Skip to main content

The Role of Nitric Oxide in Cardiac Ischaemia-Reperfusion

  • Chapter
Nitric Oxide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

  • 311 Accesses

Abstract

Myocardial ischaemia, resulting mainly from atherosclerotic coronary artery disease, is the most common pathology in clinical cardiology and is a major cause of mortality and morbidity in the developed world. Iatrogenic myocardial ischaemia is also commonly encountered clinically, especially in the context of cardiac surgery and interventional cardiology procedures, such as percutaneous balloon angioplasty. There have been great advances in the clinical management of myocardial ischaemia over the last 2–3 decades. In particular, the benefits of early reperfusion following coronary occlusion have become well established. Such reperfusion is usually achieved in the clinical setting with thrombolytic drugs (or with balloon angioplasty, in recent years) and translates into a substantial improvement in patient survival (GISSI 1986; ISIS 1988). However, it has also been realised that reperfusion of ischaemic myocardium may itself cause detrimental effects in the tissue to which blood flow is being restored (BRAUNWALD and KLONER 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrani M, Chester AH, Jayakumar J, Schyns CJ, Yacoub MH (1995) L-arginine reverses low coronary reflow and enhances post-ischaemic recovery of cardiac mechanical function. Cardiovasc Res 30:200–204

    PubMed  CAS  Google Scholar 

  • Bartunek J, Shah AM, Vanderheyden M, Paulus WJ (1997) Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Circulation 95:90–96

    PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, Superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Beresewicz A, Karwatowska-Prokopczuk E, Lewartowski B, Cedro-Ceremuzynska K (1995) A protective role of nitric oxide in isolated ischaemic/reperfused rat heart. Cardiovasc Res 30:1001–1008

    PubMed  CAS  Google Scholar 

  • Bolli R (1996) The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91:57–63

    PubMed  CAS  Google Scholar 

  • Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Circ Res 65:607–622

    PubMed  CAS  Google Scholar 

  • Bolli R, Bhatti ZA, Tang X-L, Qui Y, Zhang Q, Guo Y, Jadoon AK (1997) Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res 81:42–52

    PubMed  CAS  Google Scholar 

  • Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, post-ischaemic ventricular dysfunction. Circulation 66:1146–1149

    PubMed  CAS  Google Scholar 

  • Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    PubMed  CAS  Google Scholar 

  • Clancy RM, Leszczynska-Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil Superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90:1116–1121

    PubMed  CAS  Google Scholar 

  • Curtis MJ, Pabla R (1997) Nitric oxide supplementation or synthesis block — which is the better approach to treatment of heart disease? Trends Pharmacol Sci 18:239–244

    PubMed  CAS  Google Scholar 

  • Darley-Usmar V, Halliwell B (1996) Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharmaceut Res 13:649–662

    CAS  Google Scholar 

  • Denicola A, Freeman BA,Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333:49–58

    PubMed  CAS  Google Scholar 

  • Depré C, Vanoverschelde J-L, Goudemant J-F, Mottet I, Hue L (1995) Protection against ischaemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation 92:1911–1918

    PubMed  Google Scholar 

  • Depré C, Fiérain L, Hue L (1997) Activation of nitric oxide synthase by ischaemia in the perfused heart. Cardiovasc Res 33:82–87

    PubMed  Google Scholar 

  • Draper NJ, Shah AM (1997) Beneficial effects of a nitric oxide donor on recovery of contractile function following brief hypoxia in isolated rat heart. J Moll Cell Cardiol 29:1195–1205

    CAS  Google Scholar 

  • Du Toit EF, McCarthy J, Miyashiro J, Opie LH, Brunner F (1998) Effect of nitrovasodilators and inhibitors of nitric oxide synthase on ischaemic and reperfusion function of rat isolated hearts. Br J Pharmacol 123:1159–1167

    PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    PubMed  CAS  Google Scholar 

  • Engelman DT, Watanabe M, Engelman RM, Rousou JA, Flack JE, Deaton DW, Das DK (1995) Constitutive nitric oxide release is impaired after ischaemia and reperfusion. J Thorac Cardiovasc Surg 110:1047–1053

    PubMed  CAS  Google Scholar 

  • Engelman DT, Watanabe M, Maulik N, Engelman RM, Rousou JA, Flack JE, Deaton DW, Das DK (1996) Critical timing of nitric oxide supplementation in cardioplegic arrest and reperfusion. Circulation 94(suppl II): II-407-II-411

    Google Scholar 

  • Engler RL, Schmid-Schonbein GW, Pravelec RS (1983) Leukocyte capillary plugging in myocardial ischaemia and reperfusion in the dog. Am J Pathol 111:98–111

    PubMed  CAS  Google Scholar 

  • Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 19(suppl B): B2–B11

    PubMed  CAS  Google Scholar 

  • Flesch M, Kilter H, Cremers B, Lenz O, Sudkamp M, Kuhn-Regnier F, Bohm M (1997) Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 281:1340–1349

    PubMed  CAS  Google Scholar 

  • Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyteendothelial interaction via P-selectin in splanchnic ischaemia-reperfusion. Am J Physiol 267:H562–H568

    Google Scholar 

  • Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL (1997) Decreased nitric oxide synthase activity causes impaired endothelium-dependent relaxation in the postischaemic heart. J Biol Chem 272(34): 21420–21426

    PubMed  CAS  Google Scholar 

  • Golino P, Ambrosio G, Pascucci I, Ragni M, Russolillo E, Chiariello M (1992) Experimental carotid stenosis and endothelial injury in the rabbit: an in vivo model to study intravascular platelet aggregation. Thromb Haemost 67(3): 302–305

    PubMed  CAS  Google Scholar 

  • Grocott-Mason R, Anning P, Evans HG, Lewis MJ, Shah AM (1994a) Modulation of left ventricular relaxation in the isolated ejecting heart by endogenous nitric oxide. Am J Physiol 267:H1804–H1813

    PubMed  CAS  Google Scholar 

  • Grocott-Mason RM, Fort S, Lewis MJ, Shah AM (1994b) Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 266:H1699–H1705

    PubMed  CAS  Google Scholar 

  • Gruppo Italiano Per lo Studio della Streptochinasi nell’Infarto miocardico (GISSI) (1986) Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1(8478): 397–402

    Google Scholar 

  • Hare JM, Givertz MM, Creager MA, Colucci WS (1998) Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure. Potentiation of β-adrenergic inotropic responsiveness. Circulation 97:161–166

    PubMed  CAS  Google Scholar 

  • Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    PubMed  CAS  Google Scholar 

  • Hasebe N, Shen Y-T, Vatner SF (1993) Inhibition of endothelium-derived relaxing factor enhances myocardial stunning in conscious dogs. Circulation 88:2862–2871

    PubMed  CAS  Google Scholar 

  • Hoshida S, Yamashita N, Igarashi J, Nishida M, Hori M, Kamada T, Kuzuya T, Tada M (1995) Nitric oxide synthase protects the heart against ischaemia-reperfusion injury in rabbits. J Pharmacol Exp Ther 274:413–418

    PubMed  CAS  Google Scholar 

  • Inauen ME, Granger DN, Meininger CJ, Schelling ME, Granger HJ, Kvietys PR (1990) Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: role of elastase. Am J Physiol 28:H925–931

    Google Scholar 

  • ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1988) Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17187 cases of acute myocardial infarction: ISIS-2. Lancet 2(8607): 349–360

    Google Scholar 

  • Johnson G, Tsao PS, Mulloy D, Lefer AM (1990) Cardioprotective effects of acidified sodium nitrite in myocardial ischaemia with reperfusion. J Pharmacol Exp Ther 252(1): 35–41

    PubMed  CAS  Google Scholar 

  • Johnson G,Tsao PC, Lefer AM (1991) Cardioprotective effects of authentic nitric oxide in myocardial ischaemia with reperfusion. Crit Care Med 19: 244–252

    PubMed  Google Scholar 

  • Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res: 79:363–380

    PubMed  CAS  Google Scholar 

  • Kitakaze M, Node K, Komamura K, Minamino T, Inoue M, Hori M, Kamada T (1995) Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia. J Mol Cell Cardiol 27:2149–2154

    PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    PubMed  CAS  Google Scholar 

  • Ku DD (1982) Coronary vascular reactivity after acute myocardial ischaemia. Science 218:576–578

    PubMed  CAS  Google Scholar 

  • Kumar M, Liu G-J, Floyd RA, Grammas P (1996) Anoxic injury of endothelial cells increases production of nitric oxide and hydroxyl radicals. Biochem Biophys Res Comm 219: 497–501

    PubMed  CAS  Google Scholar 

  • Lawson DL, Mehta JL, Nichols WW (1990) Coronary reperfusion in dogs inhibits endothelium-dependent relaxation: role of Superoxide radicals. Free Radic Biol Med 8:373–380

    PubMed  CAS  Google Scholar 

  • Lefer DJ (1995) Myocardial protective actions of nitric oxide donors after myocardial ischaemia and reperfusion. New Horizons 3(1): 105–112

    PubMed  CAS  Google Scholar 

  • Lefer AM, Lefer DJ (1996) The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res 32:743–751

    PubMed  CAS  Google Scholar 

  • Lefer AM, Tsao PS, Lefer DJ, Ma X-L (1991) Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischaemia. FASEB J 5:2029–2034

    PubMed  CAS  Google Scholar 

  • Lefer DJ, Nakanishi K, Johnson WE, Vinten-Johansen J (1993a) Antineutrophil and myocardial protection actions of a novel nitric oxide donor after acute myocardial ischaemia and reperfusion in dogs. Circulation 88:2337–2350

    PubMed  CAS  Google Scholar 

  • Lefer DJ, Klunk DA, Lutty GA (1993b) Nitric oxide (NO) donors reduce basal ICAM-1 expression on human aortic endothelial cells (HAECs). Circulation 88:1–565

    Google Scholar 

  • Lefer DJ, Nakanishi K, Vinten-Johansen J (1993c) Endothelial and myocardial cell protection by a cysteine-containing nitric oxide donor after myocardial ischaemia and reperfusion. J Cardiovasc Pharmacol 22(suppl 7): S34–S43

    PubMed  CAS  Google Scholar 

  • Lefer DJ, Scalia R, Campbell B, Nossuli T, Hayward R, Salamon M, Grayson J, Lefer AM (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischaemia-reperfusion injury in rats. J Clin Invest 99: 684–691

    PubMed  CAS  Google Scholar 

  • Linz W, Weimer G, Scholkens BA (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischaemic rat hearts. J Mol Cell Cardiol 24:909–919

    PubMed  CAS  Google Scholar 

  • Liu P, Hock CE, Nagele R, Wong PY-K (1997) Formation of nitric oxide, Superoxide and peroxynitrite in myocardial ischaemia-reperfusion injury in rats. Am J Physiol 272:H2327–H2336

    PubMed  CAS  Google Scholar 

  • Lu HR, Remeysen P, de Clerck F (1995) Does the anti-arrhythmic effect of ischaemic preconditioning in rats involve the L-arginine nitric oxide pathway. J Cardiovasc Pharmacol: 25:524–530

    PubMed  CAS  Google Scholar 

  • Ma X-L, Weyrich AS, Lefer DJ, Lefer AN (1993) Diminished basal nitric oxide release after myocardial neutrophil adherence to coronary endothelium. Circ Res 72:403–412

    PubMed  CAS  Google Scholar 

  • Manning AS, Hearse DJ (1984) Reperfusion-induced arrhythmias: mechanisms and prevention. J Moll Cell Cardiol 16:497–518

    CAS  Google Scholar 

  • Massoudy P, Becker BF, Gerlach E (1995) Nitric oxide accounts for post-ischaemic cardioprotection resulting from angiotensin-converting enzyme inhibition: indirect evidence for a radical scavenger effect in isolated guinea pig heart. J Cardiovasc Pharmacol 25:440–447

    PubMed  CAS  Google Scholar 

  • Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro LJ (1992) Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol 262:H616–H620

    PubMed  CAS  Google Scholar 

  • Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22(12): 477–481

    PubMed  CAS  Google Scholar 

  • Mehta JL, Lawson DL, Nichols WW (1989a) Attenuated coronary relaxation after reperfusion: effects of superoxide dismutase and TxA2 inhibitor U63557. Am J Physiol 257:H1240–H1246

    PubMed  CAS  Google Scholar 

  • Mehta JL, Nichols WW, Donnelly WH, Lawson DL, Thompson L, Riet Mt, Saldeen TGP (1989b) Protection by Superoxide dismutase from myocardial dysfunction and attenuation of vasodilator reserve after coronary occlusion and reperfusion in the dog. Circ Res 65:1283–1295

    PubMed  CAS  Google Scholar 

  • Méry PF, Abi-Gerges N, Vandecasteele G, Jurevicius J, Eschenhagen T, Fischmeister R (1997) Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life Sci 60:1113–1120

    PubMed  Google Scholar 

  • Michel T, Feron O (1997) Nitric oxide synthases: which, where, how and why? J Clin Invest 100:2146–2152

    PubMed  CAS  Google Scholar 

  • Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93:1223–1229

    PubMed  CAS  Google Scholar 

  • Morita K, Sherman NSP, Buckberg GD, Ihnken K, Matheis G, Young HH, Ignarro LJ (1995) Studies of hypoxaemic/reperfusion injury: without aortic clamping. Role of the L-arginine-nitric oxide pathway: the nitric oxide paradox. J Thorac Cardiovasc Surg 110:1200–1211

    PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  • Nakanishi K, Vinten-Johansen J, Lefer DJ, Zhao Z, Fowler WC, McGee S, Johnston WE (1992) Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 263:H1650–H1658

    PubMed  CAS  Google Scholar 

  • Naseem SA, Kontos MC, Rao PS, Jesse RL, Hess ML, Kukreja RC (1995) Sustained inhibition of nitric oxide by N G-nitro-L-arginine improves myocardial function following ischaemia/reperfusion in isolated perfused rat heart. J Moll Cell Cardiol 27:419–426

    CAS  Google Scholar 

  • Node K, Kitakaze M, Kosaka H, Komamura K, Minamino T, Tada M, Inoue M, Hori M, Kamada T (1995) Plasma nitric oxide end-products are increased in the ischaemic canine heart. Biochem Biophys Res Comm 211(2): 370–374

    PubMed  CAS  Google Scholar 

  • Nossuli TO, Hayward R, Scalia R, Lefer AM (1997) Peroxynitrite reduces myocardial infarct size and preserves coronary endothelium after ischaemia and reperfusion in cats. Circulation 96:2317–2324

    PubMed  CAS  Google Scholar 

  • Pabla R, Curtis MJ (1995) Effects of NO modulation on cardiac arrhythmias in the rat isolated heart. Circ Res 77:984–992

    PubMed  CAS  Google Scholar 

  • Pabla R, Curtis NJ (1996) Effect of endogenous nitric oxide on cardiac systolic and diastolic function during ischaemia and reperfusion in the rat isolated perfused heart. J Mol Cell Cardiol 28:2111–2121

    PubMed  CAS  Google Scholar 

  • Pabla R, Buda AJ, Flynn DM, Salzberg DB, Lefer DJ (1995) Intracoronary nitric oxide improves post-ischaemic coronary blood flow and myocardial contractile function. Am J Physiol 269: H1113–H1121

    PubMed  CAS  Google Scholar 

  • Pabla R, Buda AJ, Flynn DM, Blessé SA, Shin AM, Curtis MJ, Lefer DJ (1996) Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischaemia and reperfusion. Circ Res 78:65–72

    PubMed  CAS  Google Scholar 

  • Patel VC, Yellon DM, Singh KJ, Neild GH, Woolfson RG (1993) Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Comm 194:234–238

    PubMed  CAS  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89: 2070–2078

    PubMed  CAS  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–2126

    PubMed  CAS  Google Scholar 

  • Pearson PJ, Lin PJ, Schaff HV (1992) Global myocardial ischaemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. J Thorac Cardiovasc Surg 103:1147–1154

    PubMed  CAS  Google Scholar 

  • Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T (1997) Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 81:372–379

    PubMed  CAS  Google Scholar 

  • Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    PubMed  CAS  Google Scholar 

  • Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischaemic cell death. IL Transmural progression of necrosis within the framework of ischaemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  • Sato H, Zhao ZQ, McGee D, Williams MW, Hammon JW, Vinten-Johansen J (1995) Supplemental L-arginine during cardioplegic arrest and reperfusion avoids regional post-ischaemic injury. J Thorac Cardiovasc Surg 110:302–314

    PubMed  CAS  Google Scholar 

  • Schluter KD, Weber M, Schraven E, Piper HM (1994) NO donor SIN-1 protects against reoxygenation-induced cardiomyocyte injury by a dual action. Am J Physiol 267:H1461–H1466

    PubMed  CAS  Google Scholar 

  • Schluter KD, Jakob G, Ruiz-Meana M, Garcia-Dorado D, Piper HM (1996) Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am J Physiol 271:H428–H434

    PubMed  CAS  Google Scholar 

  • Schulz R, Wambolt R (1995) Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc Res 30:432–439

    PubMed  CAS  Google Scholar 

  • Seccombe JF, Schaff HV (1995) Coronary artery endothelial function after myocardial ischaemia and reperfusion. Ann Thorac Surg 60:778–788

    PubMed  CAS  Google Scholar 

  • Shah AM (1996) Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res 31:847–867

    PubMed  CAS  Google Scholar 

  • Shah AM, Spurgeon H, Sollott SJ, Talo A, Lakatta EG (1994) 8-Bromo cyclic GMP reduces the myofilament response to calcium in intact cardiac myocytes. Circ Res 74:970–978

    PubMed  CAS  Google Scholar 

  • Shah AM, Silverman HS, Griffiths EJ, Spurgeon HA, Lakatta EG (1995) cGMP prevents delayed relaxation at reoxygenation after brief hypoxia in isolated cardiac myocytes. Am J Physiol 268:H2396–H2404

    PubMed  CAS  Google Scholar 

  • Shiki K, Hearse DJ (1987) Preconditioning of ischaemic myocardium: reperfusioninduced arrhythmias. Am J Physiol 253:H1470–H1476

    PubMed  CAS  Google Scholar 

  • Siegfried MR, Erhardt J, Rider T, Ma X-L, Lefer AM (1992a) Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischaemia-reperfusion. J Pharmacol Exp Ther 260:668–675

    PubMed  CAS  Google Scholar 

  • Siegfried MR, Carey C, Ma X-L, Lefer AM (1992b) Beneficial effects of SPM 5185, a cysteine-containing NO donor in myocardial ischaemia-reperfusion. Am J Physiol 263:H771–H777

    PubMed  CAS  Google Scholar 

  • Smith JA, Shah AM, Lewis MJ, (1991) Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol Lond 439:1–14

    PubMed  CAS  Google Scholar 

  • Sun W, Wainwright CL (1997) The role of nitric oxide in modulating ischaemia-induced arrhythmias in rats. J Cardiovasc Pharmacol 29: 554–562

    PubMed  CAS  Google Scholar 

  • Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP, Cannon PJ (1996) Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 94:1665–1673

    PubMed  CAS  Google Scholar 

  • Szekeres M, Dezsi L, Monos E, Metsa-Ketela T (1997) Effect of a new nitric oxide donor on the biomechanical performance of the isolated ischaemic rat heart. Acta Physiol Scand 161:55–61

    PubMed  CAS  Google Scholar 

  • Thompson and Hess (1986) The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Dis 28:449–492

    Google Scholar 

  • Tsao PS, Lefer AM (1990) Time course and mechanism of endothelial dysfunction in isolated ischaemic and hypoxic perfused rat hearts. Am J Physiol 259: H1660–H1666

    PubMed  CAS  Google Scholar 

  • Tsao PS, Aoki N, Lefer DJ, Johnson G, Lefer AM (1990) Time course of endothelial dysfunction and myocardial injury during myocardial ischaemia and reperfusion in the cat. Circulation 82:1402–1412

    PubMed  CAS  Google Scholar 

  • Van Benthuysen KM, McMurtry IF, Horowitz LD (1987) Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest 79: 265–274

    Google Scholar 

  • Vegh A, Szekeres L, Parratt JR (1992a) Preconditioning of the ischaemic myocardium; involvement of the L-arginine nitric oxide pathway. Br J Pharmacol 107:648–652

    PubMed  CAS  Google Scholar 

  • Vegh A, Gy Papp J, Szekeres L, Parratt JR (1992b) The local intracoronary administration of methylene blue prevents the pronounced anti-arrhythmic effect of ischaemic preconditioning. Br J Pharmacol 107:910–911

    PubMed  CAS  Google Scholar 

  • Vegh A, Gy Papp J, Szekeres L, Parratt JR (1993) Prevention by an inhibitor of the L-arginine-nitric oxide pathway of the anti-arrhythmic effects of bradykinin in anaesthetized dogs. Br J Pharmacol 110:18–19

    PubMed  CAS  Google Scholar 

  • Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the post-ischaemic heart. J Biol Chem 271:29223–29230

    PubMed  CAS  Google Scholar 

  • Weselcouch EO, Baird AJ, Sleph P, Grover GJ (1995) Inhibition of nitric oxide synthesis does not affect ischaemic preconditioning in isolated perfused rat hearts. Am J Physiol 268:H242–H249

    PubMed  CAS  Google Scholar 

  • Weyrich AS, Ma X-L, Lefer AM (1992) The role of L-arginine in ameliorating reperfusion injury after myocardial ischaemia in the cat. Circulation 86:279–288

    PubMed  CAS  Google Scholar 

  • Wildhirt SM, Dudek RR, Suzuki H, Pinto V, Narayan KS, Bing RJ (1995) Immunohistochemistry in the identification of nitric oxide synthase isoenzymes in myocardial infarction. Cardiovasc Res 29:526–531

    PubMed  CAS  Google Scholar 

  • Williams MW,Taft CS, Ramnauth S, Zhao Z-Q, Vinten-Johansen J (1995) Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res 30:79–86

    PubMed  CAS  Google Scholar 

  • Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects aginst cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817

    PubMed  CAS  Google Scholar 

  • Woolfson RG, Patel VC, Neild GH, Yellon DM (1995) Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation 91:1545–1551

    PubMed  CAS  Google Scholar 

  • Xie Y-W, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH (1996) Role of endotheliumderived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Circ Res 79:382–387

    Google Scholar 

  • Xie Y-W, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during post-hypoxic reoxygenation. Circ Res 82:891–897

    PubMed  CAS  Google Scholar 

  • Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischaemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422–432

    PubMed  CAS  Google Scholar 

  • Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37:21–33

    PubMed  CAS  Google Scholar 

  • Zhang X, Xie Y-W, Nasjletti A, Xu X, Wolin MS, Hintze TH (1997) ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 95:176–182

    PubMed  Google Scholar 

  • Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263:1353–1357

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

MacCarthy, P.A., Shah, A.M. (2000). The Role of Nitric Oxide in Cardiac Ischaemia-Reperfusion. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics