Skip to main content
Book cover

Nitric Oxide pp 525–544Cite as

Nitric Oxide in the Immunopathogenesis of Type 1 Diabetes

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

Abstract

During the past decade, research on the pathogenesis of human type 1 diabetes considerably increased our insight into the mechanisms involved in the destruction of insulin-producing β cells of pancreatic islets of Langerhans. Cell-mediated immune reactivity against islet constituents is assumed to play a major role in the development of this disease (EISENBARTH 1986). In an attempt to identify cellular effector mechanisms involved in β-cell destruction, (1991) demonstrated that nitric oxide (NO) released from activated macrophages is able to exert cytotoxic activity against islet cells. Since then, increasing research activities focused on the source, the target structures and the metabolic or cytotoxic effects of NO in the process of β-cell destruction. From the growing number of observations, a picture emerges which identifies NO as a major regulatory and cytotoxic mediator during islet inflammation. This qualifies the mechanisms involved in NO-induced β-cell death as important targets for intervention strategies aiming at the prevention of type 1 diabetes (CORBETT and MCDANIEL 1992; KOLB and KOLB-BACHOFEN 1992; BURKART et al. 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ankarcrona M, Dypbukt JM, Brune B, Nicotera P (1994) Interleukin-1β-induced nitric oxide production activates apoptosis in pancreatic RINm5F cells. Exp Cell Res 213:172–177

    PubMed  CAS  Google Scholar 

  • Appels B, Burkart V, Kantwerk-Funke G, Funda J, Kolb-Bachofen V, Kolb H (1989) Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol 142:3803–3808

    PubMed  CAS  Google Scholar 

  • Arnush M, Scarim AL, Heitmeier MR, Kelly CB, Corbett JA (1998) Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J Immunol 160:2684–2691

    PubMed  CAS  Google Scholar 

  • Atkinson MA, MacLaren NK (1994) The pathogenesis of insulin dependent diabetes. N Engl J Med 331:1428–1436

    PubMed  CAS  Google Scholar 

  • Atkinson MA, MacLaren NK, Riley WJ, Winter WE, Fisk DD, Spillar RP (1986) Are insulin autoantibodies markers for insulin-dependent diabetes mellitus? Diabetes 35:894–898

    PubMed  CAS  Google Scholar 

  • Behboo R, Ricordi C, Lumachi F, Tedeschi U, Urso E, Cillo U, Bonariol L, Favia G, D’Amico DF (1997) Aminoguanidine inhibits the generation of nitric oxide and prolongs islet xenograft survival in rats. Transplant Proc 29:2152–2153

    PubMed  CAS  Google Scholar 

  • Bellmann K, Wenz A, Radons J, Burkart V, Kleemann R, Kolb H (1995) Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J Clin Invest 95:2840–2845

    PubMed  CAS  Google Scholar 

  • Bellmann K, Jäättelä M, Wissing D, Burkart V, Kolb H (1996) Heat shock protein 70 overexpression confers resistance against nitric oxide. FEBS Lett 391:185–186

    PubMed  CAS  Google Scholar 

  • Bellmann K, Liu H, Radons J, Burkart V, Kolb H (1997) Low stress response enhances vulnerability of islet cells in diabetes-prone BB rats. Diabetes 46:232–236

    PubMed  CAS  Google Scholar 

  • Bergmann L, Kröncke K-D, Kolb H, Kolb-Bachofen V (1992) Cytotoxic action of IL-1β against pancreatic islets is mediated via nitric oxide formation and is inhibited by N G-monomethyl-L-arginine. FEBS Lett 299:103–106

    PubMed  CAS  Google Scholar 

  • Bowman MA, Simell OG, Peck AB, Cornelius J, Luchetta R, Look Z, MacLaren NK, Atkinson MA (1996) Pharmacokinetics of aminoguanidine administration and effects on the diabetes frequency in nonobese diabetic mice. J Pharmacol Exp Ther 279:790–794

    PubMed  CAS  Google Scholar 

  • Burkart V, Kolb H (1993) Protection of islet cells from inflammatory cell death in vitro. Clin Exp Immunol 93:273–278

    PubMed  CAS  Google Scholar 

  • Burkart V, Kolb H (1996) Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiol 195:601–613

    CAS  Google Scholar 

  • Burkart V, Kröncke K-D, Kolb-Bachofen V, Kolb H (1994) Nitric oxide as an inflammatory mediator in insulin-dependent diabetes mellitus. A new therapeutic target? Clin Immunother 2:233–239

    Google Scholar 

  • Burkart V, Gross-Eick A, Bellmann K, Radons J, Kolb H (1995) Suppression of nitric oxide toxicity in islet cells by α-tocopherol. FEBS Lett 364:259–263

    PubMed  CAS  Google Scholar 

  • Burkart V, Brenner H-H, Hartmann B, Kolb H (1996) Metabolic activation of islet cells improves resistance against oxygen radicals or streptozotocin, but not nitric oxide. J Clin Endocrinol Metab 81:3966–3971

    PubMed  CAS  Google Scholar 

  • Cantor AB, Krischer JP, Cuthbertson DD, Schatz DA, Riley WJ, Malone J, Schwartz S, Quattrin T, MacLaren NK (1995) Age and family relationship accentuate the risk of IDDM in relatives of patients with insulin dependent diabetes. J Clin Endocrinol Metabol 80:3739–3743

    CAS  Google Scholar 

  • Cetkovic-Cvrlje M, Eizirik DL (1994) TNF-α and IFN-γ potentiate the deleterious effects of IL-1β on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6:399–406

    PubMed  CAS  Google Scholar 

  • Columbano A (1995) Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58:2239–2244

    Google Scholar 

  • Corbett JA, McDaniel ML (1992) Does nitric oxide mediate autoimmune destruction of β-cells? Possible therapeutic interventions in IDDM. Diabetes 41:897–903

    PubMed  CAS  Google Scholar 

  • Corbett JA, Lancaster JR, Sweetland MA, McDaniel ML (1991) Interleukin-1β-induced formation of EPR-detectable iron-nitrosyl-complexes in islets of Langerhans. J Biol Chem 266:21351–21354

    PubMed  CAS  Google Scholar 

  • Corbett JA, Wang JL, Hughes JH, Wolf BA, Sweetland MA, Lancaster JR, McDaniel ML (1992a) Nitric oxide and cyclic GMP formation induced by interleukin 1β in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem J 287:229–235

    PubMed  CAS  Google Scholar 

  • Corbett JA, Wang JL, Sweetland MA, Lancaster JR, McDaniel ML (1992b) Interleukin 1β induces the formation of nitric oxide by β-cells purified from rodent islets of Langerhans. J Clin Invest 90:2384–2391

    PubMed  CAS  Google Scholar 

  • Corbett JA, Mikhael A, Shimizu J, Frederick K, Misko TP, McDaniel ML, Kanagawa O, Unanue ER (1993a) Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and-resistant stages in the immunological diabetic process. Proc Natl Acad Sci USA 90:8992–8995

    PubMed  CAS  Google Scholar 

  • Corbett JA, Sweetland MA, Wang JL, Lancaster JRj, McDaniel ML (1993b) Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci USA 90:1731–1735

    PubMed  CAS  Google Scholar 

  • Corbett JA, Kwon G, Misko TP, Rodi CP, McDaniel ML (1994) Tyrosine kinase involvement in IL-1b-induced expression of iNOS by β-cells purified from islet of Langerhans. Am J Physiol 267:C48–C54

    PubMed  CAS  Google Scholar 

  • Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108

    PubMed  CAS  Google Scholar 

  • Delaney CA, Eizirik DL (1996) Intracellular targets for nitric oxide toxicity to pancreatic β cells. Braz J Med Biol Res 29:569–579

    PubMed  CAS  Google Scholar 

  • Delaney CA, Green MHL, Green IC (1993) Endogenous nitric oxide induced by interleukin-1β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the “comet” assay. FEBS Lett 333:291–295

    PubMed  CAS  Google Scholar 

  • Dunger A, Augstein P, Schmidt S, Fischer U (1996a) Identification of interleukin 1-induced apoptosis in rat islets using in situ specific labelling of fragmented DNA. J Autoimmunity 9:309–313

    CAS  Google Scholar 

  • Dunger A, Cunningham JM, Delaney CA, Lowe JE, Green MH, Bone AJ, Green IC (1996b) Tumor necrosis factor-alpha and interferon-gamma inhibit insulin secretion and cause DNA damage in unweaned-rat islets. Extent of nitric oxide involvement. Diabetes 45:183–189

    PubMed  CAS  Google Scholar 

  • Eisenbarth GS (1986) Type I diabetes mellitus: a chronic autoimmune disease. New Engl J Med 314:1360–1368

    PubMed  CAS  Google Scholar 

  • Eizirik DL (1996) β cell defense and repair mechanisms in human pancreatic islets. Horm Metab Res 28:302–305

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Pavlovic D (1997) Is there a role for nitric oxide in β-cell dysfunction and damage in IDDM? Diab Metabol Rev 13:293–307

    CAS  Google Scholar 

  • Eizirik DL, Cagliero E, Bjorklund A, Welsh M (1992) Interleukin-1β induces the expression of an isoform of nitric oxide synthase in insulin-producing cells, which is similar to that observed in activated macrophages. FEBS Lett 308:249–252

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Welsh N, Hellerström C (1993) Predominance of stimulatory effects of interleukin-1β on isolated human pancreatic islets. J Clin Endocrinol Metab 76:399–403

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Pipeleers DG, Zhidong L, Welsh N, Hellerström C, Andersson A (1994a) Major species differences between humans and rodents in the susceptibility to pancreatic β-cell injury. Proc Natl Acad Sci USA 91:9253–9256

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Sandier S, Welsh N, Cetkovic-Cvrlje M, Nieman A, Geller DA, Pipeleers DG, Bendtzen K, Hellerström C (1994b) Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest 93:1968–1974

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Delaney CA, Green MH, Cunningham JM, Thorpe JR, Pipeleers DG, Hellerström C, Green IC (1996a) Nitric oxide donors decrease the function and survival of human pancreatic islets. Mol Cell Endocrinol 118:71–83

    PubMed  CAS  Google Scholar 

  • Eizirik DL, Flodström M, Karlsen AE, Welsh N (1996b) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic β cells. Diabetologia 39:875–890

    PubMed  CAS  Google Scholar 

  • Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diab Care 20:1183–1197

    Google Scholar 

  • Fehsel K, Jalowy A, Sun Q, Burkart V, Hartmann B, Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42:496–500

    PubMed  CAS  Google Scholar 

  • Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS (1986) The histopathology of the pancreas in type-1 (insulin-dependent) diabetes mellitus: a 25-yr review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29:267–274

    PubMed  CAS  Google Scholar 

  • Gepts W (1965) Pathological anatomy of the pancreas in juvenile diabetes. Diabetes 14:619–633

    PubMed  CAS  Google Scholar 

  • Hanenberg H, Kolb-Bachofen V, Kantwerk-Funke G, Kolb H (1989) Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreatic islets of prediabetic BB rats. Diabetologia 32:126–134

    PubMed  CAS  Google Scholar 

  • Heller B, Wang Z-Q, Wagner EF, Radons J, Bürkle A, Fehsel K, Burkart V, Kolb H (1995) Inactivation of the poly(ADP-ribose)polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem 270:11176–11180

    PubMed  CAS  Google Scholar 

  • Hermitte L, Vialettes B, Atlef N, Payan MJ, Doll N, Scheinmann A, Vague P (1989) High dose nicotinamide fails to prevent diabetes in BB rats. Autoimmunity 5:79–86

    PubMed  CAS  Google Scholar 

  • Hohmeier H-E, Thigpen A, Tran VV, Davis R, Newgard CB (1998) Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1β-induced cytotoxicity and reduces nitric oxide production. J Clin Invest 101:1811–1820

    PubMed  CAS  Google Scholar 

  • Holstad M, Sandier S (1993) Aminoguanidine, an inhibitor of nitric oxide formation, fails to protect against insulitis and hyperglycemia induced by multiple low dose streptozotocin injections in mice. Autoimmunity 15:311–314

    PubMed  CAS  Google Scholar 

  • Holstad M, Jansson L, Sandler S (1997) Inhibition of nitric oxide formation by aminoguanidine: an attempt to prevent insulin-dependent diabetes mellitus. Gen Pharmacol 29:697–700

    PubMed  CAS  Google Scholar 

  • Itoh N, Hanafusa T, Miyazaki A, Miyagawa J, Yamagata K, Yamamoto K, Waguri M, Imagawa A, Tamura S, Inada M, Kawata S, Tarui S, Kono N, Matsuzawa Y (1993) Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 92:2313–2322

    PubMed  CAS  Google Scholar 

  • Kaneto H, Fujii J, Seo HG, Suzuki K, Matsuoka T, Nakamura M, Tatsumi H, Yamasaki Y, Kamada T, Taniguchi N (1995) Apoptotic cell death triggered by nitric oxide in pancreatic β cells. Diabetes 44:733–738

    PubMed  CAS  Google Scholar 

  • Karabatas LM, Fabiano-de-Bruno L, Pastorale CF, Cullen C, Basabe JC (1996) Inhibition of nitric oxide generation: normalization of in vitro insulin secretion in mice with multiple low-dose streptozotocin diabetes and in mice injected with mononuclear splenocytes from diabetic syngeneic donors. Metabolism 45:940–946

    PubMed  CAS  Google Scholar 

  • Karlsen AE, Andersen HU, Vissing H, Larsen PM, Fey SJ, Cuartero BG, Madsen O, Petersen JS, Mortensen SB, Mandrup-Poulsen T, Boel E, Nerup J (1995) Cloning and expression of cytokine-inducible nitric oxide synthase cDNA from rat islets of Langerhans. Diabetes 44:753–758

    PubMed  CAS  Google Scholar 

  • Karvonen M, Tuomilehto J, Libman I, LaPorte R (1993) A review of the recent epidemiological data on the worldwide incidence of type-1 (insulin-dependent) diabetes mellitus. Diabetologia 36:883–892

    PubMed  CAS  Google Scholar 

  • Kaufmann D, Erlander M, Clare-Salzler M, Atkinson M, MacLaren NK, Tobin A (1992) Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 89:283–292

    Google Scholar 

  • Kleemann R, Rothe H, Kolb-Bachofen V, Xie Q, Nathan C, Martin S, Kolb H (1993) Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett 328:9–12

    PubMed  CAS  Google Scholar 

  • Kolb H (1987) Mouse models of insulin-dependent diabetes: low dose streptozotocininduced diabetes and non-obese diabetic (NOD) mice. Diabetes Metab Rev 3:751–778

    PubMed  CAS  Google Scholar 

  • Kolb H (1997) Benign versus destructive insulitis. Diabetes Metab Rev 13:139–146

    PubMed  CAS  Google Scholar 

  • Kolb H, Kolb-Bachofen V (1992) Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today 13:157–160

    PubMed  CAS  Google Scholar 

  • Kolb H, Kolb-Bachofen (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 19:556–561

    PubMed  CAS  Google Scholar 

  • Kolb H, Schmidt M, Kiesel U. (1989) Immunomodulatory drugs in type-1 diabetes. In: Eisenbarth GS (ed) Immunotherapy of type-1 diabetes and selected autoimmune diseases. CRC, Boca Raton, FL, p 111

    Google Scholar 

  • Kolb H, Burkart V, Appels B, Hanenberg H, Kantwerk-Funke G, Kiesel U, Funda J, Schraermeyer U, Kolb-Bachofen V (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmunity 3(Suppl.):117–120

    Google Scholar 

  • Kolb H, Kiesel U, Kröncke K-D, Kolb-Bachofen V (1991) Suppression of low dose streptozotocin induced diabetes in mice by administration of a nitric oxide synthase inhibitor. Life Sci 25:PL213–PL217

    Google Scholar 

  • Kolb-Bachofen V (1996) Intraislet expression of inducible nitric oxide synthase and islet cell death. Biochem Soc Trans 24:233–234

    PubMed  CAS  Google Scholar 

  • Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low dose streptozotocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes 37:21–27

    PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    PubMed  CAS  Google Scholar 

  • Kröncke K-D, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175:752–758

    PubMed  Google Scholar 

  • Kröncke K-D, Fehsel K, Sommer A, Rodriguez M-L, Kolb-Bachofen V (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol Chem Hoppe-Seyler 376:179–185

    PubMed  Google Scholar 

  • Kröncke K-D, Fehsel K, Kolb-Bachofen V (1997) Nitric oxide: cytotoxicity versus cytoprotection: how, why, when and where? Nitric Oxide: Biology and Chemistry 1:107–120

    Google Scholar 

  • Lampeter EF, McCann SR, Kolb H (1998) Transfer of diabetes type 1 by bone-marrow transplantation. Lancet 351:568–569

    PubMed  CAS  Google Scholar 

  • Lan MS, Wasserfall C, MacLaren NK, Notkins AL (1996) IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 93:6367–6370

    PubMed  CAS  Google Scholar 

  • Lau A, Ramanathan S, Poussier P (1998) Excessive production of nitric oxide by macrophages from DP-BB rats is secondary to the T-lymphopenic state of these animals. Diabetes 47:197–205

    PubMed  CAS  Google Scholar 

  • Lee K-U, Amano K, Yoon J-W (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989–991

    PubMed  CAS  Google Scholar 

  • Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Rad Biol Med 20:463–466

    PubMed  CAS  Google Scholar 

  • Lindsay RM, Smith W, Rossiter SP, Mclntyre MA, Williams BC, Baird JD (1995) N ω-nitro-L-arginine methyl ester reduces the incidence of IDDM in BB/E rats. Diabetes 44:365–368

    PubMed  CAS  Google Scholar 

  • Loweth AC, Williams GT, Scarpello JH, Morgan NG (1997) Evidence for the involvement of cGMP and protein kinase G in nitric oxide-induced apoptosis in the pancreatic B-cell line, HIT-T15. FEBS Lett 400:285–288

    PubMed  CAS  Google Scholar 

  • Lukic ML, Stosic-Grujicic S, Ostojic N, Chan WL, Liew FY (1991) Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun 178:913–920

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Sener A, Pipeleers DG (1982) Determinants of the selective toxicity of alloxan to the pancreatic β cell. Proc Natl Acad Sci USA 79:927–930

    PubMed  CAS  Google Scholar 

  • Margulis BA, Sandier S, Eizirik DL, Welsh N, Welsh M (1991) Lioposomal delivery of purified heat shock protein 70 into rat pancreatic islets as protection against interleukin 1β-induced impaired β cell function. Diabetes 40:1418–1422

    PubMed  CAS  Google Scholar 

  • Mattner F, Fischer S, Guckes S, Jin S, Kaulen H, Rüde E, Germann T (1993) The interleukin-12 p40 subunit specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 23:2203–2208

    Google Scholar 

  • McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA (1996) Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211:24–32

    PubMed  CAS  Google Scholar 

  • Mordes JP, Desemone J, Rossini AA (1987) The BB rat. Diabetes Metab Rev 3:725–750

    PubMed  CAS  Google Scholar 

  • Oschilewski U, Kiesel U, Kolb H (1985) Adminstration of silica prevents diabetes in BB rats. Diabetes 34:197–199

    PubMed  CAS  Google Scholar 

  • Papaccio G, Esposito V, Latronico MVG, Pisanti FA (1995) Administration of a nitric oxide synthase inhibitor does not suppress low-dose streptozotocin diabetes in mice. Biochem Biophys Res Commun 178:913–919

    Google Scholar 

  • Rabinovitch A (1998) An update on cytokines in the pathogenesis of insulindependent diabetes mellitus. Diabetes Metab Rev 14:129–151

    PubMed  CAS  Google Scholar 

  • Rabinovitch A, Suarez-Pinzon WL, Shi Y, Morgan AR, Bleackley RC (1994) DNA fragmentation is an early event in cytokine-induced islet β cell destruction. Diabetologia 37:733–738

    PubMed  CAS  Google Scholar 

  • Rabinovitch A, Suarez-Pinzon WL, Sorensen O, Bleackley RC (1996) Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice: identification of iNOS-expressing cells and relationships to cytokines expressed in the islets. Endocrinology 137:2093–2099

    PubMed  CAS  Google Scholar 

  • Radons J, Heller B, Bürkle A, Hartmann B, Rodriguez M-L, Kröncke K-D, Burkart V, Kolb H (1994) Nitric oxide toxicity in islet cells involves poly(ADP-ribose)polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun 199:1270–1277

    PubMed  CAS  Google Scholar 

  • Reddy S, Kaill S, Poole CA, Ross J (1997) Inducible nitric oxide synthase in pancreatic islets of the non-obese diabetic mouse: a light and confocal microscopical study of its ontogeny, co-localization and up-regulation following cytokine administration. Histochem J 29:53–64

    PubMed  CAS  Google Scholar 

  • Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF (1977) Studies of streptozotocin insulitis and diabetes. Proc Natl Acad Sci USA 74:2485–2489

    PubMed  CAS  Google Scholar 

  • Rothe H, Faust A, Schade U, Kleemann R, Bosse G, Hibino T, Martin S, Kolb H (1994) Acceleration of diabetes development in NOD mice by cyclophosphamide is associated with a shift from IL-4 to IFN-y production and with enhanced expression of inducible NO-synthase in pancreatic lesions. Diabetologia 37:1154–1158

    PubMed  CAS  Google Scholar 

  • Rothe H, Burkart V, Faust A, Kolb H (1996a) Interleukin-12 gene expression is associated with rapid diabetes development in NOD mice. Diabetologia 39:119–122

    PubMed  CAS  Google Scholar 

  • Rothe H Hartmann B Geerlings P Kolb H 1996b Interleukin-12 gene expression of macrophages is regulated by nitric oxide. Biochem Biophys Res Commun. 224, 159–163

    PubMed  CAS  Google Scholar 

  • Rothe H, O’Hara RM, Martin S, Kolb H (1997) Suppression of cyclophosphamide induced diabetes development and pancreatic Th1 reactivity in NOD mice treated with the interleukin (IL)-12 antagonist IL-12(p40)2. Diabetologia 40:641–646

    PubMed  CAS  Google Scholar 

  • Sandler S, Eizirik DL, Svensson C, Strandell E, Welsh M, Welsh N (1991) Biochemical and molecular actions of interleukin-1 on pancreatic β-cells. Autoimmunity 10:241–253

    PubMed  CAS  Google Scholar 

  • Sarri Y, Mendola J, Ferrer J, Gomis R (1989) Preventive effects of nicotinamide administration on spontaneous diabetes of BB rats. Med Sci Res 17:987–988

    CAS  Google Scholar 

  • Scott F, Cui J, Rowsell P (1994) Food and the development of autoimmune disease. Trends in Food Sci and Technol 5:111–116

    Google Scholar 

  • Southern C, Schulster D, Green IG (1990) Inhibition of insulin secretion by interleukin 1β and tumour necrosis factor-α via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 276:42–44

    PubMed  CAS  Google Scholar 

  • Stassi G, DeMaria RD, Trucco G, Rudert W, Testi R, Galluzzo A, Giordano C, Trucco M (1997) Nitric oxide primes pancreatic β cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200

    PubMed  CAS  Google Scholar 

  • Steiner L, Kröncke K-D, Fehsel K, Kolb-Bachofen V (1997) Endothelial cells as cytotoxic effector cells: cytokine-activated rat islet endothelial cells lyse syngeneic islet cells via nitric oxide. Diabetologia 40:150–155

    PubMed  CAS  Google Scholar 

  • Stevens RB, Ansite JD, Mills CD, Lokeh A, Rossini TJ, Saxena M, Brown RR, Sutherland DER (1996) Nitric oxide mediates early dysfunction of rat and mouse islets after transplantation. Transplantation 61:1740–1749

    PubMed  CAS  Google Scholar 

  • Suschek C, Rothe H, Fehsel K, Enczmann J, Kolb-Bachofen V (1993) Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. J Immunol 151:3283–3291

    PubMed  CAS  Google Scholar 

  • Suschek C, Fehsel K, Kröncke K-D, Sommer A, Kolb-Bachofen V (1994) Primary cultures of rat islet capillary endothelial cells. Constitutive and cytokine-inducible macrophagelike nitric oxide synthases are expressed and activities are regulated by glucose concentration. Am J Pathol 145:685–695

    PubMed  CAS  Google Scholar 

  • Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, Okamoto H (1998) Transgenic mice overexpressing type 2 nitric oxide synthase in pancreatic β cells develop insulin-dependent diabetes without insulitis. J Biol Chem 273:2493–2496

    PubMed  CAS  Google Scholar 

  • Taylor-Robinson AW, Liew FY, Severn A, Xu D, McSorley SJ, Garside P, Padron J, Phillips RS (1994) Regulation of the immune response by nitric oxide differentially produce by T helper type-1 and T helper type 2 cells. Eur J Immunol 24:980–984

    PubMed  CAS  Google Scholar 

  • Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML (1993) Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun 197:1458–1464

    PubMed  CAS  Google Scholar 

  • Uchigata Y, Yamamoto H, Kawamura A, Okamoto H (1982) Protection by Superoxide dismutase, catalase, and poly(ADP-ribose)synthetase inhibitors against alloxanand streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. J Biol Chem 257:6084–6088

    PubMed  CAS  Google Scholar 

  • Verge CF, Howard NJ, Irwig L, Simpson JM, Mackerras D, Silink M (1994) Environmental factors in childhood IDDM. Diab Care 17:1381–1389

    CAS  Google Scholar 

  • Welsh N, Sandier S (1992) Interleukin-1β induces nitric oxide production and inhibits the activity of aconitase without decreasing glucose oxidation rates in isolated mouse pancreatic islets. Biochem Biophys Res Commun 182:333–340

    PubMed  CAS  Google Scholar 

  • Welsh N, Eizirik DL, Bendtzen K, Sandier S (1991) Interleukin-1β-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 129:3167–3173

    PubMed  CAS  Google Scholar 

  • Wiegand F, Kröncke K-D, Kolb-Bachofen V (1993) Macrophage generated nitric oxide as cytotoxic factor in destruction of alginate-encapsulated islets. Protection by arginine analogs and/or co-encapsulated erythrocytes. Transplantation 56:1206–1212

    PubMed  CAS  Google Scholar 

  • Wilson GL, Patton NJ, LeDoux SP (1997) Mitochondrial DNA is a sensitive target for damage by nitric oxide. Diabetes 48:1291–1295

    Google Scholar 

  • Wu G (1995) Nitric oxide synthesis and the effect of aminoguanidine and N G-monomethyl-L-arginine on the onset of diabetes in the spontaneously diabetic BB-rat. Diabetes 44:360–365

    PubMed  CAS  Google Scholar 

  • Yamada K, Nonaka K, Hanafusa T, Miyazaki A, Toyoshima H, Tarui S (1982) Preventive and therapeutic aspects of large dose nicotinamide injections on diabetes associated with insulitis: an observation in non-obese diabetic (NOD) mice. Diabetes 31:749–753

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose)synthetase in pancreatic islets. Nature 294:284–286

    PubMed  CAS  Google Scholar 

  • Zipris D, Greiner DL, Malkani S, Whalen B, Mordes JP, Rossini AA (1996) Cytokine gene expression in islets and thyroids of BB rats. IFN-γ and IL-12p40 mRNA increase with age in both diabetic and insulin-treated nondiabetic BB rats. J Immunol 156:1315–1321

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burkart, V., Kolb, H. (2000). Nitric Oxide in the Immunopathogenesis of Type 1 Diabetes. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics