Skip to main content

Flow Cytometry Analysis of Marine Picoplankton

  • Chapter
In Living Color

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

In the last decade, the use of flow cytometry (FCM) has become more and more popular among limnologists and marine biologists, both for laboratory studies and field research. FCM allows the analysis of phytoplanktonic cells that are too dim to be discriminated by epifluorescence microscopy. Its major advantages are to provide rapid and accurate measurements of individual particles and to allow the discrimination between- auto and heterotrophic populations as well as between cells and detritus or suspended sediments. FCM is particularly well suited for the study of the smallest size class of the plankton (below 2 μm), called picoplankton. Picoplankton is composed by 4 major groups: heterotrophic prokaryotes, prochlorophytes (Prochlorococcus),1 cyanobacteria (Synechococcus)2 and eukaryotes. These small organisms dominate the biomass in the open ocean, reaching respective concentration ranges of 106 – 105, 105 – 103, 105 – 103 and 104 – 102 cells per ml. The geographical distribution of these organisms, their biological characteristics (carbon and pigment content), and their dynamics in relation to the biotic factors are of major interest for the oceanographers. Initially used to descriminate and enumerate the different populations of phytoplankton, the application of flow cytometry has been extended to physiological analyses (e.g. DNA analysis) and more recently to phylogenetic analyses with the help of fluorescent molecular probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chisholm SW, Olson RJ, Zettler ER, Waterbury J, et al. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 1988; Lond. 334: 340–343.

    Google Scholar 

  2. Waterbury JB, Watson SW, Guillard RRL. et al. Widespread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature, 1979; Lond. 277: 293–294.

    Google Scholar 

  3. Olson RJ, Vaulot D, Chisholm SW. Marine phytoplankton distributions measured using shipboard flow cytometry. Deep Sea Res. 1985; 32: 1273 – 1280.

    Article  Google Scholar 

  4. . Button DK, Robertson BR. Kinetics of bacterial processes in natural aquatic systems based on biomass as determined by high-resolution flow cytometry. Cytometry 1989; 10: 558 – 563.

    Article  PubMed  CAS  Google Scholar 

  5. Monger BC, Landry MR. Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl. Environ. Microbiol. 1993; 59: 905 – 911.

    CAS  Google Scholar 

  6. Li WKW, Jellett JF, Dickie PM. DNA distribution in planktonic bacteria stained with TOTO or TO-PRO. Limnol. Oceanogr. 1995; 40 (8): 1485 – 1495.

    CAS  Google Scholar 

  7. Marie D, Vaulot D, Partensky F. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1 and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl. Environ. Microbiol. 1996; 62: 1649 – 1655.

    CAS  Google Scholar 

  8. Marie D, Partensky F, Jacquet S, Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 1997; 63: 186 – 193.

    PubMed  CAS  Google Scholar 

  9. Vaulot D, Partensky F. Cell cycle distributions of prochlorophytes in the North Western Mediterranean Sea. Deep Sea Res. 1992; 39: 727 – 742.

    Article  CAS  Google Scholar 

  10. Vaulot D, Marie D, Olson RJ. et al. Growth ofProchlorococcus, a photo-synthetic prokaryote, in the equatorial Pacific Ocean. Science 1995; 268: 1480 – 1482.

    Article  PubMed  CAS  Google Scholar 

  11. Simon N, Lebot N, Marie D, et al. Fluorescentin situhybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. Appl. Environ. Microbiol. 1995; 61: 2506 – 2513.

    CAS  Google Scholar 

  12. Lange M, Guillou L, Vaulot D, et al. Identification of the class Prymne-siophyceae and the genusPhaeocystiswith ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. J. Phycol. 1996; 32: 858 – 868.

    Article  CAS  Google Scholar 

  13. Vaulot D, Birrien J-L, Marie D, et al.Phaeocystis spp.: morphology, ploidy, pigment composition and genome size of cultured strains. J. Phycol. 1994; 30: 1022 – 1035.

    Google Scholar 

  14. Edvardsen B, Vaulot D. Ploidy analysis of the two motile froms ofChrysochromulinapolylepis(Prymnesiophyceae). J. Phycol. 1996; 32: 94 – 102.

    Article  Google Scholar 

  15. Vaulot D, Courties C, Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 1989; 10: 629 – 635.

    Article  PubMed  CAS  Google Scholar 

  16. Dusenberry J A, Frankel SL. Increasing the sensitivity of a FACScan flow cytometer to study oceanic picoplankton. Limnol. Oceanogr. 1994; 39: 206 – 210.

    Google Scholar 

  17. Campbell L, Vaulot D. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Res. 1993; 40: 2043 – 2060.

    Article  Google Scholar 

  18. Partensky F, Blanchot J, Lantoine F. et al. Vertical structure of picophy-toplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Research I, 1996; 43: 1191 – 1213.

    Google Scholar 

  19. 1Amann, RI, Ludwig W, Schleifer K-H. Phylogenetic identification andin situ detection of individual microbial cells without cultivation. Microbiol. 1995; Rev. 59: 143–169.

    Google Scholar 

  20. DeLong EF, Wickhan GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 1989; 243: 1360 – 1363.

    Article  PubMed  CAS  Google Scholar 

  21. Lee S, Kemp PF. Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes. Limnol. Oceanogr. 1994; 39: 869 – 879.

    CAS  Google Scholar 

  22. Amann Rl.In situ identification of microorganisms by whole-cell hybridization with rRNA-targeted nucleic acid probes. Molecular Microbial Ecology Manual. Kluwer Academic Publishers 1995; 3.3.6: 1–15.

    Google Scholar 

  23. Godelle B, Cartier D, Marie D, et al. Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 1993; 14: 618 – 626.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marie, D., Simon, N., Guillou, L., Partensky, F., Vaulot, D. (2000). Flow Cytometry Analysis of Marine Picoplankton. In: Diamond, R.A., Demaggio, S. (eds) In Living Color. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57049-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57049-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62978-5

  • Online ISBN: 978-3-642-57049-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics