Skip to main content

Properties of Heterologously and Lipid Bilayer Reconstituted Nicotinic Acetylcholine Receptors

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

In their efforts to throw light on the complex phenomena occurring in living cells, scientists are always looking for simplified experimental systems with controlled parameters and a limited number of variables; however, one of the factors limiting this approach is the extent to which the selected experimental model reflects “reality”. The study of the movement of molecules and ions across cell membranes has greatly benefited from the forced formation of a simplified membrane consisting of various lipids that can incorporate enzymatic systems and transmembrane channel proteins. It has long been known that, when phospholipids come into contact with water, they spontaneously form structures resembling cell membranes, even in the presence of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addona G, Sandermann Jr, H, Kloczewiak M, Husain S, Miller K (1998) Where does cholesterol act during activation of the nicotinic acetylcholine receptor?. Biochem Biophys Acta 1330:299–309

    Google Scholar 

  • Alkondon M, Reinhardt S, Lobron C, Hermsen B, Maelicke A, Albuquerque EX (1994) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons II. The rundown and inward rectification of agonist elicited whole-cell currents and identification of receptor subunits by in situ hybridisation. J Pharmacol Exp Ther 271:494–506

    PubMed  CAS  Google Scholar 

  • Barrantes FJ (1993) Structure-functional correlates of nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J 7:1460–1467

    PubMed  CAS  Google Scholar 

  • Bell J, Miller C (1984) Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophys J 45:279–287

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Bertrand DS, Ballivet M (1992) Pharmacological properties of the homomeric α7 receptor. Neurosci lett 146:87–90

    Article  PubMed  CAS  Google Scholar 

  • Bonfante-Cabarcas R, Swanson KL, Alkondon M, Albuquerque EX (1996) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. IV Regulation by external Ca++ of α-Bungarotoxin-sensitive receptor function and of rectification induced by internal Mg++ J. Pharmacol and Exp Ther, 277:432–44

    CAS  Google Scholar 

  • Camacho P, LiuY, Mandel G, Brehm P (1993) The epsilon subunit confers fast channel gating on multiple classes of acetylcholine receptors. J Neurosci, 13:605–613

    PubMed  CAS  Google Scholar 

  • Caratsch CG, Grassi F, Eusebi F (1992) Functional regulation of nicotinic acetylcholine receptor channels in muscle. Ion Channels 3:177–206

    Article  PubMed  CAS  Google Scholar 

  • Cecchi X, Alvarez, O, Latorre, R (1981) A three-barrier model for the hemocyanin channel. J Gen Physiol 66:535–544

    Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmental regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron, 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Cuevas J, Berg D (1998) Mammalian nicotinic receptors with α7 subunits that slowly desensitise and rapidly recover from a bungarotoxin blockade. J Neurosci 18:10335–10344

    PubMed  CAS  Google Scholar 

  • Eusebi F, Grassi F, Molinaro M, Zani BM (1987) Acetylcholine regulation of nicotinic receptor channels through a putative G protein in chick myotubes. J Physiol (Lond) Dec 393:635–645

    CAS  Google Scholar 

  • Eusebi F, Farini D, Grassi F, Monaco L, Ruzzier F (1998) Effects of calcitonin generelated peptide on synaptic acetylcholine receptor-channels in rat muscle fibres. Proc R Soc Lond B Biol Sci 234(1276):333–342

    Article  Google Scholar 

  • Favre I, Sun Y-M, Moczydlowski E (1998) Reconstitution of native and cloned channels into planar bilayer. Methods in Enzymology 284:287–304

    Google Scholar 

  • Fernandez-Ballester G, Castresana J, Fernandez AM, Arrondo JL, Ferragut JA, Gonzalez-Ros JM (1994) A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Biochemistry 33:4065–4071

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Montiel A, Montai M, Diaz-Munoz M, Montai M (1991) Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc Natl Acad Sci USA 88:10213–10217

    Article  PubMed  CAS  Google Scholar 

  • Forster I, Bertrand D (1995) Inward rectification of neuronal nicotinic acetylcholine receptors investigated by using the homomeric al receptor. Proc R Soc Lond 260:139–148

    Article  CAS  Google Scholar 

  • Fucile S, Barabino B, Palma E, Grassi F, Limatola C, Mileo A, Alemà S, Ballivet M, Eusebi F (1997) α5 Subunit forms functional α3β4α6 nAChRs in transfected human cells. Neuroreport 8:2433–2436

    Article  PubMed  CAS  Google Scholar 

  • Fucile S, Mileo AM, Grassi F, Salvatore AM, Alema S, Eusebi F (1996) Identification of a determinant of acetylcholine receptor gating kinetics in the extracellular portion of the gamma subunit. Eur J Neurosci 8:2564–2570

    Article  PubMed  CAS  Google Scholar 

  • Fucile S, Matter J-M, Erkman L, Ragozzino D, Barabino B, Grassi F, Alemà S, Ballivet M, Eusebi F (1998) The neuronal α6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. Eur J Neurosci. 10:172–178

    Article  PubMed  CAS  Google Scholar 

  • Gerzanich V, Kuryatov R, Anand R, Fletcher S, Lindstrom J (1997) “Orphan” α6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor. Mol Pharmacol 51:320–327

    PubMed  CAS  Google Scholar 

  • Gotti C, Esparis Ogando A, Hanke W, Schlue R, Moretti M, Clementi F (1991) Purification and characterisation of an α-Bungarotoxin receptor that forms a functional nicotinic channel. Proc Natl Acad Sci USA 88:3258–3262

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Hanke W, Maury K, Moretti M, Ballivet M, Clementi F, Bertrand D (1994) Pharmacology and biophysical properties of αl and αl-α8 αdBungarotoxin receptor subtypes immunopurified from chick optic lobe. Eur J Neurosci 6:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997a) Human neuronal nicotinic acetylcholine receptors. Progress in Neurobiology 53:199–237

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Moretti M, Maggi R, Longhi R, Hanke W, Klinke N, Clementi F (1997b) α7 and α8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur J Neurosci 9:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Grassi F, Bouche M, Aguanno S, Molinaro M, Eusebi F (1987) Single acetylcholine-activated channels in cultured rhabdomyoblasts. Exp Cell Res 171:498–502

    Article  PubMed  CAS  Google Scholar 

  • Grassi F, Palma E, Mileo AM, Eusebi F (1995) The desensitization of the embryonic mouse muscle acetylcholine receptor depends on the cellular environment. Pflugers Arch 1 430:787–94

    Article  CAS  Google Scholar 

  • Grassi F, Epifano O, Mileo AM, Barabino B, Eusebi F (1998) The open duration of fetal ACh receptor-channel changes during mouse muscle development. J Physiol (Lond) 508:393–400

    Article  CAS  Google Scholar 

  • Groove A, Tomich JM, Montai P (1992) Molecular design of oligomeric channel proteins Genet Eng 14:163–184

    Article  Google Scholar 

  • Gu Y, Franco A Jr, Gardner PD, Lansman JB, Forsayeth JR, Hall ZW (1990) Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron 5:147–157

    Article  PubMed  CAS  Google Scholar 

  • Haghighi A, Cooper E (1998) Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci 18:4050–4062

    PubMed  CAS  Google Scholar 

  • Hanke W (1985) Reconstitution of ion channels CRC Crit Rev Biochem 19:1–44

    Article  CAS  Google Scholar 

  • Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayer. Nature 321:171–174

    Article  PubMed  CAS  Google Scholar 

  • Hanke W, Breer H (1987) Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted in planar lipid bilayer. J Gen Physiol 90:855–879

    Article  PubMed  CAS  Google Scholar 

  • Hanke W, Schlue W (1993) Planar lipid bilayer: methods and applications. Academic Press, New York

    Google Scholar 

  • Henderson LP, Lechleiter JD, Brehm P (1987) Single channel properties of newly synthesized acetylcholine receptors following denervation of mammalian skeletal muscle. J Gen Physiol 89:999–1014

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Villaroel A, Witzemann V, Koenen M, Sakmann B (1996) Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. J Physiol 492:775–787

    PubMed  CAS  Google Scholar 

  • Hermsen B, Stetzer E, Thees R, Heirmann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt S, Maelike A (1998) Neuronal nicotinic receptors in the locust Locusta Migratoria. J Biol Chem 273:18394–18404

    Article  PubMed  CAS  Google Scholar 

  • Keyser K, Britto L, Schoepfer R, Withing P, Cooper J, Conroy W, Brozozowska-Prechtl A, Karten J, Lindstrom J (1992) Three subtypes of αBungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina J Neurosci 13:442–454

    Google Scholar 

  • Kullberg R, Owens JL, Camacho P, Mandel G, Brehm P (1990) Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes. Proc Natl Acad Sci USA 87:2067–2071

    Article  PubMed  CAS  Google Scholar 

  • Labarca P, Lindstrom J, Montai P (1984a) Acetylcholine receptor in planar lipid bilayers. Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers. J Gen Physiol 83:473–496

    Article  PubMed  CAS  Google Scholar 

  • Labarca P, Lindstrom J, Montai M (1984b) The acetylcholine receptor channel from Torpedo californica has two open states. J Neurosci 2:502–507

    Google Scholar 

  • Labarca P, Montai MS, Lindstrom J, Montai M (1985) The occurrence of long openings in the purified cholinergic receptor channel increases with acetylcholine concentration. J Neurosci 5:3409–3413

    PubMed  CAS  Google Scholar 

  • Labarca P, Latorre R (1992) Insertion of ion channels into planar lipid bilayers by vesicle fusion. Eds Rudy and Iversen In Methods in Enzimology, Academic Press, 207:447–63

    Article  CAS  Google Scholar 

  • Léna C, Changeux J-P (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr Op Neurobiol 7:674–682

    Article  PubMed  Google Scholar 

  • Lewis T, Harkness P, Silviotti L, Colquhoun D and Millar N (1997) The ion channel of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. J Physiol 505:299–306

    Article  PubMed  CAS  Google Scholar 

  • Le Novère N, Zoli M, Changeux J-P (1996) Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428–2439

    Article  PubMed  Google Scholar 

  • Lo DC, Pinkham JL, Stevens CF (1990) Influence of the gamma subunit and expression system on acetylcholine receptor gating. Neuron 5:857–866

    Article  PubMed  CAS  Google Scholar 

  • Marsal J, Tigyi G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl—channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci USA 92:5224–5228

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Buckingham S, Shingai R, Lunt G, Goosey M, Darlison M, Sattelle D, Barnard E (1990) Sequence and functional expression of a single α subunit of an insect nicotinic acetylcholine receptor. EMBO J 9:4391–4398

    PubMed  CAS  Google Scholar 

  • Miller C, ed, Ion channel Reconstitution; Plenum press, New York 1986

    Google Scholar 

  • Mishina M, Tobimatsu T, Imoto K, Tanaka K, Fujita Y, Fukuda K, Kurasaki M, Takahashi H, Morimoto Y, Hirose T, Inayama S, Takahashi T, Kuno M, Numa S (1985) Localization of functional regions of acetylcholine receptor alpha subunit by site-directed mutagenesis. Nature 313:364–369

    Article  PubMed  CAS  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    Article  PubMed  CAS  Google Scholar 

  • Montai M, Labarca P, Fredkin DR, Suarez-Isla BA (1984) Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes. Biophys J 45:165–174

    Article  Google Scholar 

  • Montai M, Muller P (1972) Formation of bimolecular membranes from lipid mono-layers and a study of their electric properties. Proc Natl Acad Sci USA 69:3561–3566

    Article  Google Scholar 

  • Morales A, Aleu J, Ivorra I, Ferragut JA, Gonzales-Ros Miledi R (1995) Incorporation of reconstituted acetylcholine receptors into the Xenopus oocytes membrane. Proc Natl Acad Sci USA 92:8468–8472

    Article  PubMed  CAS  Google Scholar 

  • Mueller P, Rudin D, Tien H, Wescott W (1962) Reconstitution of excitable cell membrane structure in vitro. Circulation 26:1167–1171

    Article  CAS  Google Scholar 

  • Ragozzino D, Fucile S, Giovannelli A, Grassi F, Mileo A, Alemà S, Eusebi F (1997) Functional properties of neuronal nicotinic acetylcholine receptor channels expressed in transfected human cells. Eur J of Neurosci 9:480–488

    Article  CAS  Google Scholar 

  • Rankin SE, Addona GH, Kloczewiak MA, Bugge B, Miller KW (1997) The cholesterol dependence of activation and fast desensitisation of the nicotinic receptor. Biophys J 73:2446–2455

    Article  PubMed  CAS  Google Scholar 

  • Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Bertrand S, Ballivet M, Changeux J-P (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–74

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443

    Article  PubMed  CAS  Google Scholar 

  • Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain α-Bungarotoxin binding protein cDNAs and M Abs reveal subtypes of this branch of the ligand ion channel gene superfamily. Neuron 5:35–48

    Article  PubMed  CAS  Google Scholar 

  • Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta 1108:240–246

    Article  PubMed  CAS  Google Scholar 

  • Tank D, Huganir R, Greengard P, Webb W (1983) Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor Proc Natl Acad Sci USA 80:5129–5133

    Article  PubMed  CAS  Google Scholar 

  • Tarelius E, Hanke W, Breer H (1990) Neuronal acetylcholine receptor channels from insects: a comparative study. J Comp Physiol A 167:521–526

    Google Scholar 

  • Vailati S, Hanke W, Bejan A, Barabino B, Longhi R, Balestra R, Moretti M, Clementi F, Gotti C (1999) Functional a6-containing nicotinic receptors are present in chick retina. Mol Pharmacol 56:11–19

    PubMed  CAS  Google Scholar 

  • Zanello LP, Aztiria E, Antollini S, Barrantes FJ (1996) Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys J 70:2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Vijayaraghavan S, Berg DK (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zwart R, Vijverberg H (1998) Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptors expressed in Xenopus laevis. Mol Pharmacol 54: 1124–1131

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gotti, C., Hanke, W., Clementi, F. (2000). Properties of Heterologously and Lipid Bilayer Reconstituted Nicotinic Acetylcholine Receptors. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics