Skip to main content

Nitric Oxide in Brain Ischemia/Reperfusion Injury

  • Chapter
Book cover Nitric Oxide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

Abstract

The brain is a highly energetic organ, which requires a continuous supply of nutrients and oxygen from the circulatory system in order to function properly. Cessation of the blood supply to the brain for even a few minutes results in neuronal injury following initiation of a cascade of secondary mechanisms. Ischemia results in the reduction of resting membrane potential of glia and neurons in the brain. The leakage of potassium out of cells results in the depolarization of neurons, leading to a massive release of glutamate. Glutamate elicits its actions by acting on series of post-synaptic receptors, including the N-methyl-D-aspartate receptor (NMDA), non-NMDA receptors, and metabotropic glutamate receptors (SAMDANI et al. 1997). For nearly two decades, the actions of glutamate have been linked as important mediators of ischemic brain injury. The observation that activation of NMDA receptors generates nitric oxide (NO) in a calcium-dependent manner (GARTHWAITE et al. 1988; BREDT and SNYDER 1989; GARTHWAITE et al. 1989) raised the possibility that NO might be an important mediator in regulating glutamate neurotoxicity. The observation that non-selective NO synthase (NOS) inhibitors could reduce glutamate neurotoxicity in vitro (DAWSON et al. 1991b) and reduce infarct volume following transient focal ischemia in mice (NOWICKI et al. 1991) suggested a role for NO as a neurotoxin. Immediately, there was controversy over the role of NO in neurotoxicity and ischemic damage (DAWSON et al. 1994a; DAWSON and DAWSON 1996). Since then, a large body of scientific literature has evolved describing the role of NO in glutamate toxicity and ischemia-reperfusion injury. The early controversies were due to the important but opposing effects of NO generated from different NOS isoforms in the central nervous system (CNS), the use of nonselective NOS inhibitors, and the lack of understanding of the complex chemistry of NO in a biologic setting. Advances in pharmacology and chemistry, in addition to the generation of genetically engineered mice, have greatly expanded our understanding of NO biology in ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson DC, Wildemann B, Sasaki M, McArthur J, Glass J, Dawson TM, Dawson VL (1996) Immunologic nitric oxide synthase is elevated in HIV infected individuals with dementia. Science 274:1917–1921

    PubMed  CAS  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    PubMed  CAS  Google Scholar 

  • Babbedge RC, Bland-Ward PA, Hart SL, Moore PK (1993) Inhibition of rat cerebellar nitric oxide synthase by 7-nitro indazole and related substituted indazoles. Br J Pharmacol 110:225–228

    PubMed  CAS  Google Scholar 

  • Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827

    PubMed  CAS  Google Scholar 

  • Beckman JS (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15:53–59

    PubMed  CAS  Google Scholar 

  • Beckman JS (1994) Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann N Y Acad Sci 738:69–75

    PubMed  CAS  Google Scholar 

  • Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4–15

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    PubMed  CAS  Google Scholar 

  • Brown GC (1997) Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: implications for inflammatory, neurodegenerative and ischaemic pathologies. Mol Cell Biochem 174:189–192

    PubMed  CAS  Google Scholar 

  • Brudvig GW, Stevens TH, Chan SI (1980) Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19:5275–5285

    PubMed  CAS  Google Scholar 

  • Buisson A, Plotkine M, Boulu RG (1992) The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. Br J Pharmacol 106:766–767

    PubMed  CAS  Google Scholar 

  • Carr GJ, Ferguson SJ (1990) Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim Biophys Acta 1017:57–62

    PubMed  CAS  Google Scholar 

  • Carreau A, Duval D, Poignet H, Scatton B, Vige X, Nowicki JP (1994) Neuroprotective efficacy of N ω-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur J Pharmacol 256:241–249

    PubMed  CAS  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    PubMed  CAS  Google Scholar 

  • Caulfield JL, Wishnok JS, Tannenbaum SR (1998) Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem 273:12689–12695

    PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    PubMed  CAS  Google Scholar 

  • Colsanti M, Persichini T, Fabrizi C, Cavaliere E, Venturini Gm Ascenzi P, Lauro GM, Suzuki H (1998) Expression of a NOS-III-like protein in human astroglial cell culture. Biochem Biophys Res Commun 252:552–555

    Google Scholar 

  • Dalkara T, Moskowitz MA (1997) Neurotoxic and neuroprotective roles of nitric oxide in cerebral ischaemia. Int Rev Neurobiol 40:319–336

    PubMed  CAS  Google Scholar 

  • Dalkara T, Yoshida T, Irikura K, Moskowitz MA (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33:1447–1452

    PubMed  CAS  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1995) Physiological and toxicological actions of nitric oxide in the central nervous system. Adv Pharmacol 34:323–342

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190

    PubMed  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991a) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991b) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13:2651–2661

    PubMed  CAS  Google Scholar 

  • Dawson DA, Graham DI, McCulloch J, Macrae IM (1994a) Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a Af-methyl-D-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia. Br J Pharmacol 113:247–253

    PubMed  CAS  Google Scholar 

  • Dawson TM, Zhang J, Dawson VL, Snyder SH (1994b) Nitric oxide: cellular regulation and neuronal injury. Prog Brain Res 103:365–369

    PubMed  CAS  Google Scholar 

  • Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM (1994c) Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology 33:1425–1430

    PubMed  CAS  Google Scholar 

  • Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase deficient mice. J Neurosci 16:2479–2487

    PubMed  CAS  Google Scholar 

  • Deora AA, Win T, Vanhaesebroeck B, Lander HM (1998) A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to ras by redox stress. J Biol Chem 273:29923–29928

    PubMed  CAS  Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91:4214–4218

    PubMed  CAS  Google Scholar 

  • Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Jun Bao J, Pieper A, Wang Z-Q, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-Ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1–8

    Google Scholar 

  • Endoh M, Maiese K, Wagner J (1994) Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res 651:92–100

    PubMed  CAS  Google Scholar 

  • Endres M, Wang Z-Q, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of Poly(ADP-ribose) polymerase. J Cerebral Blood Flow and Metabolism in press

    Google Scholar 

  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885

    PubMed  CAS  Google Scholar 

  • Escott KJ, Beech JS, Haga KK, Williams SC, Meldrum BS, Bath PM (1998) Cerebroprotective effect of the nitric oxide synthase inhibitors, 1-(2-trifluoromethylphenyl) imidazole and 7-nitro indazole, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:281–287

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Richardson EP, Jr., Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563

    PubMed  CAS  Google Scholar 

  • Ferriero DM, Sheldon RA, Black SM, Chuai J (1995) Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 38:912–918

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Garthwaite G, Palmer RM, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172:413–416

    PubMed  CAS  Google Scholar 

  • Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM (1998) Manganese Superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055

    PubMed  CAS  Google Scholar 

  • Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    PubMed  CAS  Google Scholar 

  • Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    PubMed  CAS  Google Scholar 

  • Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 16:605–611

    PubMed  CAS  Google Scholar 

  • Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408

    PubMed  CAS  Google Scholar 

  • Hewett SJ, Muir JK, Lobner D, Symons A, Choi DW (1996) Potentiation of oxygen glucose deprivation-induced neuronal death after induction of iNOS. Stroke 27:1586–1591

    PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide syrithase. Science 265:1883–1885

    PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987

    PubMed  CAS  Google Scholar 

  • Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, Snyder SH (1992) Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease. Ann Neurol 32:818–820

    PubMed  CAS  Google Scholar 

  • Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    PubMed  CAS  Google Scholar 

  • Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14:175–192

    PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–1380

    PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218:739–749

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    PubMed  CAS  Google Scholar 

  • Kelly PA, Ritchie IM, Arbuthnott GW (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole: effects upon local cerebral blood flow and glucose use in the rat. J Cereb Blood Flow Metab 15:766–773

    PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1988) Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists. Brain Res 446:374–378

    PubMed  CAS  Google Scholar 

  • Koh JY, Peters S, Choi DW (1986) Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 234:73–76

    PubMed  CAS  Google Scholar 

  • Koh JY, Gwag BJ, Lobner D, Choi DW (1995) Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 268:573–575

    PubMed  CAS  Google Scholar 

  • Kuluz JW, Prado RJ, Dietrich WD, Schleien CL, Watson BD (1993) The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke 24:2023–2029

    PubMed  CAS  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272:4323–4326

    PubMed  CAS  Google Scholar 

  • Lautier D, Lagueux J, Thibodeau J, Menard L, Poirier GG (1993) Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol Cell Biochem 122:171–193

    PubMed  CAS  Google Scholar 

  • Lindahl T, Satoh MS, Poirier GG, Klungland A (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20:405–411

    PubMed  CAS  Google Scholar 

  • Lo EH, Hara H, Rogowska J,Trocha M, Pierce AR, Huang PL, Fishman MC, Wolf GL, Moskowitz MA (1996) Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27:1381–1385

    PubMed  CAS  Google Scholar 

  • Lowy DR, Willumsen BM (1993) Function and regulation of ras. Annu Rev Biochem 62:851–891

    PubMed  CAS  Google Scholar 

  • Macara IG, Lounsbury KM, Richards SA, McKiernan C, Bar-Sagi D (1996) The Ras superfamily of GTPases. Faseb J 10:625–630

    PubMed  CAS  Google Scholar 

  • MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese Superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 93:11853–11858

    PubMed  CAS  Google Scholar 

  • Margaill I, Allix M, Boulu RG, Plotkine M (1997) Dose-and time-dependence of L-NAME neuroprotection in transient focal cerebral ischaemia in rats. Br J Pharmacol 120:160–163

    PubMed  CAS  Google Scholar 

  • Marietta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    Google Scholar 

  • Marietta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930

    CAS  Google Scholar 

  • Matsui T, Nagafuji T, Mori T, Asano T (1997) N ω-nitro-L-arginine attenuates early ischemic neuronal damage of prolonged focal cerebral ischemia and recirculation in rats. Neurol Res 19:192–203

    PubMed  CAS  Google Scholar 

  • McNaught KS, Brown GC (1998) Nitric oxide causes glutamate release from brain synaptosomes. J Neurochem 70:1541–1546

    PubMed  CAS  Google Scholar 

  • Moncada C, Lekieffre D, Arvin B, Meldrum B (1992) Effect of NO synthase inhibition on NMDA-and ischaemia-induced hippocampal lesions. Neuroreport 3:530–532

    PubMed  CAS  Google Scholar 

  • Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL (1993a) 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol 108:296–297

    PubMed  CAS  Google Scholar 

  • Moore PK, Wallace P, Gaffen Z, Hart SL, Babbedge RC (1993b) Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol 110:219–224

    PubMed  CAS  Google Scholar 

  • Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T (1994) L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, reduces infarction volume in the rat. Stroke 25:429–435

    PubMed  CAS  Google Scholar 

  • Nanri K, Montecot C, Springhetti V, Seylaz J, Pinard E (1998) The selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole, reduces the delayed neuronal damage due to forebrain ischemia in rats. Stroke 29:1248–1253

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, controls. Cell 78:915–918

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Kirsch JR, Koehler RC, Bredt DS, Snyder SH, Traystman RJ (1993) Effect of nitric oxide synthase inhibition on cerebral blood flow and injury volume during focal ischemia in cats. Stroke 24:1717–1724

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Kirsch JR, Koehler RC, Miyabe M, Traystman RJ (1994) Nitric oxide synthase inhibition reduces caudate injury following transient focal ischemia in cats. Stroke 25:877–885

    PubMed  CAS  Google Scholar 

  • Nowicki JP, Duval D, Poignet H, Scatton B (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204:339–340

    PubMed  CAS  Google Scholar 

  • Oleszak EL, Zaczynska E, Bhattacharjee M, Butunoi C, Legido A, Katsetos CD (1998) Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/ macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol 5:438–445

    PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  CAS  Google Scholar 

  • Panahian N, Yoshida T, Huang PL, Hedley-Whyte ET, Dalkara T, Fishman MC, Moskowitz MA (1996) Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 72:343–354

    PubMed  CAS  Google Scholar 

  • Pogun S, Dawson V, Kuhar MJ (1994) Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse 18:21–26

    PubMed  CAS  Google Scholar 

  • Quast MJ, Wei J, Huang NC (1995) Nitric oxide synthase inhibitor N G-nitro-L-arginine methyl ester decreases ischemic damage in reversible focal cerebral ischemia in hyperglycemie rats. Brain Res 677:204–212

    PubMed  CAS  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL (1997a) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    PubMed  CAS  Google Scholar 

  • Samdani AF, Newcamp C, Resink A, Facchinetti F, Hoffman BE, Dawson VL, Dawson TM (1997b) Differential susceptibility to neurotoxicity mediated by neurotrophins and neuronal nitric oxide synthase. J Neurosci 17:4633–4641

    PubMed  CAS  Google Scholar 

  • Satoh MS, Poirier GG, Lindahl T (1994) Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33:7099–7106

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    PubMed  CAS  Google Scholar 

  • Sharpe MA, Cooper CE (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J Biol Chem 273:30961–30972

    PubMed  CAS  Google Scholar 

  • Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, Moskowitz MA, Lo EH (1998) Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci 18:9564–9571

    PubMed  CAS  Google Scholar 

  • Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298

    PubMed  CAS  Google Scholar 

  • Tamir S, Burney S, Tannenbaum SR (1996) DNA damage by nitric oxide. Chem Res Toxicol 9:821–827

    PubMed  CAS  Google Scholar 

  • Thiemermann C (1997) Nitric oxide and septic shock. Gen Pharmacol 29:159–166

    PubMed  CAS  Google Scholar 

  • Thomas E, Pearse AGE (1961) The fine localization of dehydrogenases in the nervous system. Histochemistry 2:266–282

    CAS  Google Scholar 

  • Thomas E, Pearse AGE (1964) The solitary active cells. Histochemical demonstration of damage-resistant nerve cells with a TPN-diaphorase reaction. Acta Neuropathology 3:238–249

    CAS  Google Scholar 

  • Togashi H, Sasaki M, Frohman E, Taira E, Ratan RR, Dawson TM, Dawson VL (1997) Neuronal (type I) nitric oxide synthase regulates NFkB activity and immunologic (type II) nitric oxide synthase expression. Proc Natl Acad Sci USA 94:2676–2680

    PubMed  CAS  Google Scholar 

  • Uemura Y, Kowall NW, Beal MF (1990) Selective sparing of NADPH-diaphorasesomatostatin-neuropeptide Y neurons in ischemic gerbil striatum. Ann Neurol 27:620–625

    PubMed  CAS  Google Scholar 

  • Van Dam AM, Bauer J, Man AHWK, Marquette C, Tilders FJ, Berkenbosch F (1995) Appearance of inducible nitric oxide synthase in the rat central nervous system after rabies virus infection and during experimental allergic encephalomyelitis but not after peripheral administration of endotoxin. J Neurosci Res 40:251–260

    PubMed  Google Scholar 

  • Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9:509–520

    PubMed  CAS  Google Scholar 

  • Wei J, Quast MJ (1998) Effect of nitric oxide synthase inhibitor on a hyperglycemie rat model of reversible focal ischemia: detection of excitatory amino acids release and hydroxyl radical formation. Brain Res 791:146–156

    PubMed  CAS  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    PubMed  CAS  Google Scholar 

  • Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd’heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB (1998a) The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys 351:66–74

    PubMed  CAS  Google Scholar 

  • Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB (1998b) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Golanov EV, Berger SB, Reis DJ (1992) Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat. J Cereb Blood Flow Metab 12:717–726

    PubMed  CAS  Google Scholar 

  • Yoshida T, Limmroth V, Irikura K, Moskowitz MA (1994) The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14:924–929

    PubMed  CAS  Google Scholar 

  • Yoshida T, Waeber C, Huang Z, Moskowitz MA (1995) Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci Lett 194:214–218

    PubMed  CAS  Google Scholar 

  • Yun HY, Dawson VL, Dawson TM (1997) Nitric oxide in health and disease of the nervous system. Mol Psychiatry 2:300–310

    PubMed  CAS  Google Scholar 

  • Yun HY, Gonzalez-Zulueta M, Dawson VL, Dawson TM (1998) Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. Proc Natl Acad Sci USA 95:5773–5778

    PubMed  CAS  Google Scholar 

  • Zhang F, White JG, Iadecola C (1994) Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 14:217–226

    PubMed  CAS  Google Scholar 

  • Zhang F, Xu S, Iadecola C (1995) Time dependence of effect of nitric oxide synthase inhibition on cerebral ischemic damage. J Cereb Blood Flow Metab 15:595–601

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M, Gautam S, Zaloga C, Zhang RL, Schmidt HH, Pollock JS, Forstermann U (1994a) Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res 654:85–95

    PubMed  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994b) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Reif D, Macdonald J, Tang WX, Kamp DK, Gentile RJ, Shakespeare WC, Murray RJ, Chopp M (1996) ARL 17477, a potent and selective neuronal NOS inhibitor decreases infarct volume after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16:599–604

    PubMed  CAS  Google Scholar 

  • Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1:804–809

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasaki, M., Dawson, T.M., Dawson, V.L. (2000). Nitric Oxide in Brain Ischemia/Reperfusion Injury. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics