, Ranganathan R, Colley NJ, Hardy RW, Socolich M, Zuker CS (1993) Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 260:1910–1916

    Article  PubMed  CAS  Google Scholar 

  • Druey KM, Blumer KJ, Kang VH, Kehrl JH (1996) Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379:742–746

    Article  PubMed  CAS  Google Scholar 

  • Duzic E, Lanier SM (1992) Factors determining the specificity of signal transduction by G protein-coupled receptors III. Coupling of α2-adrenergic receptor subtypes in a cell-type specific manner. J Biol Chem 267:24045–24052

    PubMed  CAS  Google Scholar 

  • Duzic E, Coupry I, Downing S, Lanier SM (1992) Factors determining the speci-ficity of signal transduction by G protein-coupled receptors I. Coupling of α2-adrenergic receptor subtypes to distinct G proteins. J Biol Chem 267:9844–9851

    PubMed  CAS  Google Scholar 

  • Eason MG, Jacinto MT, Liggett SB (1994) Contribution of ligand structure to activation of α2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 45:696–702

    PubMed  CAS  Google Scholar 

  • Ferguson SS, Barak LS, Zhang J, Caron MG (1996) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol 74:1095–1110

    Article  PubMed  CAS  Google Scholar 

  • Gaudet R, Bohm A, Sigler PB (1996) Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87:577–588

    Article  PubMed  CAS  Google Scholar 

  • Geiss S, Gram H, Keuser B, Kocher HP (1996) Eukaryotic expression systems — a comparison. Prot Exp Purif 8:271–282

    Article  Google Scholar 

  • Gerhardt CC, Vanheerikhuizen H (1997) Functional characteristics of heterologously expressed 5-HT receptors. Eur J Pharmacol 334:1–23

    Article  PubMed  CAS  Google Scholar 

  • Gettys TW, Fields TA, Raymond JR (1994) Selective activation of inhibitory G-protein α-subunits by partial agonists of the human 5-HT1A receptor. Biochemistry 33:4283–4290, 11404

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Greundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Helper JR, Berman DM, Gilman AG, Kozasa T (1997) RGS4 and GAIP are GTPase-activating proteins for Gqα and block activation of phospholipase Cβ by γ-thio-GTP-Gqα. Proc Natl Acad Sci USA 94:428–432

    Article  Google Scholar 

  • Higashijima T, Burnier J, Ross EM (1990) Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. J Biol Chem 265: 14176–14186

    PubMed  CAS  Google Scholar 

  • Hosey MM, DebBurman SK, Pals-Rylaarsdam R, Richardson RM, Benovic JL (1996) The role of G-protein coupled receptor kinases in the regulation of muscarinic cholinergic receptors. Prog Brain Res 109:169–179

    Article  PubMed  CAS  Google Scholar 

  • Hunt TW, Fields TA, Casey PJ, Peralta EG (1996) RGS10 is a selective activator of God GTPase activity. Nature 383:175–177

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ (1990) Vectors used for expression in mammalian cells. Methods Enzymol 185:487–511

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP, Morgan PH (1989) Theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of agonists. Mol Pharmacol 35:214–222

    PubMed  CAS  Google Scholar 

  • Keown WA, Campbell CR, Kucherlapati RS (1990) Methods for introducing DNA into mammalian cells. Methods Enzymol 185:527–537

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Haastert PV, Devreotes PN (1996) Social senses: G-protein-coupled receptor-signalling pathways in Dictyostelium discoideum. Chem Biol 3:239–243

    Article  PubMed  CAS  Google Scholar 

  • Klein U, Ramirez MT, Kobilka BK, Zastrow MV (1997) A novel interaction between adrenergic receptors and the α-subunit of eukaryotic initiation factor 2B. J Biol Chem 272:19099–19102

    Article  PubMed  CAS  Google Scholar 

  • Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signalling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84:115–125

    Article  PubMed  CAS  Google Scholar 

  • Koller KJ, Whitehorn EA, Tate E, Ries T, Aguilar B, Chernov-Rogan T, Davis AM, Dobbs A, Yen M, Barrett RW (1997) A generic method for the production of cell lines expressing high levels of 7-transmembrane receptors. Analyt Biochem 250:51–60

    Article  PubMed  CAS  Google Scholar 

  • Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ (1997) The role of sequestration in G protein-coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 272:5–8

    Article  PubMed  CAS  Google Scholar 

  • Lanier SM, Downing S, Duzic E, Homey CJ (1991) Isolation of rat genomic clones encoding subtypes of the α2-adrenergic receptor: identification of a unique receptor subtype. J Biol Chem 266:10470–10478

    PubMed  CAS  Google Scholar 

  • Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701

    Article  PubMed  CAS  Google Scholar 

  • Luebke AE, Dahl GP, Roos BA, Dickerson IM (1996) Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay. Proc Natl Acad Sci USA 93:3455–3460

    Article  PubMed  CAS  Google Scholar 

  • Mah SJ, Ades AM, Mir T, Siemens IR, Williamson JR, Fluharty SJ (1992) Association of solubilized angiotensin II receptors with phospholipase C-alpha in murine neuroblastoma NIE-115 cells. Mol Pharmacol 42:217–226

    PubMed  CAS  Google Scholar 

  • Marjamaki A, Sato M, Bouet-Alard R, Yang Q, Limon-Boulez I, Legrand C, Lanier SM (1997) Factors determining the specificity of signal transduction by G-protein coupled receptors. V. Integration of stimulatory and inhibitory input to the effector adenylyl cyclase. J Biol Chem 272:16466–16473

    Article  PubMed  CAS  Google Scholar 

  • Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC (1995) Delafontaine P. Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin-II AT1 receptor. Nature 375:247–250

    Article  PubMed  CAS  Google Scholar 

  • Miles MF, Barhite S, Sganga M, Elliott M (1993) Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function. Proc Natl Acad Sci USA 90:10831–10835

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Hibi M, Kanai Y, Insel PA (1995) Interaction of the protein nucleobindin with G α i2, as revealed by the yeast two-hybrid system. FEBS Lett 373(2):155–158

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Cho G, Wen B, Insel PA (1996) Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181:39–43

    Article  PubMed  CAS  Google Scholar 

  • Mousli M, Bronner C, Landry Y, Bockaert J, Rouot B (1990) Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/80. FEBS Lett 259:260–262

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S-I, Rodbell M (1990) Octyl glucoside extracts GTP-binding regulatory proteins from rat brain “synaptoneurosomes” as large, polydisperse structures devoid of βγ complexes and sensitive to disaggregation by guanine nucleotides. Proc Natl Acad Sci USA 87:6413–6417

    Article  PubMed  CAS  Google Scholar 

  • Nanoff C, Mitterauer T, Roka F, Hohenegger M, Freissmuth M (1995) Species differences in A1 adenosine receptor/G protein coupling: identification of a membrane protein that stabilizes the association of the receptor/G protein complex. Mol Pharmacol 48:806–817

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Conte C, Chaput C, Verriele L, Millan MJ (1997) Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor-G-protein stoichiometry. Neuropharmacology 36:451–459

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto I, Okamoto T, Matsuura Y, Takahashi S, Okamoto T, Murajama Y, Ogata E (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 362:75–79

    Article  PubMed  CAS  Google Scholar 

  • Ohya S, Takii T, Yamazaki HF, Matsumori M, Onozaki K, Watanabe M, Imaizumi Y (1997) Molecular cloning of a novel gene involved in serotonin receptor-mediated signal transduction in rat stomach. FEBS Lett 401:252–258

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Takeda S, Murayama Y, Ogata E, Nishimoto I (1995) Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J Biol Chem 270:4205–4208

    Article  PubMed  CAS  Google Scholar 

  • Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996) Phosphorylation of the type-1A angiotensin-II receptor by G-protein-coupled receptor kinases and protein kinase C. J Biol Chem 271:13266–13272

    Article  PubMed  CAS  Google Scholar 

  • Pauwels PJ, Colpaert FC (1995) Differentiation between partial and silent 5-HT1D beta receptor antagonists using rat C6-glial and Chinese hamster ovary cell lines permanently transfected with a cloned human 5-HT1D beta receptor gene. Biochem Pharmacol 50:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Perez DM, Hwa J, Gaivin R, Mathur M, Brown F, Graham RM (1996) Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol 49:112–122

    PubMed  CAS  Google Scholar 

  • Pohjanoksa K, Jansson CC, Luomala K, Marjamaki A, Savola JM, Scheinin M (1997) α(2)-Adrenoceptor regulation of adenylyl cyclase in CHO cells: dependence on receptor density, receptor subtype and current activity of adenylyl cyclase. Eur J Pharmacol 335:53–63

    Article  PubMed  CAS  Google Scholar 

  • Popova JS, Johnson GL, Rasenick MM (1994) Chimeric Gαs/Gαi2 proteins define domains on Gαs that interact with tubulin for β-adrenergic activation of adenylyl cyclase. J Biol Chem 269:21748–21754

    PubMed  CAS  Google Scholar 

  • Roychowdhury S, Wang N, Rasenick MM (1993) Tubulin-G protein association stabilizes GTP binding and activates GTPase: cytoskeletal participation in neuronal signal transduction. Biochemistry 32:4955–4961

    Article  PubMed  CAS  Google Scholar 

  • Saito O, Kubo Y, Miyatani Y, Asano T, Nakata H (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390:525–529

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Expression of cloned genes in mammalian cells. In: Chris Nolan (ed) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Sato M, Kataoka R, Dingus J, Wilcox M, Hildebrandt J, Lanier SM (1995) Factors determining the specificity of signal transduction by G-protein coupled receptors. IV. Regulation of signal transfer from receptor to G-protein. J Biol Chem 270: 15269–1527

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Ribas C, Hildebrandt JD, Lanier SM (1996) Characterization of a G-protein activator in the neuroblastoma glioma cell hybrid NG108–15. J Biol Chem 271:30052–30060

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Wu G, Lanier SM (1996) Regulation of the transfer of signal from receptor to G-protein. In: Lanier SM, Limbird LE (eds) α2 Adrenergic receptors: structure, function and therapeutic implications. Proceedings. Gordan and Breach Publishers

    Google Scholar 

  • Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135

    Article  PubMed  CAS  Google Scholar 

  • Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR (1997) μ-opioid receptor-stimulated guanosine-5′-O-(γ-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy. Mol Pharmacol 51:87–96

    PubMed  CAS  Google Scholar 

  • Sterne-Marr R, Benovic JL (1995) Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitamin Horm 51:193–234

    CAS  Google Scholar 

  • Strittmatter SM, Valenzuela D, Sudo Y, Linder ME, Fishman MC (1991) An intracellular guanine-nucleotide-release protein for Go. J Biol Chem 266:22465–22471

    PubMed  CAS  Google Scholar 

  • Strittmatter SM, Cannon SC, Ross EM, Higashijima T, Fishman MC (1993) GAP-43 augments G-protein-coupled receptor transduction in Xenopus laevis oocytes. Proc Natl Acad Sci USA 90:5327–5331

    Article  PubMed  CAS  Google Scholar 

  • Sudo Y, Valenzuela D, Beck-Sickinger AG, Fishman MC, Strittmatter SM (1992) Palmitoylation alters protein activity: blockade of Go stimulation by GAP-43. EMBO 11:2095–2102

    CAS  Google Scholar 

  • Tate CG, Grisshammer R (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol 14:426–430

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Jacob-Mosier GG, Lawton RG, VanDort M, Neubig RR (1996) Receptor and membrane interaction sites on Gβ. A receptor-derived peptide binds to the carboxyl terminus. J Biol Chem 271:3336–3339

    Article  PubMed  CAS  Google Scholar 

  • Thibault C, Sganga MW, Miles MF (1997) Interaction of phosducin-like protein with G protein βγ fysubunits. J Biol Chem 272:12253–12256

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt RR, Dhanasekaran N, Johnson GL, Ruoho AE (1990) 2-Azido-[32P]NAD+, a photoactivatable probe for G-protein structure: evidence for holo-transducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both α and γ subunits. Proc Natl Acad Sci USA 87:3645–3649

    Article  PubMed  CAS  Google Scholar 

  • Varrault A, Journot L, Audigier Y, Bockaert J (••) Transfection of human 5-hydroxytryptamine 1A receptors in NIH-3T3 fibroblasts: effects of increasing receptor density on the coupling of 5-hydroxytryptamine 1A receptors to adenylyl cyclase

    Google Scholar 

  • Vitale N, Deloulme JC, Thierse D, Aunis D, Bader MF (1994) GAP-43 controls the availability of secretory chromaffin granules for regulated exocytosis by stimulating a granule-associated Go. J Biol Chem 269:30293–30298

    PubMed  CAS  Google Scholar 

  • Vogel WK, Mosser VA, Bulseco DA, Schimerlik MI (1995) Porcine m2 muscarinic acetylcholine receptor-effector coupling in Chinese hamster ovary cells. J Biol Chem 270:15485–15493

    Article  PubMed  CAS  Google Scholar 

  • Watson N, Linder ME, Druey KM, Kehrl JH, Blumer KJ (1996) RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383:172–175

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Morgan PH, Lutz MW, Kenakin TP (1996) The cubic ternary complex receptor-occupancy model. J Theor Biol 181:381–397

    Article  PubMed  CAS  Google Scholar 

  • Welsh S, Kay SA (1997) Reporter gene expression for monitoring gene transfer. Curr Opin Biotech 8:617–622

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Krupnick JG, Benovic JL, Lanier SM (1997) Interaction of arrestins with intracellular domains of receptors coupled to heterotrimeric G-proteins. J Biol Chem 17836–17842

    Google Scholar 

  • Wu G, Benovic JL, Hildebrandt JD, Lanier SM (1998) Receptor docking sites for G-protein bg subunits: implications for signal regulation. J Biol Chem 273:7197–7200

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, McDermott PJ, Sherlock JD, Lanier SM (1997) The 3′ untranslated region of the α2C-adrenergic receptor mRNA impedes translational processing of the receptor message. J Biol Chem 272:15466–15473

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Lanier SM (1999) Influence of G protein type on agonist efficacy. Mol Pharmacol 56:651–656

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lanier, S.M. (2000). The Assembly of Recombinant Signaling Systems and Their Use in Investigating Signaling Dynamics. In: Kenakin, T., Angus, J.A. (eds) The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems. Handbook of Experimental Pharmacology, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57081-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57081-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63028-6

  • Online ISBN: 978-3-642-57081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics