Skip to main content

Flow Cytometric Analysis of GFP Expression in Mammalian Cells

  • Chapter

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

In the jellyfish Aequorea victoria, light is produced when energy is transferred from the Ca2+-activated photo protein aequorin to green fluorescent protein or GFP (Fig. 1).1-3 This process occurs in specialized photogenic cells located at the base of jellyfish umbrella, where each protein is found at very high concentrations. The cloning of the wild-type GFP gene (wt GFP)4,5 and its subsequent expression in heterologous systems6,7 has established GFP an important reporter protein for the analysis of gene expression and protein localization in a wide variety of experimental designs. When expressed in either eukaryotic or prokaryotic cells and illuminated by blue or UV light, wt GFP emits a bright green fluorescent signal which is easily detected by fluorescence microscopy, flow cytometry, or other fluorescence imaging techniques. GFP fluorescence is species-independent and does not require additional cofactors, substrates, or gene products — the protein is “naturally fluorescent”. Moreover, detection of GFP and its variants can be performed in living samples, and is ideally suited to real time analysis of molecular events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Compo Physiol. 1962; 59: 223–227.

    Article  CAS  Google Scholar 

  2. Morin JG, Hastings JW. Energy transfer in a bioluminescent system. J. Cell. Physiol. 1971;77: 313–318.

    Article  PubMed  CAS  Google Scholar 

  3. Ward WW, Cody CW, Hart RC., et al. Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins. Photochem. Photobiol. 1980; 31: 611–615.

    Article  CAS  Google Scholar 

  4. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green fluorescent protein. Gene 1992;111:229–233.

    Article  PubMed  CAS  Google Scholar 

  5. Inouye S, Tsuji FI. Aequorea green fluorescent protein: Expression of the gene and fluorescent characteristics of the recombinant protein. FEBS Letters 1994; 341: 277–280.

    Article  PubMed  CAS  Google Scholar 

  6. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science 1994; 263: 802–805.

    Article  PubMed  CAS  Google Scholar 

  7. Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 1994; 369: 400–403.

    Article  PubMed  CAS  Google Scholar 

  8. Ward WW. Properties of the Coelenterate green-fluorescent proteins. In: DeLuca, M. & McElroy, W. D., eds. Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical applications. New York; 1981: 235–242.

    Google Scholar 

  9. Flach J, Bossie M, Vogel J, et al. A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol Cell Biol 1994; 14: 8399–8407.

    PubMed  CAS  Google Scholar 

  10. Marshall J, Molloy R, Moss GW, et al. The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 1995; 14: 211–215.

    Google Scholar 

  11. Stearns T. The green revolution. Curr Biol 1995; 5: 262–264

    Article  PubMed  CAS  Google Scholar 

  12. Carey KL, Richards SA, Lounsbury, et al. Evidence using a green fluorescent protein-glucocorticoid receptor that the RAN/TC4 GTPase mediates an essential function independent of nuclear protein import. J. Cell Biol 1996; 133: 985–996.

    Article  PubMed  CAS  Google Scholar 

  13. Náray-Fejes-Tóth A, Fejes-Tóth G. Subcellular localization of the type 2 11β-hydroxysteroid dehydrogenase. J Biol Chem 1996; 271: 15436–15442.

    Article  PubMed  Google Scholar 

  14. Kaether C, Gerdes H-H. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Letters 1995; 369: 267–271.

    Article  PubMed  CAS  Google Scholar 

  15. Cody CW, Prasher DC, Westler WM, et al. Chemical structure of the hexapeptide chromophore of Aequorea green-fluorescent protein. Biochemistry 1993; 32: 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  16. Ormö M, Cubitt AB, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996; 273: 1392–1395.

    Google Scholar 

  17. Yang F, Moss LG, Phillips GN. The molecular structure of green fluorescent protein. Nature Biotechnol 1996; 14: 1246–1251.

    Article  CAS  Google Scholar 

  18. Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 1996; 6: 178–182.

    Article  PubMed  CAS  Google Scholar 

  19. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 1994; 91: 12501–12504.

    CAS  Google Scholar 

  20. Davis DF, Ward WW, Cutler MW. Posttranslational chromophore formation in recombinant GFP from E. coli requires oxygen. Proceedings of the 8th international symposium on bioluminescence and chemiluminescence. Neuron. 1995 Feb, 14; 2: 211-5.

    Google Scholar 

  21. Kain SR, Adams M, Kondepudi, et al. The green fluorescent protein as a reporter of gene expression and protein localization. BioTechniques 1995; 19: 650–655.

    PubMed  CAS  Google Scholar 

  22. Yang TT, Kain SR, Kitts P, et al. Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene 1996; 173: 19–23.

    Article  PubMed  CAS  Google Scholar 

  23. Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature 1995; 373: 663–664.

    Article  PubMed  CAS  Google Scholar 

  24. Cormack BP, Valdivia R, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996; 173: 33=38.24.

    Article  Google Scholar 

  25. Yang TT, Cheng L, Kain SR. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 1996; 24: 4592–4593.

    Article  PubMed  CAS  Google Scholar 

  26. Haas J, Park E-C, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 1996; 6: 315–324.

    Google Scholar 

  27. Niswender KD, Blackman SM, Rohde L, et al. Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microbiol 1995; 180: 109–116.

    CAS  Google Scholar 

  28. Crameri A, Whitehorn EA, Tate E, et al. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 1996; 14: 315–319.

    Article  CAS  Google Scholar 

  29. Rizzuto R, Brini M, De Giorgi F, et al. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 1996; 6: 183–188.

    Article  PubMed  CAS  Google Scholar 

  30. Ropp JD, Donahue CJ, Wolfgang-Kimball D, et al. Aequorea green fluorescent protein analysis by flow cytometry. Cytometry 1995; 21: 309–317.

    Article  PubMed  CAS  Google Scholar 

  31. Ropp, J.D., Donahue, C.J., Wolfgang-Kimball, D. et al. Aequorea green fluorescent protein: simultaneous analysis of wild-type and blue-fluorescing mutant by flow cytometry. Cytometry 1996; 24: 284–288.

    Article  PubMed  CAS  Google Scholar 

  32. Lim CR, Kimata Y, Oka M, et al. Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleosporin Nsp1. J Biochem 1995; 118: l3–17.

    Google Scholar 

  33. Aubin JE. Auto fluorescence of viable cultured mammalian cells. J Histochem Cytochem 1979; 27: 36–43.

    Article  PubMed  CAS  Google Scholar 

  34. Lybarger L, Dempsey D, Franek KJ, et al. Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry 1996; 25: 211–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kain, S.R. (2000). Flow Cytometric Analysis of GFP Expression in Mammalian Cells. In: Diamond, R.A., Demaggio, S. (eds) In Living Color. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57049-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57049-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62978-5

  • Online ISBN: 978-3-642-57049-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics