Advertisement

Molekulare Grundlagen erblicher Netzhautdegenerationen: Retinitis pigmentosa, Zapfen- und Makuladystrophien

  • Eckart Apfelstedt-Sylla
  • Andreas Gal
  • Bernhard H. F. Weber
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 7)

Zusammenfassung

In diesem Beitrag werden die Fortschritte der letzten Jahre auf dem Gebiet der molekulargenetischen Aufklßrung hereditßrer Netzhautdystrophien (im engeren und weiteren Sinn) zusammengefasst. Hierzu soll zunßchst eine kurze Einführung in die Anatomie und Physiologie der Netzhaut sowie die grundlegenden Strategien gegeben werden, die bis heute zur Identifizierung der entsprechenden Krankheitsgene geführt haben. Die einzelnen Krankheitsgene werden im Detail beschrieben und, soweit bekannt, die molekularpathologischen Mechanismen erlßutert. Mit wachsender Kenntnis der genetischen Grundlagen nimmt auch unser Wissen über die normalen physiologischen Vorgßnge im menschlichen Netzhaut-Aderhaut-Komplex zu. Damit verknüpft sich die Hoffnung, dass in absehbarer Zeit wirkungsvolle Therapieansßtze ausgearbeitet werden können, die die Entwicklung bzw. das Fortschreiten von visusmindernden Komplikationen entscheidend beeinflussen können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Al-Maghtheh M., Inglehearn C.F., Keen T.J. et al. (1994) Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Hum Mol Genet 3:351–354PubMedGoogle Scholar
  2. Al-Maghtheh M., Vithana E., Tarttelin E. et al. (1996) Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11), and association with a unique bimodal expressivity phenotype. Am J Hum Genet 59:864–871PubMedGoogle Scholar
  3. Allikmets R., Shroyer N.F., Singh N. et al. (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807PubMedGoogle Scholar
  4. Allikmets R., Singh N., Sun H. et al. (1997b) A photoreceptor cell specific ATP binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246PubMedGoogle Scholar
  5. Anand-Apte B., Pepper M.S., Voest E. et al. (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38:817–823PubMedGoogle Scholar
  6. Apte S.S., Mattei M.G., Olsen B.R. (1994) Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19:86–90PubMedGoogle Scholar
  7. Balciuniene J., Johansson K., Sandgren O., Wachtmeister L., Holmgren G., Forsman K. (1995) A gene for autosomal dominant progressive cone dystrophy (CORDS) maps to chromosome 17p12-p13. Genomics 30:281–286PubMedGoogle Scholar
  8. Banerjee P., Kleyn P.W., Knowles J.A. et al. (1998) TULP1 mutation in two extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nat Genet 18:177–179PubMedGoogle Scholar
  9. Bartley J., Gies C., Jacobson D. (1989) Cone dystrophy (X-linked) (COD1) maps between DXS7 (L1.28) and DXS206 (XJl.l) and is linked to DXS84 (754). Cytogenet Cell Genet 51:959Google Scholar
  10. Bascom R.A., Manara S., Collins L., Molday R.S., Kalnins V.I., Mclnnes R.R. (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8:1171–1184PubMedGoogle Scholar
  11. Baumgartner S., Hofmann K., Chiquet-Ehrismann R., Bucher P. (1998) The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 7:1626–1631PubMedGoogle Scholar
  12. Bayes M., Goldaracena B., Martinez-Mir A. et al. (1998) A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J Med Genet 35:141–145PubMedGoogle Scholar
  13. Benomar A., Krols L., Stevanin G. et al. (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromsome 3p12-p21.1. Nat Genet 10:84–88PubMedGoogle Scholar
  14. Berson E.L., Howard J. (1971) Temporal aspects of the electroretinogram in sector retinitis pigmentosa. Arch Ophthalmol 86:653–665PubMedGoogle Scholar
  15. Berson E.L., Sandberg M.A., Rosner B., Birch D.G., Hanson A.H. (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251PubMedGoogle Scholar
  16. Berson E.L., Rosner B., Sandberg M.A., Dryja T.P. (1991 a) Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (pro-23-his). Arch Ophthalmol 109:92–101PubMedGoogle Scholar
  17. Berson E.L., Rosner B., Sandberg M.A., Weigel-DiFranco C., Dryja T.P. (1991 b) Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leu eine. Am J Ophthalmol 111:614–623PubMedGoogle Scholar
  18. Berson E.L., Rosner B., Sandberg M.A. et al. (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–727PubMedGoogle Scholar
  19. Bessant D.A.R., Payne A.M., Mitton K.P. et al. (1999) A mutation in NRL is assoeiated with autosomal dominant retinitis pigmentosa. Nat Genet 21:355–356PubMedGoogle Scholar
  20. Bundey S., Crews S.J. (1984) A study of retinitis pigmentosa in the city of Birmingham. I. Prevalence. J Med Genet 21:417–420PubMedGoogle Scholar
  21. Bunker C.H., Berson E.L., Bromley W.C. (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365PubMedGoogle Scholar
  22. Casey D. (1995) Genome project finishes fifth year ahead of schedule. Hum Genome News 7:1–9Google Scholar
  23. Chen S.M., Wang Q.L., Nie Z.Q. et al. (1997) Crx, a novel Otxlike paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19: 1017–1030PubMedGoogle Scholar
  24. Cheng T., Peachey N.S., Li S. et al. (1997) The effect of peripherin/rds haploinsuffieiency on rod and cone photoreceptors. J Neurosci 17:8118–8128PubMedGoogle Scholar
  25. Cohen A.I. (1983) Some cytological and initial biochemical observations on photoreceptors in retinas of rds mice. Invest Ophthalmol Vis Sci 24:832–843PubMedGoogle Scholar
  26. Collins F.S. (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350PubMedGoogle Scholar
  27. Condon G.P., Brownstein S., Wang N., Kearns A.F., Ewing C.C. (1986) Congenital hereditary (juvenile X-linked) retinoschisis: histological and ultrastructural findings in three eyes. Arch Ophthalmol 104:576–583PubMedGoogle Scholar
  28. Cremers F.P.M., Pol D.J.R. van de, Driel M. van et al. (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362PubMedGoogle Scholar
  29. David G., Abbas N., Stevanin G. et al. (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70PubMedGoogle Scholar
  30. Demant P., Ivanyi D., Nie R. van (1979) The map position of the rds gene on the 17th chromosome of the mouse. Tissue Antigens 13:53–55PubMedGoogle Scholar
  31. Deutman A.F. (1971) The hereditary dystrophies of the posterior pole of the eye. Van Gorcum, AssenGoogle Scholar
  32. Deutman A.F. (1994) Macular dystrophies. In: Ryan S.J., Ogden T.E. (eds) Retina, 2nd edn. Mosby, St Louis, pp 1186–1240Google Scholar
  33. Dietz H.C., Cutting G.R., Pyeritz R.E. et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339PubMedGoogle Scholar
  34. Dizhoor A.M., Hurley J.B. (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced „activator-to-inhibitor” transition. J Biol Chem 271: 19346–50PubMedGoogle Scholar
  35. Donders F.C. (1855) Beitrßge zur pathologischen Anatomie des Auges. Graefes Arch Clin Exp Ophthalmol 1:106–118Google Scholar
  36. Dryja T.P., McGee T.L., Reichel E. et al. (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366PubMedGoogle Scholar
  37. Dryja T.P., Finn J.T., Peng Y-W., McGee T.L., Berson E.L., Yau K.W. (1995) Mutations in the gene encoding the a subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 92:10177–10181Google Scholar
  38. Dryja T.P., Hahn L.B., Kajiwara K., Berson E.L. (1997) Dominant and digenic mutations in the peripherin/RDS and ROMI genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38:1972–1982PubMedGoogle Scholar
  39. Dryja T.P., C.E. Briggs, E.L. Berson et al. (1998) ABCR gene and age-related macular degeneration. Science 279:1107Google Scholar
  40. Evans K., Fryer A., Inglehearn C. (1994) Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nat Genet 6:210–213PubMedGoogle Scholar
  41. Fariss R.N., Apte S.S., Olsen B.R., Iwata K., Milam A.H. (1997) Tissue inhibitor of metalloproteinases-3 is a component of Bruch’s membrane of the eye. Am J Pathol 150:323–328PubMedGoogle Scholar
  42. Farrar G.J., Jordan S.A., Kenna P. et al. (1991 a) Autosomal dominant retinitis pigmentosa: localization of a disease gene (RP6) to the short arm of chromosome 6. Genomics 11:870–874PubMedGoogle Scholar
  43. Farrar G.J., Kenna P., Jordan S.A. et al. (1991 b) A three-basepair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 354:478–480PubMedGoogle Scholar
  44. Finckh U., Xu S., Kumaramanickavel G. et al. (1998) Homozygosity mapping of autosomal recessive retinitis pigmentosa locus (RP22) on chromosome 16p12.1-p12.3. Genomics 48:341–345PubMedGoogle Scholar
  45. Fishman G.A., Alexander, K.R., Anderson R.J. (1985) Autosomal dominant retinitis pigmentosa: a method of classification. Arch Ophthalmol 103:366–374PubMedGoogle Scholar
  46. Forsman K., Graff C., Nordstrom S. et al. (1992) The gene for Best’s macular dystrophy is located at 11q13 in a Swedish family. Clin Genet 42:156–159PubMedGoogle Scholar
  47. Freund C.L., Gregory-Evans C.Y., Furukawa T. et al. (1997) Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553PubMedGoogle Scholar
  48. Freund C.L., Wang Q.L., Chen S. et al. (1998) De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet 18:311–312PubMedGoogle Scholar
  49. Fulton A.B., Hansen R.M. (1988) The relations of rhodopsin and scotopic retinal sensitivity in sector retinitis pigmentosa. Am J Ophthalmol 105:132–140PubMedGoogle Scholar
  50. Furukawa T., Morrow E.M., Cepko C.L. (1997) CRX, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541PubMedGoogle Scholar
  51. Gal A., Apfelstedt-SyHa E., Janecke A.R., Zrenner E. (1997) Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog Ret Eye Res 16:51–79Google Scholar
  52. Gehrig A.E., White K., Lorenz B., Andrassi M., Clemens S., Weber B.H.F. (1999) Assessment of RSI in X-linked juvenile retinoschisis and sporadic senile retinoschisis. Clin Genet in pressGoogle Scholar
  53. George N.D., Yates J.R., Moore A.T. (1996) Clinical features in affected males with X-linked retinoschisis. Arch Ophthalmol 114:274–280PubMedGoogle Scholar
  54. Gerber S., Rozet J.M., Bonneau D. et al. (1985) A gene for lateonset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet 56:396–399Google Scholar
  55. Gerber S., Rozet J.M., Pol T.J.R. van de et al. (1998) Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) aHows the identification of novel mutations underlying Stargardt disease. Genomics 48:139–142PubMedGoogle Scholar
  56. Goldberg A.F., Molday R.S. (1996) Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35:6144–6149PubMedGoogle Scholar
  57. Gorczyca W.A., Polans A.S., Surgucheva I.G. et al. (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270:22029–22036PubMedGoogle Scholar
  58. Gouw L.G., Kaplan C.D., Haines J.H. et al. (1995) Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromomsome 3p. Nat Genet 10:89–93PubMedGoogle Scholar
  59. Graff C., Forsman K., Larsson C. et al. (1994) Fine mapping of Best’s macular dystrophy localizes the gene in close proximity to but distinct from the D11S480/ROM1 loci. Genomics 24:425–434PubMedGoogle Scholar
  60. Graff C., Eriksson A., Forsman K. et al. (1997) Refined genetic localization of the Best disease gene in 11q13 and physical mapping of linked markers on radiation hybrids. Hum Genet 101:263–270PubMedGoogle Scholar
  61. Greene J., Wang M.S., Liu Y., Raymond L.A., Rosen C., Shi Y. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase-4. J Biol Chem 271:30375–30380PubMedGoogle Scholar
  62. Gregory-Evans K., Bhattacharya S.S. (1998) Genetic blindness: current concepts in the pathogenesis of human outer retinal dystrophies. Trends Genet 14:103–108PubMedGoogle Scholar
  63. Gregory C.Y., Evans K., Wijesuriya S.D. et al. (1996) The gene responsible for autosomal dominant Doyne’s honeycomb retinal dystrophy (DHRD) maps to chromosome 2p16. Hum Mol Genet 5:1055–1059PubMedGoogle Scholar
  64. Gu S.M., Thompson D.A., Srikumari C.R. et al. (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17: 194–197PubMedGoogle Scholar
  65. Gu S.M., Lennon A., Li Y. et al. (1998) Tubby-like protein-1 mutations in autosomal recessive retinitis pigmentosa. Lancet 351:1103–1104PubMedGoogle Scholar
  66. Gu S.M., Kumaramanickavel G., Srikumari C.R., Denton M.J., Gal A. (1999) Autosomal recessive retinitis pigmentosa 10-cus RP28 maps between D2S1337 and D2S286 on chromosome 2p11-p15 in an Indian family. J Med Genet 36: im DruckGoogle Scholar
  67. Hagstrom S.A., North M.A., Nishina P.L., Berson E.L., Dryja T.P. (1998) Recessive mutations in the gene encoding the tubby-like protein TULPI in patients with retinitis pigmentosa. Nat Genet 18:174–176PubMedGoogle Scholar
  68. Harding A.E. (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the the Drew family of Walworth. Brain 105:1–28PubMedGoogle Scholar
  69. Hawkins R.K., Jansen H.G., Sanyal S. (1985) Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 41:701–720PubMedGoogle Scholar
  70. Heckenlively J.R. (1988) Retinitis pigmentosa. Lippincott, PhiladelphiaGoogle Scholar
  71. Heckenlively J.R., Rodriguez J.A., Daiger S.P. (1991) Autosomal dominant sectoral retinitis pigmentosa; two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109:84–91PubMedGoogle Scholar
  72. Heon E., Piguet B., Munier F. (1996) Linkage of autosomal dominant radial drusen (Malattia leventinese) to chromosome 2p16-21. Arch Ophthalmol 114:193–198PubMedGoogle Scholar
  73. Higgins C.F. (1992) ABC transporters: from microorganisms to man. Annu Rev cell Biol 8:67–113PubMedGoogle Scholar
  74. Hotta Y., Fujiki K., Hayakawa M. et al. (1998) Japanese juvenile retinoschisis is caused by mutations of the XLRS1 gene. Hum Genet 103:142–144PubMedGoogle Scholar
  75. Huang S.H., Pittler S.J., Huang X., Oliveira L., Berson E.L., Dryja T.P. (1995) Mutations in the gene encoding the a subunit of rod cGMP phosphodiesterase in patients with autosomal recessive retinitis pigmentosa. Nat Genet 11:468–471PubMedGoogle Scholar
  76. Illing M., Molday L.L., Molday R.S. (1997) The 220 kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10.303–10.310Google Scholar
  77. Ives E.J., Ewing C.C., Innes R. (1970) X linked juvenile retinoschisis and Xg linkage in five families. Am J Hum Genet 22:17A–18AGoogle Scholar
  78. Jacobson S.G., Cideciyan A.V., Regunath G. et al. (1995) Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat Genet 11:27–32PubMedGoogle Scholar
  79. Jacobson S.G., Cideciyan A.V., Huang Y. et al. (1998) Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene. Invest Ophthalmol Vis Sci 39:2417–2426PubMedGoogle Scholar
  80. Jimenez-Sierra J.M., Ogden T.E., Boemel G.B. van (1989) Inherited retinal diseases. A diagnostic guide. Mosby, St LouisGoogle Scholar
  81. Johansson J., Forsgren L., Sandgren O. et al. (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7:171–176PubMedGoogle Scholar
  82. Jordan S.A., Farrar G.J., Kenna P. et al. (1993) Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet 4:54–57PubMedGoogle Scholar
  83. Kajiwara K., Hahn L.B., Mukai S., Travis G.H., Berson E.L., Dryja T.P. (1991) Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354:480–483PubMedGoogle Scholar
  84. Kajiwara K., Berson E.L., Drya T.P. (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loei. Science 264:1604–1608PubMedGoogle Scholar
  85. Kaplan J., Gerber S., Larget Piet D et al. (1993) A gene for Stargardt’s disease (fundus tlavimaculatus) maps to the short arm of chromosome 1. Nat Genet 5:308–311Google Scholar
  86. Kaushal S., Khorana G. (1994) Structure and function in rhodopsin 7. Point mutation assoeiated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128PubMedGoogle Scholar
  87. Kelsell R.E., Godley B.F., Evans K. et al. (1995) Localization of the gene for progressive bifocal chorioretinal atrophy (PBCRA) to chromosome 6q. Hum Mol Genet 4:1653–1656PubMedGoogle Scholar
  88. Kelsell R.E., Evens K., Gregory C.Y., Moore A.T., Bird A.C., Hunt D.M. (1997) Localisation of a gene for dominant cone rod dystrophy (CORD6) to chromosome 17p. Hum Mol Genet 6:597–600PubMedGoogle Scholar
  89. Kelsell R.E., Gregory-Evans G.K., Gregory-Evans C.Y. et al. (1998a) Localization of a gene (CORD7) for a dominant cone-rod dystrophy to chromosome 6q. Am J Hum Genet 63:274–279PubMedGoogle Scholar
  90. Kelsell R.E., Gregory-Evans K., Payne A.M. et al. (1998b) Mutations in the retinal guanylate cyelase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184PubMedGoogle Scholar
  91. Kenna P., Mansergh F., Millington-Ward S. et al. (1997) Clinical and molecular genetic characterisation of a family segregating autosomal dominant retinitis pigmentosa and sensorineural deafness. Br J Ophthalmol 81:207–213PubMedGoogle Scholar
  92. Klaver C.C.W., Assink J.M., Bergen A.A.B., Duijn C.M. van (1998) ABCR gene and age-re1ated macular degeneration. Science 279:1107Google Scholar
  93. Klein M.L., Schultz D.W., Edwards A. et al. (1998) Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116: 1082–1088PubMedGoogle Scholar
  94. Klystra J.A., Aylsworth A.S. (1993) Cone-rod retinal dystrophy in a patient with neurofibromatosis type 1. Can J Ophthalmol 28:79–80Google Scholar
  95. Kohl S., Christ-Adler M., Apfelstedt-Sylla E. et al. (1997) RDSI peripherin gene mutations are frequent causes of central retinal dystrophies. J Med Genet 34:620–626PubMedGoogle Scholar
  96. Kohl S., Giddings I., Besch D. et al. (1998) The role of the peripherin/RDS gene in retinal dystrophies. Acta Anat 162:75–84PubMedGoogle Scholar
  97. Kremer H., Pinckers A., Helm B. van den, Deutman A.F., Ropers H.H., Mariman E.C.M. (1994) Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet 3:299–302PubMedGoogle Scholar
  98. Krey H.J., Grunau G, Brßuer H (1986) Exempla ophthalmologica. Albert Roussel GmbH, WiesbadenGoogle Scholar
  99. Kumaramanickavel G., Maw M., Denton M.J. et al. (1994) Missense rhodopsin mutation in a family with recessive RP. Nat Genet 8:10–11PubMedGoogle Scholar
  100. Laura R.P., Dizhoor A.M., Hurley J.B. (1996) The membrane guanylyl cyelase, retinal guanylyl cyelase-1, is activated through its intracellular domain. J Biol Chem 271:11646–11651PubMedGoogle Scholar
  101. Li Z-Y., Jacobson S.G., Milam A.H. (1994) Autosomal dominant retinitis pigementosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res 58:397–408PubMedGoogle Scholar
  102. Lotery A.J., Hughes A.E., Silvestri G. et al. (1996) Localization of a gene for central areolar choroidal dystrophy to chromosome 17p. Invest Ophthalmol Vis Sci 37:1124Google Scholar
  103. Lunkes A., Mandel J.L. (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum Mol Genet 7:1355–1361PubMedGoogle Scholar
  104. Ma J., Norton J.C., Allen A.C. et al. (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into pro tein-coding exon H. Genomics 28:212–219PubMedGoogle Scholar
  105. Mansergh F.C., Millington-Ward S., Kennan A. et al. (1999) Retinitis pigmentosa and progressive sensorineural hearing loss caused by a C12.258A mutation in the mitochondrial MTTS2 gene. Am J Hum Genet 64:971–985PubMedGoogle Scholar
  106. Marmor M.F., Aguirre G., Arden G.B. et al. (1983) Retinitis pigmentosa, a symposium on terminology and methods of examination. Ophthalmology 90:126–131Google Scholar
  107. Marlhens F., Bareil C., Griffoin J.M. et al. (1997) Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet 17:139–141PubMedGoogle Scholar
  108. Marquardt A., Stöhr H., Passmore L.A. et al. (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525PubMedGoogle Scholar
  109. Martínez-Mir A., Bayes M., Vilageliu L. et al. (1997) A new 10-cus for autosomal recessive retinitis pigmentosa (RP19) maps to Ip13-1p21. Genomics 40:142–146PubMedGoogle Scholar
  110. Martinez-Mir A., Paloma E., Allikmets R. et al. (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12PubMedGoogle Scholar
  111. Massof R.W., Finkelstein D. (1981) Two forms of ausosomal dominant primary retinitis pigmentosa. Doc Ophthalmol 51:289–346PubMedGoogle Scholar
  112. Massof R.W., Finkelstein D. (1987) A two-stage hypothesis for the natural course of retinitis pigmentosa. In: Zrenner E, Krastel H., Groeble H-H. (eds) Advances in the Biosciences, vol 62. Pergamon Press, Oxford New York, pp 29–58Google Scholar
  113. Matrisian L.M. (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125PubMedGoogle Scholar
  114. Maw M.A., Kennedy B., Knight A. et al. (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200PubMedGoogle Scholar
  115. McGuire R.E., Gannon A.M., Sullivan L.S., Rodriguez J.A., Daiger S.P. (1995) Evidence for a major gene (RPlO) for autosomai dominant retinitis pigmentosa on chromosome 7q: linkage mapping in a second, unrelated family. Hum Genet 95:71–74PubMedGoogle Scholar
  116. McLaughlin M.E., Sandberg M.A., Berson E.L., Dryja T.P. (1993) Recessive mutations in the gene encoding the ß-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4: 130–134PubMedGoogle Scholar
  117. McWilliam P., Farrar G.J., Kenna P. et al. (1989) Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics 5:619–622PubMedGoogle Scholar
  118. Meindl A., Dry K., Herrmann K. et al. (1996) A gene (RPGR) with homology to the RCCI guanine nueleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 13:35–42PubMedGoogle Scholar
  119. Milln J.M., Martinez F., Vilela C., Beneyto M., Prieto F., Najera C. (1995) An autosomal dominant retinitis pigmentosa family with elose linkage to D7S480 on 7q. Hum Genet 96:216–218Google Scholar
  120. Mohamed Z., Bell C., Hammer H.M., Converse C.A., Esakowitz L., Haites N.E. (1996) Linkage of a medium sized Scottish autosomal dominant retinitis pigmentosa family to chromosome 7q. J Med Genet 33:714–715PubMedGoogle Scholar
  121. Molday R.S. (1994) Peripherin/rds and rom-1: molecular properties and role in photoreceptor cell degeneration. Prog Ret Eye Res 13:271–299Google Scholar
  122. Molday R.S. (1998) Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 39:2493–2513Google Scholar
  123. Molday R.S., Hieks D., Molday L. (1987) Peripherin. A rimspecific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61PubMedGoogle Scholar
  124. Moore A.T., Fitzke F., Iay M. et al. (1993) Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiologieal, psychophysieal, and molecular genetic study. Br J Ophthalmol 77:473–479PubMedGoogle Scholar
  125. Morimura H., Fishman G.A., Grover S.A., Fulton A.B., Berson E.L., Dryja T.P. (l998) Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA 95:3088–3093Google Scholar
  126. Moses M.A., Sudhalter I., Langer R. (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1410PubMedGoogle Scholar
  127. Nakazawa M., Wada Y., Tamai M. (1998) Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 116:498–501PubMedGoogle Scholar
  128. Nasonkin I., Illing M., Koehler M.R. et al. (1998) Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet 102:21–26PubMedGoogle Scholar
  129. North M.A., Naggert I.K., Yan Y., Noben-Trauth K., Trauth K., Nishina P.M. (1997) Molecular characterisation of TUB, TULP1, and TULP2 members of the novel tubby gene family and their possible relation to ocular diseases. Proc Natl Acad Sci USA 94:3128–3133Google Scholar
  130. Pagon R. (l988) Retinitis pigmentosa. Surv Ophthalmol 33:137–177Google Scholar
  131. Papermaster D.S., Windle I. (1995) Death at an early age. Apoptosis in inherited retinal degeneration. Invest Ophthalmol Vis Sci 36:977–983PubMedGoogle Scholar
  132. Payne A.M., Downes S.M., Bessant D.A.R. et al. (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277PubMedGoogle Scholar
  133. Perrault I., Rozet I.M., Calvas P. et al. (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464PubMedGoogle Scholar
  134. Perrault I., Rozet J.M., Gerber S. et al. (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654PubMedGoogle Scholar
  135. Petrukhin K., Koisti M.I., Bakall B. et al. (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247PubMedGoogle Scholar
  136. Pierce E.A., Quinn T., Meehan T., McGee T.L., Berson E.L., Dryja T.P. (l999) Mutations in a gene encoding a new oxygenregulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet 22:248–254Google Scholar
  137. Retinoschisis Consortium (1998) Functional implications of the spectrum of mutations found in 234 cases with Xlinked juvenile retinoschisis (XLRS). Hum Mol Genet 7:1185–1192Google Scholar
  138. Rodriguez I.R., Mazuruk K., Jaworski C., Iwata F., Moreira E.F., Kaiser-Kupfer M.I. (1998) Novel mutations in the XLRS1 gene may be caused by early Okazaki fragment sequence replacement. Invest Ophthalmol Vis Sci 39:1736–1739PubMedGoogle Scholar
  139. Rosenfeld P.J., Cowley G.S., McGee T.L., Sandberg M.A., Berson E.L., Dryja T.P. (1992) A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet 1:209–213PubMedGoogle Scholar
  140. Rozet J.M., Gerber S., Ghazi I. et al. (1999) Mutations ofthe retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of Clinical heterogeneity at this locus. J Med Genet 36:447–451PubMedGoogle Scholar
  141. Ruiz A., Borrego S., Marcos I., Antifiolo G. (1998) A major 10-cus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyrie acid-receptor clusters. Am J Hum Genet 62:1452–1459PubMedGoogle Scholar
  142. Sandberg M.A., Weigel-DiFranco C., Drya T.P., Berson E.L. (1995) Clinical expression correlates with location of rhodopsin mutation in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 36:1934–1942PubMedGoogle Scholar
  143. Sauer G.S., Gehrig A., Warneke-Wittstock R. et al. (1997) Positional cloning of the gene assoeiated with X-linked juvenile retinoschisis. Nat Genet 17:164–170PubMedGoogle Scholar
  144. Schwahn U., Lenzner S., Dong J. et al. (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332PubMedGoogle Scholar
  145. Shroyer N.F., Lewis R.A., Allikmets R. et al. (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenie to multifactorial. Vision Res 39:2537–2544PubMedGoogle Scholar
  146. Small K.W., Weber I.L., Roses A., Lennon F., Vance J.M., Perieak Vance M.A. (1992) North Carolina macular dystrophy is assigned to chromosome 6. Genomics 13:681–685Google Scholar
  147. Small K.W., Syrquin M., Mullen L., Gehrs K. (1996) Mapping of autosomal dominant cone degeneration to chromosome 17p. Am J Ophthalmol 121:13–18PubMedGoogle Scholar
  148. Soest S. van, Born L.I. van den, Gal A. et al. (1994) Assignment of a gene for autosomal recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and Genetically heterogeneous disease population. Genomics 22:499–504PubMedGoogle Scholar
  149. Soest S. van, Westerveld A., Iong P.T. de, Bleeker-Wagemakers E.M. (1999) Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 43:321–334PubMedGoogle Scholar
  150. Sohocki M.M., Sullivan L.S., Mintz-Hittner H.A. et al. (1998) A range of Clinical phenotypes assoeiated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 63:1307–1315PubMedGoogle Scholar
  151. Sokal I., Li N., Surgucheva I. et al. (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Molecular Cell 2:129–133PubMedGoogle Scholar
  152. Steinmetz R.L., Polkinghorne P.C., Fitzke F.W., Kemp C.M., Bird A.C. (1992) Abnormal dark adaptation and rhodopsin kinetics in Sorsby’s fundus dystrophy. Invest Ophthalmol Vis Sci 33:1633–1636PubMedGoogle Scholar
  153. Stockman A., Sharpe S.T. (1999) Cone spectral sensitivities and color matching. In: Gegenfurther K., Sharpe L.T. (eds) Color vision: from genes to perception. Cambridge University Press, Cambridge, pp 51–85Google Scholar
  154. Stöhr H., Weber B.H.F. (1995) A recombination event excludes the ROM1 locus from the Best’s vitelliform macular dystrophy region. Hum Genet 95:219–222PubMedGoogle Scholar
  155. Stone E.M., Niehols B.E., Streb L.M., Kimura A.E., Sheffield V.C. (1992) Genetic linkage of vitelliform macular degeneration (Best’s disease) to chromosome 11q13. Nat Genet 1:246–250PubMedGoogle Scholar
  156. Stone E.M., Nichols B.E., Kimura A.E., Weingeist T.A., Drack A., Sheffield V.C. (1994) Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch Ophthalmol 112:765–772PubMedGoogle Scholar
  157. Stone E.M., Webster A.R., Vandenburgh K. et al. (1998) Allelic variation in ABCR assoeiated with Stargardt disease but not age-related macular degeneration. Nat Genet 20:328–329PubMedGoogle Scholar
  158. Stone E.M., Lotery A.J., Munier F.l. et al. (1999) A single EFEMP1 mutation assoeiated with both Malattia leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202PubMedGoogle Scholar
  159. Sullivan L.R., Heckenlively J.R., Bowne S.J. et al. (1999) Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 22:255–259PubMedGoogle Scholar
  160. Sun H., Nathans J. (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16PubMedGoogle Scholar
  161. Sun H., Molday R.S., Nathans J. (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281PubMedGoogle Scholar
  162. Sung C-H., Schneider B.G., Agarwal N., Papermaster D.S., Nathans J. (1991) Functional heterogeneity of mutant rhodopsin responsible for autosomal dominant retinitis pigmentosa. Proc Nat Acad Sci USA 88:8840–8844Google Scholar
  163. Sung C-H., Davenport C.M., Nathans J. (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J Biol Chem 268:26645–26649PubMedGoogle Scholar
  164. Sung C-H., Makino C., Baylor D., Nathans J. (1994) A rhodopsin gene responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci 14:5818–5833PubMedGoogle Scholar
  165. Sutter E.E., Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446PubMedGoogle Scholar
  166. Swain P.K., Chen S.M., Wang Q.L. et al. (1997) Mutations in the cone-rod homeobox gene are associated with the conerod dystrophy pho,toreceptor degeneration. Neuron 19:1329–1336PubMedGoogle Scholar
  167. Tranebjaerg L., Sjo O, Warburg M. (1986) Retinal cone dysfunction and mental retardation assoeiated with a de novo balanced translocation 1,6(q44,q27). Ophthalmie Paediatr Genet 7:167–173Google Scholar
  168. Travis G.H., Brennan M.B., Danielson P.E. et al. (1989) Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338:70–73PubMedGoogle Scholar
  169. Travis G.H., Christerson L., Danielson P.E. et al. (1991) The human retinal degeneration slow (RDS) gene: chromosome assignment and structure of the mRNA. Genomics 10:733–739PubMedGoogle Scholar
  170. Ullerieh K., Deutman A.F., Alexandridis E., Witschel H. (1985) Heredodystrophien der Makula. In: Hammerstein W., Lisch W. (Hrsg) Ophthalmologische Genetik. Bücherei des Augenarztes, Bd 105. Enke, Stuttgart, S 231–253Google Scholar
  171. Van de Vosse E, Bergen A.A.B., Meershoek E.J. et al. (1996) An Xp22.1-p22.2 YAC contig encompassing the disease loei for RS, KFSD, CLS, HYP and RP15: refined localization of RS. Eur J Hum Genet 4:101–104PubMedGoogle Scholar
  172. Van Nie R, Ivanyi D., Demant P. (1978) A new H-2-linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12:106–108PubMedGoogle Scholar
  173. Vranka J.A., Johnson E., Zhu X. et al. (1997) Discrete expression and distribution pattern of TIMP3 in the human retina and choroid. Curr Eye Res 16:102–110PubMedGoogle Scholar
  174. Warburg M., Sjo O., Tranebjaerg L., Fledelius H.C. (1991) Deletion mapping of a retinal cone-rod dystrophy: assignment to 18q211. Am J Med Genet 39:288–293PubMedGoogle Scholar
  175. Warneke-Wittstock R., Marquardt A., Gehrig A. et al. (1998) Transcript map of a 900 kb genomie region in Xp22.1-p22.2: identification of 12 novel genes. Genomics 51:59–67PubMedGoogle Scholar
  176. Warren S.T. (1996) The expanding world of trinucleotide repeats. Science 271:1374–1375PubMedGoogle Scholar
  177. Weber B.H.F., Vogt G., Pruett R.C., Stohr H., Felbor U. (1994a) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356PubMedGoogle Scholar
  178. Weber B.H.F., Vogt G., Wolz W., Ives E.J., Ewing C.C. (1994b) Sorsby’s fundus dystrophy is Genetically linked to chromosome 22q13-qter. Nat Genet 7:158–161PubMedGoogle Scholar
  179. Weleber R.G., Carr R.E., Murphy W.H., Sheffield V.C., Stone E.M. (1993). Phenotypie variation including retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in a single family with a deletion of codon 153 or 154 of the peripherin/RDS gene. Arch Ophthalmol 111:1531–1542PubMedGoogle Scholar
  180. Wells J., Wroblewski J., Keen J. et al. (1993) Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet 3:213–218PubMedGoogle Scholar
  181. Wieacker P., Davies K.E., Mevorah B., Ropers H.H. (1983) Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome. Hum Genet 63:113–116PubMedGoogle Scholar
  182. Zhang K., Bither P.P., Park R., Donoso L.A., Seidman J.G., Seidman C.E. (1994) A dominant Stargardt’s macular dystrophy locus maps to chromosome 13q34. Arch Ophthalmol 112:759–764PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eckart Apfelstedt-Sylla
  • Andreas Gal
  • Bernhard H. F. Weber

There are no affiliations available

Personalised recommendations