Skip to main content

Nitric Oxide and Regulation of Vascular Tone

  • Chapter
Nitric Oxide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

Abstract

In all higher organisms, the cardiovascular system represents an elaborated transport network, which is essential for the maintenance of vital functions by supplying oxygen and nutrients to tissue and removing by-products of metabolism. In order to adapt to the varying demands of the tissues, the circulatory system has evolved central and local control mechanisms that act in concert to maintain an adequate blood flow. At a given blood pressure, the blood flow to each organ is determined by the peripheral vascular resistance of this organ, which is adjusted by a variety of local mechanisms affecting the tone of the smooth muscle cells in the so-called resistance vessels, i.e. small terminal arteries and large and small arterioles. In the last two decades, a large body of experimental and clinical evidence has been accumulated, demonstrating that nitric oxide (NO) released from endothelial cells is a crucial regulator of arterial conductance and, in this way, plays an indispensable role in the adequate adjustment of tissue perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud HM, Gachhui R, Raushel FM, Stuehr DJ (1997) The ferrous-dioxy complex of neuronal nitric oxide synthase. Divergent effects of L-arginine and tetrahydrobiopterin on its stability. J Biol Chem 272:17349–17353

    CAS  Google Scholar 

  • Abu-Soud HM, Stuehr DJ (1993) Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 90:10769–10772

    PubMed  CAS  Google Scholar 

  • Alonso-Galicia M, Drummond HA, Reddy KK, Falck JR, Roman RJ (1997) Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide. Hypertension 29:320–325

    PubMed  CAS  Google Scholar 

  • Anderson RG (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    PubMed  CAS  Google Scholar 

  • Ando K, Hirata Y, Schichiri M, Emori T, Maruno F (1989) Presence of immunoreactive endothelin in human plasma. FEBS Lett 245:164–166

    PubMed  CAS  Google Scholar 

  • Andries LJ, Brutsaert DL, Sys SU (1998) Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res 82:195–203

    PubMed  CAS  Google Scholar 

  • Assreuy J, Cunha FQ, Liew FY, Moncada S (1993) Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 108:833–837

    PubMed  CAS  Google Scholar 

  • Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R (1996) Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78:750–758

    PubMed  CAS  Google Scholar 

  • Bauersachs J, Fleming I, Scholz D, Popp R, Busse R (1997) Endothelium-derived hyperpolarizing factor but not nitric oxide is reversibly inhibited by brefeldin A. Hypertension 30:1598–1605

    PubMed  CAS  Google Scholar 

  • Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R (1996) Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation 94:3341–3347

    PubMed  CAS  Google Scholar 

  • Belhassen L, Feron O, Kaye DM, Michel T, Kelly RA (1997) Regulation by cAMP of post-translational processing and subcellular targeting of endothelial nitric-oxide synthase (type 3) in cardiac myocytes. J Biol Chem 272:11198–11204

    PubMed  CAS  Google Scholar 

  • Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, Hintze TH (1996) Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res 79:840–848

    PubMed  CAS  Google Scholar 

  • Boese M, Keese MA, Becker K, Busse R, Mülsch A (1997) Inhibition of glutathione reductase by dinitrosyl-iron-dithiolate complex. J Biol Chem 272:21767–21773

    PubMed  CAS  Google Scholar 

  • Boese M, Mordvintcev PI, Vanin AF, Busse R, Mülsch A (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex. J Biol Chem 270:29244–29249

    PubMed  CAS  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    PubMed  CAS  Google Scholar 

  • Boulanger CM, Lüscher TF (1990) Release of endothelin from the porcine aorta: inhibition by endothelium-derived nitric oxide. J Clin Invest 85:587–590

    PubMed  CAS  Google Scholar 

  • Boulanger, CM, Heymes C, Benessiano J, Geske RS, Levy BI, Vanhoutte PM (1998) Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83:1271–1278

    PubMed  CAS  Google Scholar 

  • Bredt DS, Huang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    PubMed  CAS  Google Scholar 

  • Bulkley GB (1993) Endothelial xanthine oxidase: a radical transducer of inflammatory signals for reticuloendothelial activation. Br J Surg 80:684–686

    PubMed  CAS  Google Scholar 

  • Busse R, Mülsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265:133–136

    PubMed  CAS  Google Scholar 

  • Carroll MA, Balazy M, Margiotta P, Huang DD, Falck JR, McGiff JC (1996) Cytochrome P-450-dependent HETEs: Profile of biological activity and stimulation by vasoactive peptides. Am J Physiol 271:R863–R869

    PubMed  CAS  Google Scholar 

  • Chen P-F, Tsai AL, Wu KK (1994) Mutation of Glu-361 in human endothelial nitric-oxide synthase selectively abolishes L-arginine binding without perturbing the behavior of heme and other redox centers. J Biol Chem 269:25062–25066

    PubMed  CAS  Google Scholar 

  • Chen PF, Tsai AL, Berka V, Wu KK (1997) Mutation of Glu-361 in human endothelial nitric-oxide synthase selectively abolishes L-arginine binding without perturbing the behaviour of heme and other redox centers. J Biol Chem 272:6114–6118

    PubMed  CAS  Google Scholar 

  • Chen Z-P, Mitchelhill KI, Michell BJ, Stapelton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BK (1999) AMP-activated protein kinase phosphorylation of endothleial NO synthase. FEBS Lett 443:285–289

    PubMed  CAS  Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S (1998) persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95: 7631–7636

    PubMed  CAS  Google Scholar 

  • Cohen RA, Plane F, Najibi S, Huk I, Malinski T, Garland CJ (1997) Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit caroid artery. Proc Natl Acad Sci USA 94:4193–4198

    PubMed  CAS  Google Scholar 

  • Cohen RA, Weisbrod R, Gerecke M, Yaghoubi M, Bierl C, Bolotina V (1999) Mechanism of nitric oxide induced vasodilatation. Refillling of intracellular stores by sarcoplasmic reticulun Ca 2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84:210–219

    PubMed  CAS  Google Scholar 

  • Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM (1991) Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP dependent kinase in vascular smooth muscle cells. Mol Pharmacol 40:923–931

    PubMed  CAS  Google Scholar 

  • Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79:984–991

    PubMed  CAS  Google Scholar 

  • Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91:139–144

    PubMed  CAS  Google Scholar 

  • Crane BR, Arvai AS, Ghosh DK, Wu CQ, Getzoff ED, Stuehr DJ, Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279:2121–2126

    PubMed  CAS  Google Scholar 

  • Davada RK, Chandler LJ, Guzman NJ (1994) Protein kinase C modulates receptorindependent activation of endothelial nitric oxide synthase. Eur J Pharmacol 266:237–244

    Google Scholar 

  • Davidge ST, Baker PN, McLaughlin MK, Roberts JM (1995) Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 77:274–283

    PubMed  CAS  Google Scholar 

  • DeKeulenaer GW, Chappell DC, Alexander RW, Nerem RM, Griendling KK (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 82:1094–1101

    PubMed  Google Scholar 

  • de Toledo FG, Cheng J, Dousa TP (1997) Retinoic acid and triiodothyronine stimulate ADP-ribosyl cyclase activity in rat vascular smooth muscle cells. Biochem Biophys Res Commun 238:847–850

    PubMed  Google Scholar 

  • de Wit C, Jahrbeck B, Schäfer C, Bolz SS, Pohl U (1998) Nitric oxide opposes myogenic pressure responses predominantly in large arterioles in vivo. Hypertension 31:787–794

    PubMed  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    PubMed  CAS  Google Scholar 

  • Escalante B, Sessa WC, Falck JR, Yadagiri P, Schwartzman M (1989) Vasoactivity of 20-hydroxyeicosatetraenoic acid is dependent on metabolism by cyclooxygenase. J Pharmacol Exp Ther 248:229–232

    PubMed  CAS  Google Scholar 

  • Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae — Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    PubMed  CAS  Google Scholar 

  • Fleming I, Bauersachs J, Fisslthaler B, Busse R (1998a) Calcium-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 82:686–695

    PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Busse R (1998b) Shear stress-induced phosphorylation of the endothelial NO synthase. Nitric Oxide 2:76 (Abstract)

    Google Scholar 

  • Fleming I, Hecker M, Busse R (1994) Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res 74:1220–1226

    PubMed  CAS  Google Scholar 

  • Fulton D, McGiff JC, Quilley J (1994) Role of K+ channels in the vasodilator response to bradykinin in the rat heart. Br J Pharmacol 113:954–958

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  • Galione A, White A, Willmott N, Turner M, Potter BVL, Watson SP (1993) cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating ADP-ribose synthesis. Nature 365:456–459

    PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Fan G, Stern DF, Liu J, Sessa WC (1996b) Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271:27237–27240

    PubMed  CAS  Google Scholar 

  • García-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 292:821–824

    Google Scholar 

  • García-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li SW, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin — Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    PubMed  Google Scholar 

  • Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996a) Targeting of nitric oxide synthase to endothelial caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93:6448–6453

    PubMed  CAS  Google Scholar 

  • Garg UC, Hassid A (1991) Nitric oxide decreases cytosolic free calcium in Balb/c 3T3 fibroblasts by a cyclic GMP-independent mechanism. J Biol Chem 266:9–12

    PubMed  CAS  Google Scholar 

  • Garland CJ, McPherson GA (1992) Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 105:429–435

    PubMed  CAS  Google Scholar 

  • George MJ, Shibata EF (1995) Regulation of calcium-activated potassium channels by S-nitrosothiol compounds and cyclic guanosine monophosphate in rabbit aoronary artery myocytes. J Invest Med 43:451–458

    CAS  Google Scholar 

  • Ghosh S, Gachhui R, Crooks C, Wu CQ, Lisanti MP, Stuehr DJ (1998) Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase — Consequences for catalysis. J Biol Chem 273:22267–22271

    PubMed  CAS  Google Scholar 

  • Ginsburg I, Gibbs DF, Schuger L, Johnson KJ, Ryan US, Ward PA, Varani J (1989) Vascular endothelial cell killing by combinations of membrane-active agents and hydrogen peroxide. Free Radic Biol Med 7:369–376

    PubMed  CAS  Google Scholar 

  • Gradin K, Whitelaw ML, Toftgard R, Poellinger L, Berghard A (1998) A tyrosine kinase-dependent pathway regulates ligand-dependent activation of the dioxin receptor in human keratinocytes. J Biol Chem 269:23800–23807

    Google Scholar 

  • Graier WF, Groschner K, Schmidt K, Kukovetz WR (1992) Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J 288:345–349

    PubMed  CAS  Google Scholar 

  • Harder DR, Gebremedhin D, Narayanan J, Jefcoat C, Falck JR, Campbell WB, Roman R (1994) Formation and action of a P-450 4 A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol 266:H2098–H2107

    PubMed  CAS  Google Scholar 

  • Harder DR, Lange AR, Gebremedhin D, Birks EK, Roman RJ (1997) Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 34:237–243

    PubMed  CAS  Google Scholar 

  • Hecker M, Bara AT, Bauersachs J, Busse R (1994b) Characterization of endotheliumderived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol (Lond.) 481:407–414

    CAS  Google Scholar 

  • Hecker M, Mülsch A, Bassenge E, Förstermann U, Busse R (1994a) Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J 299:247–252

    PubMed  CAS  Google Scholar 

  • Hirata K, Kuroda R, Sakoda T, Katayama M, Inoue N, Suematsu M, Kawashima S, Yokoyama M (1995) Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 25:180–185

    PubMed  CAS  Google Scholar 

  • Holland JA, Pritchard KA Jr, Rogers NJ, Stemerman MB (1988) Preturbation of cultured human endothelial cells by atherogenic levels of low density lipoprotein. Am J Pathol 132:474–478

    PubMed  CAS  Google Scholar 

  • Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR (1997) Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol 41:C421–C427

    Google Scholar 

  • Hoyt KR, Tang L-H, Aizenman E, Reynolds IJ (1992) Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurones. Brain Res 592:310–316

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    PubMed  CAS  Google Scholar 

  • Hutcheson IR, Griffith TM (1991) Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol 261:H257–H262

    PubMed  CAS  Google Scholar 

  • Hutcheson IR, Griffith TM (1996) Mechanotransduction through the endothelial cytoskeleton: mediation of flow-but not agonist-induced EDRF release. Br J Pharmacol 118:720–726

    PubMed  CAS  Google Scholar 

  • Imig JD, Zou AP, Stec DE, Harder DR, Falck JR, Roman RJ (1996) Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am J Physiol 270:R217–R227

    PubMed  CAS  Google Scholar 

  • Ingber DE (1997) Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    PubMed  CAS  Google Scholar 

  • Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    PubMed  CAS  Google Scholar 

  • Jonsdottir IH, Jungersten L, Johansson C, Wennmalm A, Thoren P, Hoffmann P (1998) Increase in nitric oxide formation after chronic voluntary exercise in spontaneously hypertensive rats. Acta Physiol Scand 162:149–153

    PubMed  CAS  Google Scholar 

  • Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitricoxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525

    PubMed  CAS  Google Scholar 

  • Jungersten L, Ambring A, Wall B, Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol 82:760–764

    PubMed  CAS  Google Scholar 

  • Kannan MS, Fenton AM, Prakash YS, Sieck GC (1996) Cyclic ADP-ribose stimulates sarcoplasmic reticulum calaium release in porcine coronary artery smooth muscle. Am J Physiol 270:H801–H806

    PubMed  CAS  Google Scholar 

  • Karczewski P, hendrischke T, Wolf-Peter W, Morano I, Bartel S, Schrader J (1998) Phosphorylation of phospholamban correlates with relaxation of coronary artery induced by nitric oxide, adenosine, and prostacyclin in the pig. J Cell Biochem 70:49–59

    PubMed  CAS  Google Scholar 

  • Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 257:H33–H37

    PubMed  CAS  Google Scholar 

  • Kim YM, Tzeng E, Billiar TR (1997) Role of NO and nitrogen intermediates in regulation of cell functions. In: Nitric oxide and the kidney, edited by Goligorsky, M, Gross, S.S. Chapman & Hall, New York, pp 22–51

    Google Scholar 

  • Komalavilas P, Lincoln TM (1996) Phosphorylation of the inositol 1,4,5-trisphosphate receptor — Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem 271:21933–21938

    PubMed  CAS  Google Scholar 

  • Komas N, Lugnier C, Stoclet J-C (1991) Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors. Br J Pharmacol 104:495–503

    PubMed  CAS  Google Scholar 

  • Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266:C628–C636

    PubMed  CAS  Google Scholar 

  • Kurtz A, Götz KH, Hamann M, Kieninger M, Wagner C (1998) Stimulation of renin secretion by NO donors is related to the cAMP pathway. Am J Physiol 274:F709–F712

    PubMed  CAS  Google Scholar 

  • Lang D, Lewis MJ (1989) Endothelium-derived relaxing factor inhibits the formation of inositol trisphosphate by rabbit aorta. J Physiol (Lond.) 411:45–52

    CAS  Google Scholar 

  • Lee G, Gilman M (1994) Dual modes of control of c-fos mRNA induction by intracellular calcium in T cells. Mol Cell Biol 14:4579–4587

    PubMed  CAS  Google Scholar 

  • Lee HC (1994) A signaling pathway involving cyclic ADP-ribose, cGMP, and nitric oxide. News Physiol Sci 9:134–137

    CAS  Google Scholar 

  • Lee J, Schmid-Schonbein GW (1995) Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng 23:226–246

    PubMed  CAS  Google Scholar 

  • Li PL, Jin MW, Campbell WB (1998a) Effect of selective inhibition of soluble guanylyl cyclase on the K-Ca channel activity in coronary artery smooth muscle. Hypertension 31:303–308

    PubMed  CAS  Google Scholar 

  • Li PL, Zou AP, Campbell WB (1997) Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators. Hypertension 29:262–267

    PubMed  Google Scholar 

  • Li PL, Zou AP, Campbell WB (1998b) Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle. Am J Physiol 275:H1002–H1010

    PubMed  CAS  Google Scholar 

  • Lie M, Sejersted OM, Kiil F (1970) Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ Res 27:727–737

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Komalavilas P, Boerth NJ, MacMillan-Crow LA, Cornwell TL (1995) cGMP signaling through cAMP-and cGMP-dependent protein kinases. Adv Pharmacol 34:305–322

    PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Tang Z, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235

    PubMed  CAS  Google Scholar 

  • List BM, Klosch B, Volker C, Gorren ACF, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B (1997) Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: Tetrahydrobiopterin binding kinetics and role of heme in dimerization. Biochem J 323:159–165

    PubMed  CAS  Google Scholar 

  • Liu J, Garcfa-Cardena G, Sessa WC (1996) Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry 35:13277–13281

    PubMed  CAS  Google Scholar 

  • Liu J, Hughes TE, Sessa WC (1997a) The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol 137:1525–1535

    PubMed  CAS  Google Scholar 

  • Liu J, Oh P, Horner T, Rogers R, Schnitzer JE (1997b) Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositolanchored protein microdomains. J Biol Chem 272:7211–7222

    PubMed  CAS  Google Scholar 

  • Loke KE, McConnell PI, Tuzman JM, Shesely EG, Smith CJ, Stackpole CJ, Thompson CI, Kaley G, Wolin MS, Hintze TH (1999) Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption. Circ Res 84:840–845

    PubMed  CAS  Google Scholar 

  • Lombard JH, Kunert MP, Roman RJ, Falck JR, Harder DR, Jackson WF (1999) Cytochrome P-450 omega-hydroxylase senses 02 in hamster muscle, but not cheek pouch epithelium, microcirculation. Am J Physiol 276:H503–H508

    PubMed  CAS  Google Scholar 

  • Lückhoff A, Pohl U, Mülsch A, Busse R (1988) Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 95:189–196

    PubMed  Google Scholar 

  • Lüscher TF, Boulanger CM, Dohi Y, Yang Z (1992) Endothelium-derived contracting factors. Hypertension 19:117–130

    PubMed  Google Scholar 

  • Mülsch A, Bassenge E, Busse R (1989) Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn Schmiedebergs Arch Pharmacol 340:767–770

    PubMed  Google Scholar 

  • Ma Y-H, Gebremedhin D, Schwartzman M, Falck JR, Masters BS, Harder DR, Roman RJ (1997) 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries. Circ Res 72:136

    Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    PubMed  CAS  Google Scholar 

  • Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 307:287–293

    PubMed  CAS  Google Scholar 

  • Martasek P, Liu Q, Liu J, Roman LJ, Gross SS, Sessa WC, Masters BS (1996) Characterization of bovine endothelial nitric oxide synthase expressed in E. coli. Biochem Biophys Res Commun 219:359–365

    PubMed  CAS  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272: 15583–15586

    PubMed  CAS  Google Scholar 

  • Michel T, Li GK, Busconi L (1993) Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 90:6252–6256

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Worland PJ, Whitesell L, Neckers LM (1995) Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J Biol Chem 270:28654–28659

    PubMed  CAS  Google Scholar 

  • Mohazzab-H KM, Kaminski PM, Wolin MS (1994) NADH oxidoreductase is a major source of Superoxide anion in bovine coronary artery endothelium. Am J Physiol 266:H2568–H2572

    CAS  Google Scholar 

  • Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    PubMed  CAS  Google Scholar 

  • Morgan RO, Newby AC (1989) Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets. Biochem J 258:447–454

    PubMed  CAS  Google Scholar 

  • Muller B, Kleschyov AL, Malblanc S, Stoclet J-C (1998) Nitric oxide-related cyclic GMP-independent relaxing effect of N-acetylcysteine in lipopolysaccharidetreated rat aorta. Br J Pharmacol 123:1221–1229

    PubMed  CAS  Google Scholar 

  • Muller B, Kleschyov AL, Stoclet J-C (1996) Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl-iron complexes in lipopolysaccharide-treated rat aorta. Br J Pharmacol 119:1281–1285

    PubMed  CAS  Google Scholar 

  • Muller JM, Chilian WM, Davis MJ (1997) Integrin signaling transduces shear stressdependent vasodilation of coronary arterioles. Circ Res 80:320–326

    PubMed  CAS  Google Scholar 

  • Naganuma T, Miyakoshi M, Murayama T, Nomura Y (1998) Regulation of noradrenaline release by S-nitroso-cysteine: inhibition in PC12 cells in a cyclic GMP-independent manner. Eur J Pharmacol 361:277–283

    PubMed  CAS  Google Scholar 

  • Newby AC, Henderson AH (1990) Stimulus-secretion coupling in vascular endothelial cells. Ann Rev Physiol 52:661–674

    CAS  Google Scholar 

  • Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy TJ (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90:2092–2096

    PubMed  CAS  Google Scholar 

  • O’Brien AJ, Young HM, Povey JM, Furness JB (1995) Nitric oxide synthase is localized predominantly in the Golgi apparatus and cytoplasmic vesicles of vascular endothelial cells. Histochemistry 103:221–225

    PubMed  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing ‘‘preassembled signaling complexes’ at the plasma membrane’. J Biol Chem 273:5419–5422

    PubMed  CAS  Google Scholar 

  • Pawson T (1994) Regulation of the Ras signalling pathway by protein-tyrosine kinases. Biochem Soc Transact 22:455–460

    CAS  Google Scholar 

  • Plane F, Pearson T, Garland CJ (1995) Multiple pathways underlying endotheliumdependent relaxation in the rabbit isolated femoral artery. Br J Pharmacol 115: 31–38

    PubMed  CAS  Google Scholar 

  • Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ (1998) Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 123:1351–1358

    PubMed  CAS  Google Scholar 

  • Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of Superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176

    PubMed  CAS  Google Scholar 

  • Presta A, Liu J, Sessa WC, Stuehr DJ (1997) Substrate binding and calmodulin binding to endothelial nitric oxide synthase coregulate its enzymatic activity. Nitric Oxide 1:74–87

    PubMed  CAS  Google Scholar 

  • Pritchard KA Jr, Groszek L, Smalley DM, Sessa WC, Wu M, Villaion P, Wolin MS, Stemerman MB (1995) Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of Superoxide anion. Circ Res 77:510–518

    PubMed  CAS  Google Scholar 

  • Pritchard KA Jr, Wong P, Stemerman MB (1990) Atherogenic concentrations of low density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products. Am J Pathol 136:1381–1391

    Google Scholar 

  • Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95:939–950

    PubMed  CAS  Google Scholar 

  • Rizzo V, Mclntosh DP, Oh P, Schnitzer JE (1999) In situ flow activates endothleial nitric oxide synhtase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729

    Google Scholar 

  • Robertson BE, Schubert R, Hescheler J, Nelson MT (1993) cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265:C299–C303

    PubMed  CAS  Google Scholar 

  • Robinson LJ, Busconi L, Michel T (1995) Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem 270:995–998

    PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzeil WC, Ying Y-S, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    PubMed  CAS  Google Scholar 

  • Rubanyi GM (1988) Endothelium-dependent pressure-induced contraction of isolated canine coronary arteries. Am J Physiol 255:H783–H788

    PubMed  CAS  Google Scholar 

  • Ryan SM, Waack BJ, Weno BL, Heistad DD (1995) Increases in pulse pressure impair acetylcholine-induced vascular relaxation. Am J Physiol 268:H359–H363

    PubMed  CAS  Google Scholar 

  • Saijonmaa O, Ristimäki A, Fyhrquist F (1990) Atrial natriuretic peptide, nitroglycerine, and nitroprusside reduce basal and stimulated endothelin production from cultured endothelial cells. Biochem Biophys Res Commun 173:514–520

    PubMed  CAS  Google Scholar 

  • Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, Weissman BA, Lane P, Liu Q, Gross SS (1997) An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 272:29769–29777

    PubMed  CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL, Siebert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclo-oxygenase enzymes. Proc Natl Acad Sci USA 90:7240–7244

    PubMed  CAS  Google Scholar 

  • Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman P (1994) Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest 93:1940–1947

    PubMed  CAS  Google Scholar 

  • Sander P, Kornfeld M, Ruan X, Arendshorst WJ, Kurtz A (1999) Nitric oxide/ cAMP interactions in the control of rat renal vascular resistance. Circ Res 84:186–192

    Google Scholar 

  • Sautebin L, Ialenti A, Ianaro A, Di Rosa M (1995) Modulation by nitric oxide of prostaglandin biosynthesis in the rat. Br J Pharmacol 114:323–328

    PubMed  CAS  Google Scholar 

  • Schobersberger W, Friedrich F, Hoffmann G, Volkl H, Dietl P (1997) Nitric oxide donors inhibit spontaneous depolarizations by L-type Ca2+ currents in alveolar epithelial cells. Am J Physiol 272:L1092–L1097

    PubMed  CAS  Google Scholar 

  • Schretzenmayr A (1933) über kreislaufregulatorische Vorgänge an den großen Arterien bei der Muskelarbeit. Pfluger’s Arch Ges Physiol 232:743–748

    Google Scholar 

  • Schwartzman ML, Flack JR, Yadagiri P, Escalante B (1989) Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase: formation and identification of a novel endothelium-dependent vasoconstrictor metabolite. J Biol Chem 264: 11658–11662

    PubMed  CAS  Google Scholar 

  • Schwarz P, Diem R, Dun NJ, Förstermann U (1995) Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 77:841–848

    PubMed  CAS  Google Scholar 

  • Sessa WC, García-Cardena G, Liu J, Keh A, Pollock JS, Bradley J, Thiru S, Braverman IM, Desai KM (1995) The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem 270:17641–17644

    PubMed  CAS  Google Scholar 

  • Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, Lynch KR, Peach MJ (1992) Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276

    PubMed  CAS  Google Scholar 

  • Sessa WC, Pritchard KA, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353

    PubMed  CAS  Google Scholar 

  • Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying YS, Anderson RGW, Michel T (1996) Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae. J Biol Chem 271:6518–6522

    PubMed  CAS  Google Scholar 

  • Sheehy AM, Burson MA, Black SM (1998) Nitric oxide exposure inhibits endothelial NOS activity but not gene expression: a role for Superoxide. Am J Physiol 247: L833–L841

    Google Scholar 

  • Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH (1994) Role of nitric oxide in the regulation of oxygen consumption in concious dogs. Circ Res 75:1086–1095

    PubMed  CAS  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93:13176–13181

    PubMed  CAS  Google Scholar 

  • Shin WS, Sasaki T, Kato M, Hara K, Seko A, Yang W-D, Shimamoto N, Sugimoto T, Toyo-oka T (1992) Autocrine and paracrine effects of endothelium-derived relaxing factor on intracellular Ca2+ of endothelial cells and vascular smooth muscle cells. J Biol Chem 267:20377–20382

    PubMed  CAS  Google Scholar 

  • Singer AH, Peach MJ (1982) Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4:11–19-11-25

    Google Scholar 

  • Sun D, Huang A, Koller A, Kaley G (1994) Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appl Physiol 76:2241–2247

    PubMed  CAS  Google Scholar 

  • Takeuchi T, Kishi M, Ishii T, Nishio H, Hata F (1996) Nitric oxide-mediated relaxation without concomitant changes in cyclic GMP content of rat proximal colon. Br J Pharmacol 117:1204–1208

    PubMed  CAS  Google Scholar 

  • Tanaka T, Okamura T, Handa J, Toda N (1999) Neurogenic vasodilation mediated by nitric oxide in porcine cerebral arteries. J Cardiovasc Pharmacol 33:56–64

    PubMed  CAS  Google Scholar 

  • Tare M, Parkington HC, Coleman HA, Neild TO, Dusting GJ (1990) Hyperpolarisation and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 346:69–71

    PubMed  CAS  Google Scholar 

  • Trepakova ES, Cohen RA, Bolotina V (1999) Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores. Circ Res 84:201–209

    PubMed  CAS  Google Scholar 

  • Tsukahara H, Gordienko DV, Goligorsky M (1993) Continuous monitoring of nitric oxide release from human umbilical vein endothelial cells. Biochem Biophys Res Commun 193:722–729

    PubMed  CAS  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA (1998) Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    PubMed  CAS  Google Scholar 

  • Venema RC, Sayegh HS, Kent JD, Harrison DG (1996) Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J Biol Chem 271:6435–6440

    PubMed  CAS  Google Scholar 

  • Venema VJ, Marrero MB, Venema RC (1996) Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem Biophys Res Commun 226:703–710

    PubMed  CAS  Google Scholar 

  • Wang J, Wolin MS, Hintze TH (1993) Chronic exercise enhances endotheliummediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73: 829–838

    PubMed  CAS  Google Scholar 

  • Weisbrod RM, Griswold MC, Yaghoubi M, Komalavilas P, Lincoln TM, Cohen RA (1998) Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muslce cells to nitric oxide. Br J Pharmacol 125:1695–1707

    PubMed  CAS  Google Scholar 

  • Wever RM, Vandam T, Vanrijn HJ, Degroot F, Rabelink TJ (1997) Tetrahydrobiopterin regulates Superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem Biophys Res Commun 237:340–344

    PubMed  CAS  Google Scholar 

  • Woodman CR, Muller JM, Laughlin MH, Price EM (1997) Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Amer J Physiol-Heart Circ Phy 42:H2575–H2579

    Google Scholar 

  • Woodman CR, Muller JM, Rush JWE, Laughlin MH, Price EM (1999) Flow regulation of ecNOS and Cu/Zu SOD mRNA expression in porcine coronary arteries. Am J Physiol 276:H1058–H1063

    PubMed  CAS  Google Scholar 

  • Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric oxide synthase. J Biol Chem 273:25804–25808

    PubMed  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, Klimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto, K, Masaki, T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    PubMed  CAS  Google Scholar 

  • Zoche M, Beyermann M, Koch KW (1997) Introduction of a phosphate at serine(741) of the calmodulin-binding domain of the neuronal nitric oxide synthase (NOS-I) prevents binding of calmodulin. Biol Chem 378:851–857

    PubMed  CAS  Google Scholar 

  • Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ (1996) 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles. Am J Physiol 270:R228–R237

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busse, R., Fleming, I. (2000). Nitric Oxide and Regulation of Vascular Tone. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics