Skip to main content

Gene Structure and Transcriptional Regulation of the Neuronal Nicotinic Acetylcholine Receptors

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

The use of recombinant DNA techniques to advance the biology of nicotinic acetylcholine receptors (nAChRs) began in 1980, after the seminal demonstration by microsequencing that the electroplax nAChR of Torpedo consisted of four homologous subunits (RAFTERY et al. 1980). Prompted by this finding, several research groups independently decided that the tools were available to clone the nAChR cDNAs. The electric organ was readily obtainable and it was a good source of receptor mRNA that could be translated in vitro to synthesize labeled receptor subunits. The subunits could then be formally identified by immunoprecipitation using antireceptor antibodies. In one approach, pools of electric organ cDNA clones were denatured and bound to a solid matrix. Passing electric organ mRNA on the matrix in hybridizing conditions subtracted the corresponding messengers, which were eluted and translated in vitro. Pools were scored as positive if the mRNAs they bound drove the synthesis of immunoprecipitable protein. They were divided up until single clones capable of retaining receptor mRNA were isolated (BALLIVET et al. 1982). In short order, groups led by Barnard, Changeux, Heinemann, and Numa reported the isolation and sequence of the cDNAs encoding the electric organ nAChR, thereby effecting the first complete cloning of a multi-subunit ligand- gated ion channel. The four conserved hydrophobic domains and two long hydrophilic domains of the subunits immediately suggested an insertional topology that is still accepted today (SUMIKAWA et al. 1982; DEVILLERS-THIERY et al. 1983; CLAUDIO et al. 1983; NODA et al. 1982). Availability of the Torpedo subunits led to the rapid isolation of their homologues in muscle cDNA libraries from rat, bovine, chicken, human, mouse, and other vertebrate species. The very high degree of conservation of the muscle nAChR subunits throughout vertebrate space argued that this set of genes must predate the vertebrate radiation. Indeed, additional cloning work soon established that bona fide nAChR genes are found in invertebrates, including Drosophila where they must have a neural function since the neuromuscular junction of insects is not cholinergic (BOSSY et al. 1988; HERMANS-BORGMEYER et al. 1989). Meanwhile, abundant evidence was being obtained in vertebrates that neuronal nAChRs were closely related to their muscle counterparts in sequence, structure, and function (BOULTER et al. 1986; NEF et al. 1988). The detailed study of their physiology was made possible by the development of a convenient functional assay. Upon being injected with electric organ mRNA, Xenopus oocytes assembled fully functional Torpedo receptors in their plasma membrane, and these could easily be studied by standard physiological and pharmacological procedures (BARNARD et al. 1982). The assay was quickly adapted to the expression of cloned muscle (SAKMANN et al. 1985) and neuronal (BOULTER et al. 1987; BALLIVET et al. 1988) nAChR subunits. Enormous advances in the field have been derived from this meeting of molecular biology and electrophysiology in the confines of the Xenopus oocyte. Not only could naturally occurring combinations of subunits be tested for function, but point mutants, deletion mutants, hybrids, and chimeras could also be assayed (IMOTO et al. 1988; COOPER et al. 1991; GROSS et al. 1991; GALZI et al. 1992). In this respect, the role of the neuronal α7 subunit cannot be overemphasized. Because it readily assembles as a homomeric channel in oocytes (COUTURIER et al. 1990a), the α7 receptor has become the most widely used model system in nAChR structure-function studies (REVAH et al. 1991; DEVILLERS-THIERY et al. 1993). As useful and convenient as it is, the Xenopus system has drawbacks: it consumes animals at a high rate and the oocytes require delicate preliminary treatment in order to make clean plasma membrane accessible to the patch pipette. Systems such as the internodal cells of the alga Chara corallina are being explored (LUHRING and WITZEMANN 1995) and may some day provide cheaper and more humane alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arenella LS, Oliva JM, Jacob MH (1993) Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation. J Neurosci 13:4525–4537

    PubMed  CAS  Google Scholar 

  • Ballivet M, Patrick J, Lee J, Heinemann S (1982) Molecular cloning of cDNA coding for the gamma subunit of torpedo acetylcholine receptor. Proc Natl Acad Sci 79:4466–4470

    PubMed  CAS  Google Scholar 

  • Ballivet M, Nef P, Couturier S, Rungger D, Bader CR, Bertrand D, Cooper E (1988) Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuron 1:847–852

    PubMed  CAS  Google Scholar 

  • Ballivet M, Alliod C, Bertrand S, Bertrand D (1996) Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 258:261–269

    PubMed  CAS  Google Scholar 

  • Barnard EA, Miledi R, Sumikawa K (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc R Soc Lond B Biol Sci 215:241–246

    PubMed  CAS  Google Scholar 

  • Bedford FK, Julius D, Ingraham HA (1998) Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J Neurosci 18:6186–6194

    PubMed  CAS  Google Scholar 

  • Berberich C, Durr I, Koenen M, Witzemann V (1993) Two adjacent E box elements and a M-CAT box are involved in the muscle-specific regulation of the rat acetylcholine receptor beta subunit gene. Eur J Biochem 216:395–04

    PubMed  CAS  Google Scholar 

  • Bessereau JL, Mendelzon D, LePoupon C, Fiszman M, Changeux JP Piette J (1993) Muscle-specific expression of the acetylcholine receptor alpha-subunit gene requires both positive and negative interactions between myogenic factors, Sp1 and GBF factors. EMBO J 12:443–449

    PubMed  CAS  Google Scholar 

  • Bessis A, Champtiaux N, Chatelin L, Changeux JP (1997) The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci 94:5906–5911

    PubMed  CAS  Google Scholar 

  • Bigger CB, Casanova EA, Gardner, PD (1996) Transcriptional regulation of neuronal nicotinic acetylcholine receptor genes. Functional interactions between Spl and the rat beta4 subunit gene promoter. J Biol Chem 271:32842–32848

    Google Scholar 

  • Bigger CB, Melnikova IN, Gardner, PD (1997) Spl and Sp3 regulate expression of the neuronal nicotinic acetylchorine receptor beta4 subunit gene. J Biol Chem 272:25976–25982

    Google Scholar 

  • Bossy B, Ballivet M, Spierer P (1988) Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J 7:611–618

    PubMed  CAS  Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 19:368–374

    Google Scholar 

  • Boulter J, Connoly J, Deneris E, Goldman D, Heinemann S, Patrick J (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci 84:7763–7767

    PubMed  CAS  Google Scholar 

  • Boulter J, O’Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D, Heinemann S, Patrick J (1990) Alpha3, alpha5 and beta4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265: 4472–4482

    PubMed  CAS  Google Scholar 

  • Boyd RT (1994) Sequencing and promoter analysis of the genomic region between the rat neuronal nicotinic acetylcholine receptor beta4 and alpha3 genes. J Neurobiol 25:960–973

    PubMed  CAS  Google Scholar 

  • Boyd RT, Jacob MH, Couturier S, Ballivet M, Berg DK (1988) Expression and regulation of neuronal acetylcholine receptor mRNA in chick ciliary ganglia. Neuron 1:495–502

    PubMed  CAS  Google Scholar 

  • Brenner HR, Martin AR (1976) Reduction in acetylcholine sensitivity of axotomized ciliary ganglion cells. J Physiol 260:159–175

    PubMed  CAS  Google Scholar 

  • Britto LR, Torrao AS, Hamassaki-Britto DE, Mpodozis J, Keyser KT, Lindstrom JM, Karten HJ (1994) Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system. J Comp Neurol 350:473–484

    PubMed  CAS  Google Scholar 

  • Carrasco-Serrano C, Campos-Caro A, Viniegra S, Ballesta JJ, Criado M (1998) GC-and E-box motifs as regulatory elements in the proximal promoter region of the neuronal nicotinic receptor alpha7 subunit gene. J Biol Chem 273:20021–20028

    PubMed  CAS  Google Scholar 

  • Chahine KG, Walke W, Goldman D (1992) A 102 base pair sequence of the nicotinic acetylcholine receptor delta-subunit gene confers regulation by muscle electrical activity. Development 115:213–219

    PubMed  CAS  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel expression to neurons. Cell 80:949–957

    PubMed  CAS  Google Scholar 

  • Claudio T, Ballivet M, Patrick J, Heinemann S (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc Natl Acad Sci 80:1111–1115

    PubMed  CAS  Google Scholar 

  • Conroy WG, Berg DK (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J Biol Chem 270:4424–4431

    PubMed  CAS  Google Scholar 

  • Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235–238

    PubMed  CAS  Google Scholar 

  • Corriveau RA, Berg DK (1993) Coexpression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development. J Neurosci 13: 2662–2671

    PubMed  CAS  Google Scholar 

  • Corriveau RA, Romano SJ, Conroy WG, Oliva L, Berg DK (1995) Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development. J Neurosci 15:1372–1383

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Cline HT, Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci 13:129–154

    PubMed  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990a) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5:847–856

    PubMed  CAS  Google Scholar 

  • Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J, Ballivet M, Bertrand D (1990b) Alpha5, alpha3 and beta4. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol Chem 265: 17560–17567

    PubMed  CAS  Google Scholar 

  • Criado M, Dominguez del Toro E, Carrasco-Serrano C, Smillie FI, Juiz JM, Viniegra S., Ballestra JJ (1997) Differential expression of alpha-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor Egr-1. J Neurosci 17:6554–6564

    PubMed  CAS  Google Scholar 

  • Daubas P, Devillers-Thiery A, Geoffroy B, Martinez S, Bessis A, Changeux JP (1990) Differential expression of the neuronal acetylcholine receptor alpha2 subunit gene during chick brain development. Neuron 5:49–60

    PubMed  CAS  Google Scholar 

  • Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) Beta3: a new member of nicotinic acetylcholine receptor gene family is expressed in the brain. J Biol Chem 264:6268–6272

    PubMed  CAS  Google Scholar 

  • Devay P, Qu X, Role L (1994) Regulation of nAChR subunit gene expression relative to the development of pre-and postsynaptic projections of embryonic chick sympathetic neurons. Dev Biol 162:56–70

    PubMed  CAS  Google Scholar 

  • Devillers-Thiery A, Giraudat J, Bentaboulet M, Changeux JP (1983) Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc Natl Acad Sci 80:2067–2071

    PubMed  CAS  Google Scholar 

  • Devillers-Thiery A, Galzi JL, Eisele JL, Bertrand S, Bertrand D, Changeux JP (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membr Biol 136:97–112

    PubMed  CAS  Google Scholar 

  • Dowling JE (1987) The retina. Cambridge, MA: Belknap Press of Harvard University Press

    Google Scholar 

  • Du Q, Melnikova IN, Gardner P (1998) Differential effects of heterogeneous nuclear ribonucleoprotein K on Spl-and Sp3-mediated transcriptional activation of a neuronal nicotinic acetylcholine receptor promoter. J Biol Chem 273:19877–19883

    PubMed  CAS  Google Scholar 

  • Duclert A, Savatier N, Changeux JP (1993) A 83-nucleotide promoter of the acetylcholine receptor epsilon-subunit gene confers preferential synaptic expression in mouse muscle. Proc Natl Acad Sci 90:3043–3047

    PubMed  CAS  Google Scholar 

  • Durr I, Nürnberger M, Berberich C Witzemann V (1994) Characterization of the functional role of E box elements for the transcriptional activity of rat acetylcholine receptor epsilon-subunit and gamma-subunit gene promoters in primary muscle cell cultures. Eur J Biochem 224:353–364

    PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187

    PubMed  CAS  Google Scholar 

  • Fornasari D, Battaglioli E, Flora A, Terzano S, Clementi F (1997) Structural and functional characterization of the human alpha3 nicotinic subunit gene promoter. Mol Pharmacol 51:250–261

    PubMed  CAS  Google Scholar 

  • Forsayeth JR, Kobrin E (1997) Formation of oligomers containing the beta3 and beta4 subunits in the rat nicotinic receptor. J Neurosci 17:1531–1538

    PubMed  CAS  Google Scholar 

  • Fucile S, Barabino B, Palma E, Grassi F, Limatola C, Mileo AM, Alema S, Ballivet M, Eusebi F (1997) Alpha5 subunit forms functional alpha3/beta4/alpha5 nAChRs in transfected human cells. Neuroreport 8:2433–2436

    PubMed  CAS  Google Scholar 

  • Fucile S, Matter JM, Erkman L, Ragozzino D, Barabino B, Grassi F, Alema S, Ballivet M, Eusebi F (1998) The neuronal alpha6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. Eur J Neurosci 10:172–178

    PubMed  CAS  Google Scholar 

  • Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505

    PubMed  CAS  Google Scholar 

  • Gilbert W, de Souza SJ, Long M (1997) Origin of genes. Proc Natl Acad Sci 94: 7698–76703

    PubMed  CAS  Google Scholar 

  • Gilmour BP, Fanger GR, Newton C, Evans SM, Gardner PD (1991) Multiple binding sites for myogenic regulatory factors are required for expression of the acetylcholine receptor gamma-subunit gene. J Biol Chem 266:19871–19874

    PubMed  CAS  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Progress Neurobiol 53:199–237

    CAS  Google Scholar 

  • Groot-Kormerlink PJ, Luyten WH, Colquhoun D, Sivilotti LG (1998) A reporter mutation approach shows incorporation of the orphan subunit beta3 into a functional nicotinic receptor. J Biol Chem 273:15317–15320

    Google Scholar 

  • Gross A, Ballivet M, Rungger D, Bertrand D (1991) Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: role of the alpha subunit in agonist sensitivity and desensitization. Pflugers Arch 419:545–551

    PubMed  CAS  Google Scholar 

  • Hamassaki-Britto DE, Gardino PF, Hokoc JN, Keyser KT, Karten HJ, Lindstrom JM, Britto LR (1994) Differential development of alpha-bungarotoxin-sensitive and alpha-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina. J Comp Neurol 347:161–170

    PubMed  CAS  Google Scholar 

  • Hermans-Borgmeyer I, Hoffmeister S, Sawruk E, Betz H, Schmitt B, Gundelfinger ED (1989) Neuronal acetylcholine receptors in Drosophila: mature and immature transcripts of the ard gene in the developing central nervous system. Neuron 2:1147–1156

    PubMed  CAS  Google Scholar 

  • Hernandez MC, Erkman L, Matter-Sadzinski L, Roztocil T, Baliivet M, Matter JM (1995) Characterization of the nicotinic acetylcholine receptor beta3 gene: its regulation within the avian nervous system is effected by a promoter 143 bp in length. J Biol Chem 270:3224–3233

    PubMed  CAS  Google Scholar 

  • Hieber V, Agranoff BW, Goldman D (1992) Target-dependent regulation of retinal nicotinic acetylcholine receptor and tubulin mRNAs during optic nerve regeneration in goldfish. J Neurochem 58:1009–1015

    PubMed  CAS  Google Scholar 

  • Hoover F, Goldman D (1992) Temporally correlated expression of nAChR genes during development of the mammalian retina. Exp Eye res 54:561–571

    PubMed  CAS  Google Scholar 

  • Holt CE, Garlick N, Cornel E (1990) Lipofection of cDNA in the embryonic vertebrate central nervous system. Neuron 4:203–214

    PubMed  CAS  Google Scholar 

  • Howard, MJ, Gershon MD, and Margiotta JF (1995) Expression of nicotinic acetylcholine receptors and subunit mRNA transcripts in cultures of neural crest cells. Dev Biol 170:479–495

    PubMed  CAS  Google Scholar 

  • Hu M, Bigger CB, Gardner PD (1995) A novel regulatory element of a nicotinic acetylcholine receptor gene interacts with DNA binding activity enriched in rat brain. J Biol Chem 270:4497–4502

    PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    PubMed  CAS  Google Scholar 

  • Jacob MH (1991) Acetylcholine receptor expression in developing chick ciliary ganglion neurons. J Neurosci 11:1701–1712

    PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK (1987) Effects of preganglionic denervation and postganglionic axotomy on acetylcholine receptors in the chick ciliary ganglion. J Cell Biol 105:1847–1854

    PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK (1988) The distribution of acetylcholine receptors in chick ciliary ganglion neurons following disruption of ganglionic connections. J Neurosci 8:3838–3849

    PubMed  CAS  Google Scholar 

  • Jia HT, Tsay HJ, Schmidt J (1992) Analysis of binding and activating functions of the chick muscle acetylcholine receptor gamma-subunit upstream sequence. Cell Mol Neurobiol 12:241–258

    PubMed  CAS  Google Scholar 

  • Kandier K, Katz LC (1995) Neuronal coupling and uncoupling in the developing nervous system. Curr Opin Neurobiol 5:98–105

    Google Scholar 

  • Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY, Jan YN, Vetter ML (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19:981–994

    PubMed  CAS  Google Scholar 

  • Kao PN, Karlin A (1986) Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues. J Biol Chem 261:8085–8088

    PubMed  CAS  Google Scholar 

  • Keyser KT, Britto LRG, Schoepfer R, Whiting P, Cooper J, Conroy W, Brozozowska-Prechtl A, Karten HJ, Lindstrom J (1993) Three subtypes of alpha-bungarotoxin-sensitive. nicotinic acetylcholine receptors are expressed in chick retina. J Neurosci 13:442–454

    PubMed  CAS  Google Scholar 

  • Koike S, Schaeffer L, Changeux JP (1995) Identification of a DNA element determining synaptic expression of the mouse acetylcholine receptor delta-subunit gene. Proc Natl Acad Sci 92:10624–10628

    PubMed  CAS  Google Scholar 

  • Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9:37–44

    PubMed  CAS  Google Scholar 

  • Lankford KL, DeMello FG, Klein WL (1988) D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sci 85:2839–2843

    PubMed  CAS  Google Scholar 

  • Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H (1989) MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831

    PubMed  CAS  Google Scholar 

  • Lauder JM (1993) Neurotransmitter as growth regulatory signals: role of receptors and second messengers. Trends Neurosci 16:233–240

    PubMed  CAS  Google Scholar 

  • Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neuro-biol 7:13–20

    Google Scholar 

  • Le Novere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40:155–172

    PubMed  Google Scholar 

  • Le Novere N, Zoli M, Changeux JP (1996) Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428–2439

    PubMed  Google Scholar 

  • Lipton SA, Aizenman E, Loring RH (1987) Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflugers Arch 410:37–3

    PubMed  CAS  Google Scholar 

  • Lipton SA, Kater SB (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12:265–270

    PubMed  CAS  Google Scholar 

  • Luhring H, Witzemann V (1995) Internodal cells of the giant green alga Chara as an expression system for ion channels. FEBS Lett 361:65–69

    PubMed  CAS  Google Scholar 

  • McDonough J, Deneris E (1997) beta43’: an enhancer displaying neural-restricted activity is located in the 3’-untranslated exon of the rat nicotinic acetylcholine receptor beta4 gene. J Neurosci 17:2273–2283

    PubMed  CAS  Google Scholar 

  • McEachern AE, Jacob MH, Berg DK (1989) Differential effects of nerve transection on the ACh and GABA receptors of chick ciliary ganglion neurons. J Neurosci 9:3899–3907

    PubMed  CAS  Google Scholar 

  • McGehee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS presynaptic receptors. Science 269:1692–1696

    PubMed  CAS  Google Scholar 

  • Mandel G, McKinnon D (1993) Molecular basis of neural-specific gene expression. Annu Rev Neurosci 16:323–345

    PubMed  CAS  Google Scholar 

  • Mandelzys A, Pie B, Deneris ES, Cooper E (1994) The developmental increase in ACh current densities on rat sympathetic neurons correlates with changes in nicotinic ACh receptor alpha-subunit gene expression and occurs independent of innervation. J. Neurosci 14:2357–2364

    CAS  Google Scholar 

  • Matter JM, Matter-Sadzinski L, Ballivet M (1990) Expression of neuronal nicotinic acetylcholine receptor genes in the developing chick visual system. EMBO J 9:1021–1026

    PubMed  CAS  Google Scholar 

  • Matter JM, Matter-Sadzinski L, Ballivet M (1995) Activity of the beta3 nicotinic receptor promoter is a marker of neuron fate determination during retina development. J Neurosci 15:5919–5928

    PubMed  CAS  Google Scholar 

  • Matter-Sadzinski L, Hernandez MC, Roztocil T, Ballivet M, Matter JM (1992) Neuronal specificity of the alpha7 nicotinic acetylcholine receptor promoter develops during morphogenesis of the central nervous system. EMBO J 11: 4529–538

    PubMed  CAS  Google Scholar 

  • Mattson MP (1988) Neurotransmitters in the regulation of neuronal architecture. Brain Res Rev 13:179–212

    CAS  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–11

    PubMed  CAS  Google Scholar 

  • Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ (1992) A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9:1–10

    Google Scholar 

  • Myers SJ, Peters J, Huang Y, Comer MB, Barthel, F, Dingledine R (1998) Transcriptional regulation of the GluR2 gene: Neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 18:6723–6739

    PubMed  CAS  Google Scholar 

  • Nef P, Mauron A, Stalder R, Alliod C, Ballivet M (1984) Structure, linkage and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor. Proc Natl Acad Sci 81:7975–7979

    PubMed  CAS  Google Scholar 

  • Nef P, Oneyser C, Alliod C, Couturier S, Ballivet M (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J 7: 595–601

    PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797

    PubMed  CAS  Google Scholar 

  • Nurnberger M, Durr I, Kues W, Koenen M, Witzemann V (1991) Different mechanisms regulate muscle-specific AChR gamma-and epsilon-subunit gene expression. EMBO J 10:2957–2964

    Google Scholar 

  • Palm K, Belluardo N, Metsis M, Timmusk T (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J Neurosci 18:1280–1296

    PubMed  CAS  Google Scholar 

  • Piette J, Bessereau JL, Huchet M, Changeux JP (1990) Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature 345:353–355

    PubMed  CAS  Google Scholar 

  • Prody CA, Merlie JP (1991) A developmental and tissue-specific enhancer in the mouse skeletal muscle acetylcholine receptor alpha-subunit gene regulated by myogenic factors. J Biol Chem 266:22588–22596

    PubMed  CAS  Google Scholar 

  • Prody CA, Merlie JP (1992) The 5’-flanking region of the mouse muscle nicotinic acetylcholine receptor beta-subunit gene promotes expression in cultured muscle cells and is activated by MRF4, Myogenin and MyoD. Nucleic Acids Res 20:2367–2372

    PubMed  CAS  Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1456

    PubMed  CAS  Google Scholar 

  • Raimondi E, Rubboli F, Moralli D, Chini B, Fornasari D, Tarroni P, De Carli L, Clementi F (1992) Chromosomal localization and physical linkage of the genes encoding the human alpha3, alpha5, and beta4 neuronal nicotinic receptor subunits. Genomics 12:849–850

    PubMed  CAS  Google Scholar 

  • Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of the alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351

    PubMed  CAS  Google Scholar 

  • Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    PubMed  CAS  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    PubMed  CAS  Google Scholar 

  • Roztocil T, Matter-Sadzinski L, Alliod C, Ballivet M, Matter JM (1997) NeuroM, a neuronal helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124:3263–3272

    PubMed  CAS  Google Scholar 

  • Roztocil T, Matter-Sadzinski L, Gomez M, Ballivet M, Matter JM (1998) Functional properties of the neuronal nicotinic acetylcholine receptor beta3 promoter in the developing central nervous system. J Biol Chem 273:15131–15137

    PubMed  CAS  Google Scholar 

  • Ryan AK, Rosenfeld MG (1997) POU domain family values:flexibility, partnerships, and developmental codes. Genes Dev 11:1207–1225

    PubMed  CAS  Google Scholar 

  • Sakman B, Methfessel C, Mishina M, Takahashi T, Takai T, Kurasaki M, Fukuda K, Numa S (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543

    Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995a) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995b) Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol 5:566–571

    PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci 93:9881–9886

    PubMed  CAS  Google Scholar 

  • Schwartz Levey M, Brumwell CL, Dryer SE, Jacob MH (1995) Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14:153–162

    Google Scholar 

  • Simon AM, Burden SJ (1993) An E box mediates activation and repression of the acetylcholine receptor delta-subunit gene during myogenesis. Mol Cell Biol 13:5133–5140

    PubMed  CAS  Google Scholar 

  • Smith J, Fauquet M, Ziller C, Le Douarin NM (1979) Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Nature 282:853–855

    PubMed  CAS  Google Scholar 

  • Spira AW, Millar TJ, Ishimoto I, Epstein ML, Johnson CD, Dahl JL, Morgan IG (1987) Localization of choline acetyltransferase-like immunoreactivity in the embryonic chick retina. J Comp Neuro 260:526–538

    CAS  Google Scholar 

  • Spitzer NC (1991) A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J Neurobiol 22:659–673

    PubMed  CAS  Google Scholar 

  • Sumikawa K, Houghton M, Smith JC, Bell L, Richards BM, Barnard EA (1982) The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acids Res 10:5809–5822

    PubMed  CAS  Google Scholar 

  • van Hooft JA, Spier AD, Yakel JL, Lummis SCR, Vijverberg HPM (1998) Promiscuous coassembly of serotonin 5HT3 and nicotinic alpha4 receptor subunits into into Ca2+-permeable ion channels. Proc Natl Acad Sci 95:11456–11461

    PubMed  Google Scholar 

  • Vogel Z, Nirenberg M (1976) Localization of acetylcholine receptors during synaptogenesis in retina. Proc Natl Acad Sci 73:1806–1810

    PubMed  CAS  Google Scholar 

  • von der Kammer H, Mayhaus M, Albrecht C, Enderich J, Wegner M, Nitsch RM (1998) Muscarinic acetylcholine receptors activate expression of the Egr gene family of transcription factors. J Biol Chem 273:14538–14544

    PubMed  Google Scholar 

  • Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2 and beta4 subunits. J Biol Chem 271:17656–17665

    PubMed  CAS  Google Scholar 

  • Wang XM, Tsay HJ, Schmidt J (1990) Expression of the acetylcholine receptor deltasubunit gene in differentiating chick muscle cells is activated by an element that contains two 16 bp copies of a segment of the alpha-subunit enhancer. EMBO J 9:783–790

    PubMed  CAS  Google Scholar 

  • Wang Y, Xu HP, Wang M, Ballivet M, Schmidt J (1988) A cell type-specific enhancer drives expression of the chick muscle acetylcholine receptor alpha-subunit gene. Neuron 1:527–534

    PubMed  CAS  Google Scholar 

  • Whiting PJ, Schoepfer R, Conroy WG, Gore MJ, Keyser KT, Shimasaki S, Esch F, Lindstrom JM (1991) Expression of nicotinic acetylcholine receptor subtypes in brain and retina. Mol Brain Res 10:61–70

    PubMed  CAS  Google Scholar 

  • Wong ROL (1993) The role of spatio-temporal firing patterns in neuronal development of sensory systems. Curr Opin Neurobio 3:595–601

    CAS  Google Scholar 

  • Wong ROL (1995) Cholinergic regulation of [Ca2+]i during cell division and differentiation in the mammalian retina. J Neurosci 15:2696–2706

    PubMed  CAS  Google Scholar 

  • Wong WT, Sanes JR, Wong ROL (1998) Developmentally regulated spontaneous activity in embryonic chick retina J Neurosci 18:8839–8852

    PubMed  CAS  Google Scholar 

  • Yang X, McDonough J, Fyodorov D, Morris M, Wang F Deneris ES (1994) Characterization of an acetylcholine receptor alpha3 gene promoter and its activation by the POU domain factor SCIP/Tst-1. J Biol Chem 269:10252–10264

    PubMed  CAS  Google Scholar 

  • Yang X, Fyodorov D, Deneris ES (1995) Transcriptional analysis of acetylcholine receptor alpha3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem 270: 8514–8520

    PubMed  CAS  Google Scholar 

  • Zoli M, Le Novère N, Hill JA, Changeux JP (1995) Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 15:1912–1939

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matter, JM., Ballivet, M. (2000). Gene Structure and Transcriptional Regulation of the Neuronal Nicotinic Acetylcholine Receptors. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics