Skip to main content

Neuronal Nicotinic Acetylcholine Receptors: From Biophysical Properties to Human Diseases

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

Receptors that mediate neurotransmission can be divided into two groups: the ionotropic and the metabotropic receptors. The ionotropic receptors, which mediate the fast transmission, present both ligand-binding domains and an ion channel and they are usually designed as “ligand-gated channels.” Following the binding of the neurotransmitter molecules, the channel opens and allows ions to flow across the membrane, which then displace the cell potential toward the electrochemical equilibrium of the permeable ions. Differently, metabotropic receptors display a binding site for the ligand that triggers protein-protein interactions or catalytic activities leading to the activation of second messenger pathways. Among the ligand-gated channels three main families are distinguished: the family of glutamate receptors (kainate/a-amino- 3-hydroxy-5-methyl-4-isoxazoleprionic acid, AMPA, and N-methyl-D- aspartate, NMDA), the family of the purinergic receptors, and the family of the nicotinic acetylcholine receptors (nAChRs). This last family includes the 7-aminobutyric acid (GABA)-A receptors, the glycine receptors, the serotoninergic 5-hydroxytryptophan (5-HT3) receptors, and the nAChRs (ORTELLS and LUNT 1995). Whilst the GABA and glycine receptors are selectively permeable to anions, the nAChRs and 5-HT3 receptors are selective for cations. The analysis of DNA sequences supports the notion that the nAChRs share a common evolutionary ancestor, probably homomeric, with the GABAA, the glycine, and the 5-HT3 receptors (LE NOVERE and CHANGEUX 1995; ORTELLS and LUNT 1995). According to this scheme it is supposed that throughout evolution, gene duplication and spontaneous mutations have progressively led to the emergence of the different receptor subtypes. All of the receptors that belong to this family result from the assembly of five subunits, each of which is a single protein with four transmembrane domains (BERTRAND and CHANGEUX 1995; GALZI and CHANGEUX 1995). To date, 11 neuronal nAChR subunits have been identified in the vertebrates: eight genes code for a subunits (a2-cc9) and three for non-a subunits identified as α2–α4 (LINDSTROM 1997; MCGEHEE and ROLE 1995). As described above, it is well accepted that the most ancient forms of nAChRs are the homo-oligomeric receptors: al-a9 (LE NOVERE and CHANGEUX 1995; ORTELLS and LUNT 1995). Predictions made from the DNA sequences suggest that the muscle receptor is a specialized and recent type of nAChR. The last bifurcation is supposed to have taken place shortly before the onset of the mammalian lineage (420 million years ago), paralleling the progressive increased complexity of the chordate nervous system, in particular the cholinergic systems (LE NOVERE and CHANGEUX 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR, Feltz A (1980a) End-plate channel opening and the kinetics of quinacrine (mepacrine) block. J Physiol (Lond) 306:283–306

    CAS  Google Scholar 

  • Adams PR, Feltz A (1980b) Quinacrine (mepacrine) action at frog end-plate. J Physiol (Lond) 306:261–281

    CAS  Google Scholar 

  • Arias HR (1995) Agonist-induced displacement of quinacrine from its binding site on the nicotinic acetylcholine receptor: plausible agonist membrane partitioning mechanism. Mol Membr Biol 12:339–347

    Article  PubMed  CAS  Google Scholar 

  • Arias HR, Johnson DA (1995) Differential agonist-induced displacement of quinacrine and ethidium from their respective histrionicotoxin-sensitive binding sites on the Torpedo acetylcholine receptor. Biochemistry 34:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Ballivet M, Rungger D (1990) Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus oocytes. Proc Natl Acad Sci USA 87:1993–1997

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Buisson B, Krause RM, Hu HY, Bertrand S (1997) Minireview. Electro-physiology: a method to investigate the functional properties of ligand-gated channels. J Recept Signal Transduct Res 17:227–242

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Changeux JP (1995) Nicotinic receptor: An allosteric protein specialized for intercellular communication. Seminars in Neuroscience 7:75–90

    Article  CAS  Google Scholar 

  • Bertrand D, Cooper E, Valera S, Rungger D, Ballivet M (1991a) Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNA. In: Conn M (ed) Methods in neuroscience, vol 4. Academic Press, New York, pp 174–193

    Google Scholar 

  • Bertrand D, Devillers-Thiery A, Revah F, Galzi JL, Hussy N, Mulle C, Bertrand S, Ballivet M, Changeux JP (1992) Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci USA 89:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci USA 90:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Valera S, Bertrand S, Ballivet M, Rungger D (1991b) Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 2:277–280

    Article  PubMed  CAS  Google Scholar 

  • Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D (1998) Properties of neuronal nicotinic acetylcholine receptor mutants from human suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 125:751–760

    Article  PubMed  CAS  Google Scholar 

  • Bonfante-Cabarcas R, Swanson KL, Alkondon M, Albuquerque EX (1996) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. IV. Regulation by external Ca++ of alpha-bungarotoxin-sensitive receptor function and of rectification induced by internal Mg++. J Pharmacol Exp Ther 277:432–444

    PubMed  CAS  Google Scholar 

  • Boulter J, O’Shea GA, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D, et al. (1990) Alpha 3, alpha 5, and beta 4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482

    PubMed  CAS  Google Scholar 

  • Bouzat C, Barrantes FJ (1993) Hydrocortisone and 11-desoxycortisone modify acetylcholine receptor channel gating. Neuroreport 4:143–146

    Article  PubMed  CAS  Google Scholar 

  • Bouzat C, Barrantes FJ (1996) Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone. Possible allosteric mechanism of channel blockade. J Biol Chem 271:25835–25841

    Article  PubMed  CAS  Google Scholar 

  • Bouzat C, Roccamo AM, Garbus I, Barrantes FJ (1998) Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Mol Pharmacol 54:146–153

    PubMed  CAS  Google Scholar 

  • Buisson B, Bertrand D (1998) Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563

    PubMed  CAS  Google Scholar 

  • Buisson B, Curtis L, Bertrand D (1999) Neuronal nicotinic acetylcholine receptor and epilepsy. In: Berkovic S, Genton P, Hirsch E, Picard F (eds) Genetics of focal epilepsies. John Libbey, London, pp 187–202

    Google Scholar 

  • Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D (1996) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. J Neurosci 16:7880–7891

    PubMed  CAS  Google Scholar 

  • Buisson B, Gopalakrishnan M, Bertrand D (1998) Stable expression of human neuronal nicotinic receptors. In: Arneric SP, Brioni JD (eds) Neuronal nicotinic receptors: pharmacology and therapeutic opportunities. John Wiley&Sons, New York, pp 99–124

    Google Scholar 

  • Changeux JP (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. In: Changeux JP, Llinàs RR, Purves D, Bloom FE (eds) Fidia research foundation neuroscience award lectures, vol 4. Raven Press, New York, pp 21–168

    Google Scholar 

  • Changeux JP, Edelstein SJ (1998) Allosteric receptors after 30 years. Neuron 21:959–980

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Kasai M, Lee CY (1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA 67:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Charnet P, Labarca C, Leonard RJ, Vogelaar NJ, Czyzyk L, Gouin A, Davidson N, Lester HA (1990) An open-channel blocker interacts with adjacent turns of alpha-helices in the nicotinic acetylcholine receptor. Neuron 4:87–95

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H] acetylcholine, [3H] nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Conroy WG, Berg DK (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. Journal of Biological Chemistry 270:4424–4431

    Article  PubMed  CAS  Google Scholar 

  • Conroy WG, Berg DK (1998) Nicotinic receptor subtypes in the developing chick brain: appearance of a species containing the alpha4, beta2, and alpha5 gene products. Molecular Pharmacology 53:392–401

    PubMed  CAS  Google Scholar 

  • Corringer PJ, Bertrand S, Bohler S, Edelstein SJ, Changeux JP, Bertrand D (1998) Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J Neurosci 18:648–657

    PubMed  CAS  Google Scholar 

  • Corringer PJ, Bertrand S, Galzi JL, Devillers-Thiéry AL, Changeux JP, Bertrand D (1999) Mutational analysis of the charge selectivity filter of the a7 nicotinic acetylcholine receptor. Neuron 22:831–843

    Article  PubMed  CAS  Google Scholar 

  • Corringer PJ, Galzi JL, Eisele JL, Bertrand S, Changeux JP, Bertrand D (1995) Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor. J Biol Chem 270:11749–11752

    Article  PubMed  CAS  Google Scholar 

  • Court J, Clementi F (1995) Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord 9:6–14

    Article  PubMed  Google Scholar 

  • Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990a) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J, Ballivet M, Bertrand D (1990b) Alpha 5, alpha 3, and non-alpha 3.Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol Chem 265:17560–17567

    PubMed  CAS  Google Scholar 

  • Deutch AY, Holliday J, Roth RH, Chun LL, Hawrot E (1987) Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain. Proc Natl Acad Sci USA 84:8697–8701

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiery A, Galzi JL, Bertrand S, Changeux JP, Bertrand D (1992) Stratified organization of the nicotinic acetylcholine receptor channel. Neuroreport 3: 1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Drasdo A, Caulfield M, Bertrand D, Bertrand S, Wonnacott S (1992) Methyllycaconitine: a novel nicotinic antagonist. Mol Cell Neurosci 3:237–243

    Article  PubMed  CAS  Google Scholar 

  • Edelstein SJ, Schaad O, Henry E, Bertrand D, Changeux JP (1996) A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol Cybern 75:361–379

    Article  PubMed  CAS  Google Scholar 

  • Eiselé JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities [see comments]. Nature 366:479–83

    Article  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Elliott KJ, Ellis SB, Berckhan KJ, Urrutia A, Chavez-Noriega LE, Johnson EC, Velicelebi G, Harpold MM (1996) Comparative structure of human neuronal alpha 2-alpha 7 and beta 2-beta 4 nicotinic acetylcholine receptor subunits and functional expression of the alpha 2, alpha 3, alpha 4, alpha 7, beta 2, and beta 4 subunits. J Mol Neurosci 7:217–228

    Article  PubMed  CAS  Google Scholar 

  • Engel AG, Ohno K, Milone M, Sine SM (1998) Congenital myasthenie syndromes. New insights from molecular genetic and patch-clamp studies. Ann NY Acad Sci 841:140–156

    Article  PubMed  CAS  Google Scholar 

  • Figl A, Cohen BN, Quick MW, Davidson N, Lester HA (1992a) Regions of beta 4.beta 2 subunit chimeras that contribute to the agonist selectivity of neuronal nicotinic receptors. FEBS Lett 308:245–248

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Forsayeth JR, Kobrin E (1997) Formation of oligomers containing the beta3 and beta4 subunits of the rat nicotinic receptor. J Neurosci 17:1531–1538

    PubMed  CAS  Google Scholar 

  • Forster I, Bertrand D (1995) Inward rectification of neuronal nicotinic acetylcholine receptors investigated by using the homomeric alpha 7 receptor. Proc R Soc Lond B Biol Sci 260:139–148

    Article  CAS  Google Scholar 

  • Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996a) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J 15:5824–5832

    PubMed  CAS  Google Scholar 

  • Galzi JL, Changeux JP (1995) Neuronal nicotinic receptors: Molecular organization and regulations. Neuropharmacology 34:563–582

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Edelstein SJ, Changeux J (1996b) The multiple phenotypes of allosteric receptor mutants. Proc Natl Acad Sci USA 93:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Revah F, Black D, Goeldner M, Hirth C, Changeux JP (1990) Identification of a novel amino acid α-Tyr 93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three-loop model of the acetyl-choline binding site. J Biol Chem 265:10430–10437

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan M, Buisson B, Tourna E, Giordano T, Campbell JE, Hu IC, Donnelly-Roberts D, Arneric SP, Bertrand D, Sullivan JP (1995) Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor. Eur J Pharmacol Mol Pharmacol Sec 290:237–246

    Article  CAS  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53:199–237

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Hanke W, Maury K, Moretti M, Ballivet M, Clementi F, Bertrand D (1994) Pharmacology and biophysical properties of alpha 7 and alpha 7-alpha 8 alphabungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur J Neurosci 6:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Haghighi AP, Cooper E (1998) Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci 18:4050–4062

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E, Gorbounova O, Seiger A, Mousavi M, Nordberg A (1998) Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord. Brain Res Dev Brain Res 108:147–160

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ion channels of excitable membranes, Sinauer Association, Sunderland, Mass

    Google Scholar 

  • Horti A, Scheffel U, Stathis M, Finley P, Ravert HT, London ED, Dannais RF (1997) Fluorine-18-FPH for PET imaging of nicotinic acetylcholine receptors. J Nucl Med 38:1260–1265

    PubMed  CAS  Google Scholar 

  • Houghtling RA, Davilagarcia MI, Kellar KJ (1995) Characterization of (+/-)-[H-3]Epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol Pharmacol 48:280–287

    PubMed  CAS  Google Scholar 

  • Hussy N, Ballivet M, Bertrand D (1994) Agonist and antagonist effects of nicotine on chick neuronal nicotinic receptors are defined by alpha and beta subunits. J Neurophysiol 72:1317–1326

    PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    Article  PubMed  CAS  Google Scholar 

  • Johnson DA, Ayres S (1996) Quinacrine noncompetitive inhibitor binding site localized on the Torpedo acetylcholine receptor in the open state. Biochemistry 35: 6330–6336

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (1993) Structure of nicotinic acetylcholine receptors. Curr Opin Neurobiol 3:299–309

    Article  PubMed  CAS  Google Scholar 

  • Kertser S, Bobryshev A, Voitenko S, Gmiro V, Brovtsyna N, Skok V (1998) Dimensions of neuronal nicotinic acetylcholine receptor channel as estimated from the analysis of the channel-blocking effects. J Membr Biol 163:111–118

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE, Jr (1971) A molecular model for the regulatory behavior of enzymes. Harvey Lect 65:33–57

    Google Scholar 

  • Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:283–294

    PubMed  CAS  Google Scholar 

  • Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human alpha 4 beta 2 nicotinic acetylcholine receptors. J Neurosci 17:9035–9047

    PubMed  CAS  Google Scholar 

  • Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376:514–516

    Article  PubMed  CAS  Google Scholar 

  • Le Novere N, Zoli M, Changeux JP (1996) Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428–2439

    Article  PubMed  Google Scholar 

  • Le-Novère N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40:155–172

    Article  PubMed  Google Scholar 

  • Lewis TM, Harkness PC, Sivilotti LG, Colquhoun D, Millar NS (1997) The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. J Physiol (Lond) 505:299–306

    Article  CAS  Google Scholar 

  • Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15:193–222

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF, Collins AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 12:2765–2784

    PubMed  CAS  Google Scholar 

  • Marks MJ, Smith KW, Collins AC (1998) Differential agonist inhibition identifies multiple epibatidine binding sites in mouse brain. J Pharmacol Exp Ther 285:377–386

    PubMed  CAS  Google Scholar 

  • Mathie A, Colquhoun D, Cull-Candy SG (1990) Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones. J Physiol (Lond) 427:625–655

    CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Ann Rev Physiol 57:521–546

    Article  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Mulle C, Lena C, Changeux JP (1992) Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8:937–945

    Article  PubMed  CAS  Google Scholar 

  • Mulle C, Vidal C, Benoit P, Changeux JP (1991) Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci 11:2588–2597

    PubMed  CAS  Google Scholar 

  • Ogden DC, Siegelbaum SA, Colquhoun D (1981) Block of acetylcholine-activated ion channels by an uncharged local anaesthetic. Nature 289:596–598

    Article  PubMed  CAS  Google Scholar 

  • Orteils MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18:121–7

    Article  Google Scholar 

  • Palma E, Bertrand S, Binzoni T, Bertrand D (1996) Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyl-lycaconitine. J Physiol (Lond) 491:151–161

    CAS  Google Scholar 

  • Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J (1994) Human alpha 7 acetylcholine receptor: cloning of the alpha 7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional alpha 7 homomers expressed in Xenopus oocytes. Mol Pharmacol 45:546–554

    PubMed  CAS  Google Scholar 

  • Perry DC, Kellar KJ (1995) [H-3]epibatidine labels nicotinic receptors in rat brain: An autoradiographic study. J Pharmacol Exp Ther 275:1030–1034

    PubMed  CAS  Google Scholar 

  • Picard F, Bertrand S, Steinlein OK, Bertrand D (1999) Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 40:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand Y, LeNovere N, Vincent P, Pich EM, Brulet P, Changeux JP (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino D, Fucile S, Giovannelli A, Grassi F, Mileo AM, Ballivet M, Alema S, Eusebi F (1997) Functional properties of neuronal nicotinic acetylcholine receptor channels expressed in transfected human cells. Eur J Neurosci 9:480–488

    Article  PubMed  CAS  Google Scholar 

  • Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  PubMed  CAS  Google Scholar 

  • Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990) The noncompetitive blocker [3H]-chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of the M2 segments and the structure of the ion channel. Proc Natl Acad Sci USA 87:4675–4679

    Article  PubMed  CAS  Google Scholar 

  • Rubboli F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F (1994) Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur J Neurosci 6:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Rubin MM, Changeux JP (1966) On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol 21:265–274

    Article  PubMed  CAS  Google Scholar 

  • Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5:35–48

    Article  PubMed  CAS  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties and distribution of rat brain alpha7: A nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  • Sigel E, Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18:425–429

    PubMed  CAS  Google Scholar 

  • Steinlein OK, Magnusson A, Stoodt J, Bertrand S, Weiland S, Berkovic SF, Nakken KO, Propping P, Bertrand D (1997) An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 6:943–947

    Article  PubMed  CAS  Google Scholar 

  • Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics 11:201–203

    Article  PubMed  CAS  Google Scholar 

  • Stetzer E, Ebbinghaus U, Storch A, Poteur L, Schrattenholz A, Kramer G, Methfessel C, Maelicke A (1996) Stable expression in HEK-293 cells of the rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor. FEBS Lett 397:39–4

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Marchot P, Kawanishi C, Osaka H, Molles B, Sine SM, Taylor P (1998) Residues at the subunit interfaces of the nicotinic acetylcholine receptor that contribute to alpha-conotoxin Ml binding. Mol Pharmacol 53:787–794

    PubMed  CAS  Google Scholar 

  • Swanson LW, Simmons DM, Whiting PJ, Lindstrom J (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    PubMed  CAS  Google Scholar 

  • Tierney ML, Birnir B, Pillai NP, Clements JD, Howitt SM, Cox GB, Gage PW (1996) Effects of mutating leucine to threonine in the M2 segment of alpha(l) and beta(l) subunits of GABA(A) alpha(l)beta(l) receptors. J Membrane Biol 154:11–21

    Article  CAS  Google Scholar 

  • Tikhonov DB, Zhorov BS (1998) Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method. Biophys J 74:242–255

    Article  PubMed  CAS  Google Scholar 

  • Torrao AS, Lindstrom JM, Britto LR (1997) Distribution of the alpha 2, alpha 3, and alpha 5 nicotinic acetylcholine receptor subunits in the chick brain. Braz J Med Biol Res 30:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (1998) The nicotinic acetylcholine receptor of the Torpedo electric ray. J Struct Biol 121:181–190

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela CF, Kerr JA, Johnson DA (1992) Quinacrine binds to the lipid-protein interface of the Torpedo acetylcholine receptor: a fluorescence study. J Biol Chem 267:8238–8244

    PubMed  CAS  Google Scholar 

  • Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953

    Article  PubMed  CAS  Google Scholar 

  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    Article  PubMed  CAS  Google Scholar 

  • Weiland S, Witzemann V, Villarroel A, Propping P, Steinlein O (1996) An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 398:91–96

    Article  PubMed  CAS  Google Scholar 

  • Wevers A, Jeske A, Lobron C, Birtsch C, Heinemann S, Maelicke A, Schroder R, Schroder H (1994) Cellular distribution of nicotinic acetylcholine receptor subunit mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization. Brain Res Mol Brain Res 25:122–128

    Article  PubMed  CAS  Google Scholar 

  • Williams BM, Krishna Temburi M, Schwartz Levey M, Bertrand S, Bertrand D, Jacob MH (1998) The long cytoplasmic loop of the α3 subunit targets specific nAChR subtypes to microdomains within individual synapses on neurons in vivo. Nature Neurosci 1:557–562

    Article  PubMed  CAS  Google Scholar 

  • Wilson GG, Karlin A (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20:1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S, Albuquerque EX, Bertrand D (1993) Methyllycaconitine: a new probe that discriminates between nicotinic acetylcholine receptor subclasses. In:Conn PM (ed) Methods in neurosciences — receptors: molecular biology, receptor subclasses, localization, and ligand design, vol 12. Academic Press, San Diego, pp 263–275

    Google Scholar 

  • Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZW, Vijayaragavan S, Berg DK (1994) Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12:167–177

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buisson, B., Picard, F., Bertrand, D. (2000). Neuronal Nicotinic Acetylcholine Receptors: From Biophysical Properties to Human Diseases. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics