Skip to main content

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 6))

  • 146 Accesses

Zusammenfassung

Der Begriff der Sphingolipidosen umfaßt eine Reihe erblicher Störungen des Sphingolipidstoffwechsels. Aufgrund von Mutationen in Strukturgenen, die für Enzyme und weitere Proteine des Sphingolipidabbaus kodieren, kommt es zur lysosomalen Speicherung nicht mehr abbaubarer Sphingolipide in einem oder mehreren Organen. Symptomatik und Verlaufsformen dieser Speicherkrankheiten können innerhalb weiter Grenzen variieren. Selbst bei Mutationen innerhalb ein und derselben Sphingolipidhydrolase sind verschiedene Verlaufsformen und Symptomatiken möglich. Einerseits können infantile Erkrankungen zu neurologischen Ausfallerscheinungen und frühem Tod führen, andererseits sind auch adulte Varianten möglich (Rapola, 1994), die mit einem langsamen Fortschreiten der Krankheit und einer nahezu normalen Lebenserwartung ohne neurologische Beteiligung einhergehen. Bei sog. Pseudodefizienzen ist die Restenzymaktivität so groß, daß keine Krankheitssymptome auftreten. Die Kenntnis der primären Defekte auf genomischer Ebene ist eine Voraussetzung zum Verständnis dieser Erkrankungen, sie ist aber nicht ausreichend, um deren Verlaufsformen und Symptomatik zu verstehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aghion H (1934) La maladie de Gaucher dans I’enfance. PhD Thesis, Paris

    Google Scholar 

  • Akli S, Guidotti JE, Vigne E, Perricaudet M, Sandhoff K, Kahn A, Poenaru L (1996) Restoration of hexosaminidase A activity in human Tay-Sachs fibroblasts via adenoviral vector-mediated gene transfer. Gene Ther 3: 769–774

    PubMed  CAS  Google Scholar 

  • Anderson W (1898) A case of angiokeratoma. Br J Dermatol 10: 113–117

    Google Scholar 

  • Austin JH, Balasubramanian AS, Pattabiraman TN, Saraswathi S, Basu DK, Bachhawat BK (1963) Controlled study of enzymic activities in three human disorders of glycolipid metabolism, gargoylism, metachromatic, and globoid leukodystrophy. J Neurochem 10: 805–816

    PubMed  CAS  Google Scholar 

  • Ballabio A, Shapiro LJ (1995) Steroid sulfatase deficiency and X-linked ichthyosis. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 96, pp 2999–3022

    Google Scholar 

  • Banerjee A, Burg J, Conzelmann E, Carroll M, Sandhoff K (1984) Enzyme-linked immunosorbent assay for the ganglioside GM2-activator protein — Screening of normal human tissues and body fluids, of tissues of GM2 gangliosidosis, and for its subcellular localization. Hoppe Seyler Z Physiol Chem 365: 347–356

    PubMed  CAS  Google Scholar 

  • Barton NW, Furrish FS, Murray GJ, Garfield M, Brady RO (1990) Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci USA 87: 1913–1916

    PubMed  CAS  Google Scholar 

  • Barton NW, Brady RO, Dambrosia JM et al. (1991) Replacement therapy for inherited enzyme deficiency. Macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 324: 1464–1470

    PubMed  CAS  Google Scholar 

  • Ben-Yoseph Y, Gagne R, Parvathy MR, Mitchell DA, Momoi T (1989) Leukocyte and plasma N-laurylsphingosine deacylase (ceramidase) in Farber disease. Clin Genet 36: 38–42

    PubMed  CAS  Google Scholar 

  • Berent SL, Radin NS (1981) Mechanism of activation of glucocerebrosidase by Co-β-glucosidase (glucosidase activator protein) Biochim Biophys Acta 664: 572–582

    PubMed  CAS  Google Scholar 

  • Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, Schuchman EH, Sandhoff K (1995) Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem 270: 11.098-11.102

    Google Scholar 

  • Beutler E (1992) Gaucher disease: new molecular approaches to diagnosis and treatment. Science 256: 794–799

    PubMed  CAS  Google Scholar 

  • Beutler E (1993) Gaucher disease as a paradigm of current issues regarding single gene mutations of humans. Proc Natl Acad Sci USA 90: 5384–5390

    PubMed  CAS  Google Scholar 

  • Beutler E, Grabowski GA (1995) Gaucher disease. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 86, pp 2641–2670

    Google Scholar 

  • Birkenmeier EH, Barker JE, Vogler CA et al. (1991) Increased life span and correction of metabolic defects in murine mucopolysaccharidosis type VII after syngeneic bone marrow transplantation. Blood 78: 3081–3092

    PubMed  CAS  Google Scholar 

  • Bishop DF, Desnick RJ (1981) Affinity purification ofa-galactosidase A from human spleen, placenta, and plasma with elimination of pyrogen contamination. J Biol Chem 256: 1307–1316

    PubMed  CAS  Google Scholar 

  • Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ (1986) Human a-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci USA 83: 4859–4863

    PubMed  CAS  Google Scholar 

  • Bishop DF, Kornreich R, Desnick RJ (1988) Structural organization of the human a-galactosidase A gene: further evidence for the absence of a 3’ untranslated region. Proc Natl Acad Sci USA 85: 3903–3907

    PubMed  CAS  Google Scholar 

  • Bradova V, Smid F, Ulrich-Bott B, Roggendorf W, Paton BC, Harzer K (1993) Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multible glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92: 143–152

    PubMed  CAS  Google Scholar 

  • Brady, RO, Kanfer JN, Shapiro D (1965) Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 18: 221–225

    PubMed  CAS  Google Scholar 

  • Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc Natl Acad Sci USA 55: 367–370

    Google Scholar 

  • Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease: ceramide trihexosidase deficiency. N Engl J Med 276: 1163–1167

    PubMed  CAS  Google Scholar 

  • Braulke T (1996) Origin of lysosomal proteins. In: Lloyd JB, Mason RW (eds) Subcellular biochemistry, vol 27, Biology of the lysosome. Plenum Press, New York, pp 15–49

    Google Scholar 

  • Burkhardt JK, Hüttler S, Klein A, Möbius W, Habermann A, Griffiths G, Sandhoff K (1997) Accumulation of sphingolipids in SAP-precursor (prosaposin) deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAPprecursor. Eur J Biochem 73: 10–18

    CAS  Google Scholar 

  • Carlsson SR, Roth J, Piller F, Fukuda M (1988) Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. J Biol Chem 263: 18.911-18.919

    Google Scholar 

  • Chen YQ, Wenger DA (1993) Galactocerebrosidase from human urine: purification and partial characterization. Biochim Biophys Acta 1170: 53–61

    PubMed  CAS  Google Scholar 

  • Chen WW, Moser AB, Moser HW (1981) Role of lysosomal acid ceramidase in the metabolism of ceramide in human skin fibroblasts. Arch Biochem Biophys 208: 444–455

    PubMed  CAS  Google Scholar 

  • Chen YQ, Rafi MA, deGala G, Wenger DA (1993) Cloning and expression of cDNA encoding human galactocerebrosidase, the enzyme deficient in globoid cell leukodystrophy. Hum Mol Genet 2: 1841–1845

    PubMed  CAS  Google Scholar 

  • Christomanou H, Kleinschmidt T (1985) Isolation of two forms of an activator protein for the enzymic sphingomyelin degradation from human Gaucher spleen. Biol Chem Hoppe-Seyler 366: 245–256

    PubMed  CAS  Google Scholar 

  • Christomanou H, Aignesberg A, Linke RP (1986) Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro — Absence of one of them in a human Gaucher disease variant. Biol Chem Hoppe-Seyler 367: 879–890

    PubMed  CAS  Google Scholar 

  • Christomanou H, Chabs A, Pampols T, Guardiola A (1989) Activator protein deficient Gaucher’s disease. Klin Wochenschr 67: 999–1003

    PubMed  CAS  Google Scholar 

  • Conzelmann E, Sandhoff K (1978) Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci USA 75: 3979–3983

    PubMed  CAS  Google Scholar 

  • Conzelmann E, Sandhoff K (1979) Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe-Seyler Z Physiol Chem 360: 1837–1849

    PubMed  CAS  Google Scholar 

  • Conzelmann E, Sandhoff K (1983/84) Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev Neurosci 6: 58–71

    PubMed  Google Scholar 

  • Conzelmann E, Sandhoff K (1987) Glycolipid and glycoprotein degradation. Adv Enzymol 60: 89–217

    PubMed  CAS  Google Scholar 

  • Conzelmann E, Sandhoff K (1991) Biochemical basis of lateonset neurolipidoses. Dev Neurosci 13: 197–204

    PubMed  CAS  Google Scholar 

  • Conzelmann E, Lee-Vaupel M, Sandhoff K (1988) The physiological roles of activator proteins for lysosomal glycolipid degradation. In: Salvayre R, Douste-Blazy L, Gatt S (eds) Lipid storage disorders. Plenum Publishing Corporation, New York, pp 323–332

    Google Scholar 

  • Crocker AC (1961) The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem 7: 69–73

    PubMed  CAS  Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552

    PubMed  CAS  Google Scholar 

  • D’Agrosa RM, Hubbes M, Zhang S, Shankaran R, Callahan JW (1992) Characteristics of the β-galactosidase-carboxypeptidase complex in GM 1-gangliosidosis and β-galactosialidosis fibroblasts. Biochem J 285: 833–838

    CAS  Google Scholar 

  • D’Azzo A, Hoogeveen A, Reuser AJJ, Robinson D, Galjaard H (1982) Molecular defect in combined β-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci USA 79: 4535–4539

    PubMed  Google Scholar 

  • D’Azzo A, Andria G, Strisciuglio P, Galjaard H (1995) Galactosialidosis. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 91, pp 2825–2837

    Google Scholar 

  • De Duve C (1964) From cytases to lysosomes. Fed Proc 23: 1045–1049

    Google Scholar 

  • Dean KJ, Sweeley CC (1979) Studies on human liver a-galactosidases. I. Purification of a-galactosidase A and its enzymatic properties with glycolipid and oligosaccharide substrates. J Biol Chem 254: 9994–10000

    PubMed  CAS  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM (1995) a-galactosidase Adeficiency: Fabry disease. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 89, pp 2741–2784

    Google Scholar 

  • Dinur T, Osiecki KM, Legier G, Gatt S, Desnick RJ, Grabowski GA (1986) Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc Natl Acad Sci USA 83: 1660–1664

    PubMed  CAS  Google Scholar 

  • Downing DT (1992) Lipid and protein structure in the permeability barrier of mammalian epidermis. J Lipid Res 33: 301–313

    PubMed  CAS  Google Scholar 

  • Elleder M (1989) Niemann-Pick disease. Pathol Res Pract 185: 293–328

    PubMed  CAS  Google Scholar 

  • Fabbro D, Grabowski GA (1991) Human acidβ-glucosidase. Use of inhibitory and activating monoclonal antibodies to investigate the enzyme’s catalytic mechanism and saposin A and C binding sites. J Biol Chem 266: 15.021-15.027

    Google Scholar 

  • Fabry J (1898) Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (Purpura papulosa hemorrhagica Hebrae). Arch Dermatol Syph 43: 187–200

    Google Scholar 

  • Ferlinz K, Hurwitz R, Weiler M, Suzuki K, Sandhoff K, Vanier MT (1995) Molecular analysis of the acid sphingomyelinase deficiency in a family with an intermediate form of Niemann-Pick disease. Am J Hum Genet 56: 1343–1349

    PubMed  CAS  Google Scholar 

  • Fernandes MJG, Yew S, Leclerc D et al. (1997) Identification of candidate active site residues in lysosomal β-hexosaminidase A. J Biol Chem 272: 814–820

    PubMed  CAS  Google Scholar 

  • Fischer G, Jatzkewitz H (1975) The activator of cerebroside sulphatase. Purification from human liver and identification as a protein. Hoppe Seyler Z Physiol Chem 356: 605–613

    PubMed  CAS  Google Scholar 

  • Fischer G, Jatzkewitz H (1977) The activator of cerebroside sulphatase. Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein. Biochim Biophys Acta 481: 561–572

    PubMed  CAS  Google Scholar 

  • Fischer G, Jatzkewitz H (1978) The activator of cerebroside sulfatase-A model of the activation. Biochim Biophys Acta 528: 69–76

    PubMed  CAS  Google Scholar 

  • Fujita N, Suzuki K, Vanier MT et al. (1996) Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet 5: 711–725

    PubMed  CAS  Google Scholar 

  • Fukumoto S, Haraguchi M, Takeda N et al. (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93: 10.662-10.667

    Google Scholar 

  • Fürst W, Sandhoff K (1992) Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta 1126: 1–16

    PubMed  Google Scholar 

  • Fürst W, Machleidt W, Sandhoff K (1988) The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe-Seyler 369: 317–328

    PubMed  Google Scholar 

  • Fürst W, Schubert J, Machleidt W, Meyer EH, Sandhoff K (1990) The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein. Eur J Biochem 192: 709–714

    PubMed  Google Scholar 

  • Futerman AH (1994) An update of sphingolipid synthesis and transport along the secretory pathway. Trends Glycosci Glycotechnol 6: 143–153

    CAS  Google Scholar 

  • Gahl WA, Schneider JA, Aula PP (1995) Lysosomal transport disorders: cystinosis and sialic acid storage disorders. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol III, 7th edn. McGraw-Hill, New York, Chapt 126, pp 3763–3797

    Google Scholar 

  • Gama Sosa MA, Gasperi R de, Undevia S, Yeretsian J, Rouse SC II, Lyerla T, Kolodny EH (1996) Correction of the galactocerebrosidase deficiency in globoid cell leukodystrophy-cultured cells by SL3-3 retroviral-mediated gene transfer. Biochem Biophys Res Commun 218: 766–771

    PubMed  CAS  Google Scholar 

  • Garrod AE (1923) Inborn errors of metabolism. Oxford University Press, Oxford

    Google Scholar 

  • Gaucher PCE (1882) De l’epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucemie. Thesis, Paris

    Google Scholar 

  • Gieselmann V (1995) Lysosomal storage diseases. Biochim Biophys Acta 1270: 103–136

    PubMed  Google Scholar 

  • Gieselmann V, Polten A, Kreysing J, Figura K von (1989) Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci USA 86: 9436–9440

    PubMed  CAS  Google Scholar 

  • Gieselmann V, Polten A, Kreysing J, Kappler J, Fluharty A, Figura K von (1991) Molecular genetics of metachromatic leucodystrophy. Dev Neurosci 13: 222–227

    PubMed  CAS  Google Scholar 

  • Graber D, Salvayre R, Levade T (1994) Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 63: 1060–1068

    PubMed  CAS  Google Scholar 

  • Grace ME, Graves PN, Smith FI, Grabowski GA (1990) Analyses of catalytic activity and inhibitor binding of human acid β-glucosidase by site-directed mutagenesis. Identification of residues critical to catalysis and evidence for causality of two Ashkenazi Jewish Gaucher disease type 1 mutations. J Biol Chem 265: 6827–6835

    PubMed  CAS  Google Scholar 

  • Gravel RA, Clarke JTR, Kaback MM, Mahuran D, Sandhoff K, Suzuki K (1995) The GM2 gangliosidoses. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 92, 2839–2879

    Google Scholar 

  • Griffiths GW, Hoflack B, Simons K, Mellman IS, Kornfeld S (1988) The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52: 329–341

    PubMed  CAS  Google Scholar 

  • Hahn CN, Pilar M del, Schröder M, Vanier MT, HArA Y, Suzuki K, Suzuki K, D’Azzo A (1997) Generalized CNS disease and massive G(Ml)-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet 6: 205–211

    PubMed  CAS  Google Scholar 

  • Hakomori S (1981) Glycosphingolipids in cellular interactions, differentiation and oncogenesis. Annu Rev Biochem 50: 733–764

    PubMed  CAS  Google Scholar 

  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855–1859

    PubMed  CAS  Google Scholar 

  • Harzer K, Paton BC, Poulos A (1989) Sphingolipid activator protein (SAP) deficiency in a 16-week old atypical Gaucher disease patient and his fetal sibling; biochemical signs of combined sphingolipidoses. Eur J Pediatr 149: 31–39

    PubMed  CAS  Google Scholar 

  • Hasilik A, Neufeld EF (1980) Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem 255: 4937–4945

    PubMed  CAS  Google Scholar 

  • Henseler M, Klein A, Reber M, Vanier MT, Landrieu P, Sandhoff K (1996) Analysis of a splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy. Am J Hum Genet 58: 65–74

    PubMed  CAS  Google Scholar 

  • Hermans MM, De Graaff E, Kroos MA et al. (1994) The effect of a single base pair deletion (delta T525) and a C1634T missense mutation (pro545leu) on the expression of lysosomal alpha-glucosidase in patients with glycocen storage disease type II. Hum Mol Genet 3: 2213–2218

    PubMed  CAS  Google Scholar 

  • Hers HG (1966) Inborn lysosomal disease. Gastroenterology 48: 625–633

    Google Scholar 

  • Hess B, Saftig P, Hartmann D et al. (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 93: 14.821-14.826

    Google Scholar 

  • Hidari K, Kawashima I, Tai T, Inagaki F, Nagai Y, Sanai Y (1994) In vitro synthesis of disialoganglioside (GDIa) from asialo-GMl using sialyltransferase in rat liver Golgi vesicles. Eur J Biochem 221: 603–609

    PubMed  CAS  Google Scholar 

  • Ho MW, O’Brien JS (1971) Gaucher’s disease: deficiency of ‘acid’ β-glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci USA 68: 2810–2813

    PubMed  CAS  Google Scholar 

  • Hohenschutz C, Eich P, Friedl W, Waheed A, Conzelmann E, Propping P (1989) Pseudodeficiency of arylsulfatase A: a common genetic polymorphism with possible disease implications. Hum Genet 82: 45–48

    PubMed  CAS  Google Scholar 

  • Holtschmidt H, Sandhoff K, Fürst W, Kwon H, Schnabel D, Suzuki K (1991) The organization of the gene for the human cerebroside sulfate activator protein. FEBS Lett 280: 267–270

    PubMed  CAS  Google Scholar 

  • Hoogerbrugge PM, Suzuki K, Suzuki K, Poorthuis BJHM, Kobayashi T, Wagenmaker G, Van Bekkum DW (1988a) Donor-derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science 239: 1035–1038

    PubMed  CAS  Google Scholar 

  • Hoogerbrugge PM, Poorthuis BJ, Romme AE, Van de Kamp JJ, Wagemaker G, Van Bekkum DW (1988b) Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affected twitcher mouse. J Clin Invest 81: 1790–1794

    PubMed  CAS  Google Scholar 

  • Hoogeveen AT, Verheijen FW, D’Azzo A, Galjaard H (1980) Genetic heterogeneity in human neuraminidase deficiency. Nature 285: 500–502

    PubMed  CAS  Google Scholar 

  • Horinuchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, Vanier MT (1995) Acid sphingomyelinase deficient mice: a new model for the study of types A and B Niemann-Pick disease. Nat Genet 10: 288–293

    Google Scholar 

  • Horowitz M, Wilder S, Worowitz Z, Reiner O, Gelbart T, Beutler E (1989) The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics 4: 87–96

    PubMed  CAS  Google Scholar 

  • Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe-Seyler 375: 447–450

    PubMed  CAS  Google Scholar 

  • Inui K, Furukawa M, Nishimoto J, Okada S, Yabuuchi H (1987) Metabolism of cerebroside sulphate and subcellular distribution of its metabolites in cultured skin fibroblasts derived from controls, metachromatic leukodystrophy, globoid cell leukodystrophy and Farber disease. J Inherit Metab Dis 10: 293–296

    PubMed  CAS  Google Scholar 

  • Iwamori M, Moser HW (1975) Above normal urinary excretion of urinary ceramides in Farber’s disease, and characterization of their components by high performance liquid chromatography. Clin Chem 21: 725–729

    PubMed  CAS  Google Scholar 

  • Jatzkewitz H, Stinshoff K (1973) An activator of cerebroside sulfatase in human normal liver and in cases of congenital metachromatic leukodystrophy. FEBS Lett 32: 129–131

    PubMed  CAS  Google Scholar 

  • Karlsson KA (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58: 309–350

    PubMed  CAS  Google Scholar 

  • Klein A, Henseler M, Klein C, Suzuki K, Harzer K, Sandhoff K (1994) Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo. Biochem Biophys Res Commun 200: 1440–1448

    PubMed  CAS  Google Scholar 

  • Klenk E (1935) Über die Natur der Phosphatide und anderer Lipide des Gehirns und der Leber bei der Niemann-Pickschen Krankheit. Z Physiol Chem 235: 24–25

    CAS  Google Scholar 

  • Klima H, Tanaka A, Schnabel D, Nakano T, Schröder M, Suzuki K, Sandhoff K (1991) Characterization of full-length cDNA and the gene coding for the human GM2-activator protein. FEBS Lett 289: 260–264

    PubMed  CAS  Google Scholar 

  • Kint JA (1970) Fabry’s disease, a-galactosidase deficiency. Science 167: 1268–1269

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Yamanaka T, Jacobs JM, Teixeira F, Suzuki K (1980) The twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res 202: 479–483

    PubMed  CAS  Google Scholar 

  • Koch J, Gärtner S, Li CM et al. (1996) Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease. J Biol Chem 271: 33.110-33.115

    Google Scholar 

  • Kolodny EH, Fluharty AL (1995) Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 88, pp 2693–2739

    Google Scholar 

  • Kolter T, Sandhoff K (1996) Inhibitors of glycosphingolipid biosynthesis. Chem Soc Rev 25: 371–381

    CAS  Google Scholar 

  • Kopitz J (1997) Glyoclipids: structure and function. In: Gabius HJ, Gabius S (eds) Glycosciences. Chapman&Hall, Weinheim, pp 163–189

    Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5: 483–525

    PubMed  CAS  Google Scholar 

  • Kretz KA, Carson GS, Morimoto S, Kishimoto Y, Fluharty AL, O’Brien JS (1990) Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect. Proc Natl Acad Sci USA 87: 2541–2544

    PubMed  CAS  Google Scholar 

  • Krivit W, Lockman LA, Watkins PA, Hirsch J, Shapiro EG (1995) The future for treatment by bone marrow transplantation for adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy and Hurler syndrome. J Inherited Metab Dis 18: 398–412

    PubMed  CAS  Google Scholar 

  • Kudoh T, Wenger DA (1982) Diagnosis of metachromatic leukodystrophy, Krabbe disease and Farber disease after uptake of fatty acid-labeled cerebroside sulfate into cultured skin fibroblasts. J Clin Invest 70: 89–97

    PubMed  CAS  Google Scholar 

  • Kuhn E, Wiegandt H (1963) Die Konstitution der GanglioN-Tetraose und des Gangliosides GL Chem Ber 96: 866–880

    CAS  Google Scholar 

  • Kytzia HJ, Sandhoff K (1985) Evidence for two different active sites on human hexosaminidase — Interaction of GM2 activator protein with hexosaminidase A. J Biol Chem 260: 7568–7572

    PubMed  CAS  Google Scholar 

  • Kytzia HJ, Hinrichs U, Maire I, Suzuki K, Sandhoff K (1983) Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity. EMBO J 2: 1201–1205

    PubMed  CAS  Google Scholar 

  • Ledeen R, Salsman K (1965) Structure of the Tay-Sachs’ ganglioside. Biochemistry 4: 2225–2233

    CAS  Google Scholar 

  • Lee-Vaupel M, Conzelmann E (1987) A simple chromogenic assay for arylsulfatase. Clin Chim Acta 164: 171–180

    PubMed  CAS  Google Scholar 

  • Leinekugel P, Michel S, Conzelmann E, Sandhoff K (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88: 513–523

    PubMed  CAS  Google Scholar 

  • Levade T, Tempesta MC, Salvayre R (1993) The in situ degradation of ceramide, a potential lipid mediator, is not completely impaired in Farber disease. FEBS Lett 329: 306–312

    PubMed  CAS  Google Scholar 

  • Levade T, Moser HW, Fensom AH, Harzer K, Moser AB, Salvayre R (1994) Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. J Neurol Sci 134: 108–114

    Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1991) Niemann-Pick type B disease. J Clin Invest 88: 806–810

    PubMed  CAS  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1992) A common missense mutation (L302) in Ashkenasi Jewish type A Niemann-Pick disease patients: transient expression studies demonstrate the causative nature of the two common Ashkenazi Jewish Niemann-Pick disease mutations. Blood 80: 2-081-2-087

    Google Scholar 

  • Li SC, Kihara H, Serizawa S, Li YT, Fluharty AL, Mayes JS, Shapiro LJ (1985) Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. J Biol Chem 260: 1867–1871

    PubMed  CAS  Google Scholar 

  • Liessem B, Glombitza GJ, Knoll F, Lehmann J, Kellermann J, Lottspeich F, Sandhoff K (1995) Photoaffinity labeling of human lysosomal β-hexosaminidase B — Identification of Glu-355 at the substrate binding site. J Biol Chem 270: 23.693-23.699

    Google Scholar 

  • Liu Y, Hoffmann A, Grinberg A et al. (1997) Mouse model of GM2 activator deficiency manifests cerebellar ganglioside storage and motor impairment. Proc Natl Acad Sci USA 4: 8138–8143

    Google Scholar 

  • Lüllmann-Rauch R (1974) Lipidosis-like alterations in spinal cord and cerebellar cortex of rats treated with tricyclic antidepressants or neuroleptics. Acta Neuropathol 29: 237–249

    PubMed  Google Scholar 

  • Luzi P, Rail MA, Wenger DA (1995) Structure and organization of the human galactocerebrosidase (GALC) gene. Genomics 26: 407–409

    PubMed  CAS  Google Scholar 

  • Lyon M (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373

    PubMed  CAS  Google Scholar 

  • Makita A, Yamakawa T (1963) The glycolipids of the brain of Tay-Sachs disease. The chemical structure of globoside and main ganglioside. Jpn J Exp Med 33: 361–368

    PubMed  CAS  Google Scholar 

  • Markwell MAK, Svennerholm L, Paulson JC (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 78: 5406–5410

    PubMed  CAS  Google Scholar 

  • Matsuda J, Suzuki O, Oshima A, Ogura A, Naiki M, Suzuki Y (1997) Neurological manifestations of knockout mice with beta-galactosidase deficiency. Brain Dev 19: 19–20

    PubMed  CAS  Google Scholar 

  • Matsushima GK, Taniike M, Glimcher LH, Grusby MJ, Frelinger JA, Suzuki K, Ting JP-Y (1994) Absence of MHC class II molecules reduces CNS demyelination, microglial, macrophage infiltration, and twitching in murine globoid cell leukodystrophy. Cell 78: 645–656

    PubMed  CAS  Google Scholar 

  • Mehl E, Jatzkewitz H (1964) Eine Cerebrosidsulfatase aus Schweineniere. Hoppe Seyler Z Physiol Chem 339: 260–276

    PubMed  CAS  Google Scholar 

  • Meier EM, Schwarzmann G, Fürst W, Sandhoff K (1991) The human GM2 activator protein: a substrate specific cofactor of hexosaminidase A. J Biol Chem 266: 1879–1887

    PubMed  CAS  Google Scholar 

  • Meivar-Levy I, Horowitz M, Futerman AH (1994) Analysis of glucocerebrosidase activity using N-(1-[14 C]hexanoyl)-D-erythro-glucosylsphingosine demonstrates a correlation between levels of residual enzyme activity and the type of Gaucher disease. Biochem J 303: 377–382

    PubMed  CAS  Google Scholar 

  • Miyatake T, Suzuki K (1972) Additional deficiency of psychosine galactosidase. Biochem Biophys Res Commun 48: 538–543

    CAS  Google Scholar 

  • Momoi T, Ben-Yoseph Y, Nadler HL (1982) Substrate-specificities of acid and alkaline ceramidases in fibroblasts from patients with Farber disease and controls. Biochem J 205: 419–425

    PubMed  CAS  Google Scholar 

  • Morimoto S, Martin BM, Yamamoto Y, Kretz KA, O’Brien JS (1989) Saposin A: second cerebrosidase activator protein. Proc Natl Acad Sci USA 86: 3389–3393

    PubMed  CAS  Google Scholar 

  • Morreau H, Bonten E, Zhou XY, D’Azzo A (1991) Organization of the gene encoding human lysosomal β-galactosidase. DNA Cell Biol 10: 495–504

    PubMed  CAS  Google Scholar 

  • Moser HW (1995) Ceramidase deficiency: Farber lipogranulomatosis. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 83, pp 2589–2599

    Google Scholar 

  • Moser HW, Prensky AL, Wolfe JH, Rosman NP (1969) Farber’s lipogranulomatosis: report of a case and demonstration of an excess of free ceramide and ganglioside. Am J Med 47: 869–890

    PubMed  CAS  Google Scholar 

  • Moullier P, Bohl D, Heard JM, Danos O (1993) Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts. Nat Genet 4: 154–159

    PubMed  CAS  Google Scholar 

  • Mulligan RC (1993) The basic science of gene therapy. Science 260: 926–932

    PubMed  CAS  Google Scholar 

  • Myerowitz R, Piekarz R, Neufeld EF, Shows TB, Suzuki K (1985) Human β-hexosaminidase a chain: coding sequence and homology with the b chain. Proc Natl Acad Sci USA 82: 7830–7834

    PubMed  CAS  Google Scholar 

  • Nakano T, Sandhoff K, Stümper J, Christomanou H, Suzuki K (1989) Structure of full-length cDNA coding for sulfatide activator, A co-β glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem 105: 152–154

    PubMed  CAS  Google Scholar 

  • Neote K, Bapat B, Dumbrille-Ross A, Troxel C, Schuster SM, Mahuran DJ, Gravel RA (1988) Characterization of the human hexb gene encoding lysosomal βhexosaminidase. Genomics 3: 279–286

    PubMed  CAS  Google Scholar 

  • Neote K, Mclnnes B, Mahuran DJ, Gravel RA (1990) Structure and distribution of an Alu-type deletion mutation in Sandhoff disease. J Clin Invest 86: 1524–1531

    PubMed  CAS  Google Scholar 

  • Neufeld EF (1991) Lysosomal storage diseases. Annu Rev Biochem 60: 257–280

    PubMed  CAS  Google Scholar 

  • Neufeld EF, Muenzer J (1995) The mucopolysaccharidoses. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 78, pp 246 494

    Google Scholar 

  • Niemann A (1914) Ein unbekanntes Krankheitsbild. Jahrb Kinderheilkd 79: 1–3.

    Google Scholar 

  • O’Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, Fluharty AL (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241: 1098–1101

    PubMed  Google Scholar 

  • O’Dowd B, Quan F, Willard H et al. (1985) Isolation of cDNA clones coding for the β subunit of human β-hexosaminidase. Proc Natl Acad Sci USA 82: 1184–1188

    PubMed  Google Scholar 

  • Ohashi T, Watabe K, Uehara K, Sly WS, Vogler C, Eto Y (1997) Adenovirus-mediated gene transfer and expression of human beta-glucuronidase gen in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci USA 94: 1287–1292

    PubMed  CAS  Google Scholar 

  • Ohshima T, Murray GJ, Swaim WD et al. (1997) Alpha-galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94: 2540–2544

    PubMed  CAS  Google Scholar 

  • Okada S, O’Brien JS (1968) Generalized gangliosidosis. Betagalactosidase deficiency. Science 160: 1002–1004

    PubMed  CAS  Google Scholar 

  • Okada S, O’Brien JS (1969) Tay-Sachs disease: generalized absence of a β-D-N-acetylhexosaminidase component. Science 165: 698–700

    PubMed  CAS  Google Scholar 

  • Oshima A, Tsuji A, Nagao Y, Sakubara H, Suzuki Y (1988) Cloning, sequencing, and expression of cDNA for human β-galactosidase. Biochem Biophys Res Commun 157: 238–244

    PubMed  CAS  Google Scholar 

  • Oshima A, Yoshida K, Itoh K, Kase R, Sakuraba H, Suzuki Y (1994) Intracellular processing and maturation of mutant gene products in hereditary β-galactosidase deficiency (β-galactosidosis). Hum Genet 93: 109–114

    PubMed  CAS  Google Scholar 

  • Otterbach B, Stoffel W (1995) Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81: 1053–1061

    PubMed  CAS  Google Scholar 

  • Paton BC, Schmid B, Kustermann-Kuhn B, Poulos A, Harzer K (1992) Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein (SAP) precursor, prosaposin. Biochem J 285: 481–488

    PubMed  CAS  Google Scholar 

  • Patrick AD (1965) Short communications: a deficiency of glucocerebrosidase in Gaucher’s disease. Biochem J 97: 17C–18C

    CAS  Google Scholar 

  • Pennybacker M, Schuette CG, Liessem B et al. (1997) Evidence for the involvement of Glu-355 in the catalytic action of human b-hexosaminidase B. J Biol Chem 272: 8002–8006

    PubMed  CAS  Google Scholar 

  • Pentchev PG, Vanier MT, Suzuki K, Patterson MC (1995) Niemann-Pick disease type C: a cellular cholesterol lipidosis. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 85, pp 2625–2693

    Google Scholar 

  • Penzien JM, Kappler JM, Herschkowitz N et al. (1993) Compound heterozygosity for metachromatic leukodystrophy and arylsulfatase A pseudodeficiency alleles is not associated with progressive neurological disease. Am J Hum Genet 52: 557–564

    PubMed  CAS  Google Scholar 

  • Phillips ML, Nudelman E, Gaeta FCA, Perez M, Singhai AK, Hakomori S, Paulson JC (1990) ELAM 1 mediates cell adhesion by recognition of a carbohydrate ligand, SialylLeX. Science 250: 1130–1132

    PubMed  CAS  Google Scholar 

  • Pick L (1927) Über die lipoidzellige Splenohepatomegalie Typus Niemann-Pick als Stoffwechselerkrankung. Med Klin 23: 1483–1486

    Google Scholar 

  • Pisoni RL, Thoene, JG (1991) The transport systems of mammalian lysosomes. Biochim Biophys Acta 1071: 351–373

    PubMed  CAS  Google Scholar 

  • Platt FM, Neises GR, Reinkensmeier G et al. (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276: 428–431

    PubMed  CAS  Google Scholar 

  • Polten A, Fluharty AL, Fluharty CB, Kappler J, Figura K von, Gieselmann V (1991) Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 324: 18–22

    PubMed  CAS  Google Scholar 

  • Prence E, Chakravorti S, Basu A, Clark LS, Glew RH, Chambers JA (1985) Further studies on the activation of glucocerebrosidase by a heat-stable factor from Gaucher spleen. Arch Biochem Biophys 236: 98–109

    PubMed  CAS  Google Scholar 

  • Proia RL (1988) Gene encoding the human β-hexosaminidase β chain: extensive homology of intron placement in the a-and β-chain genes. Proc Natl Acad Sci USA 85: 1883–1887

    PubMed  CAS  Google Scholar 

  • Proia RL, Neufeld EF (1982) Synthesis of b-hexosaminidase in cell-free translation and in intact fibroblasts: an insoluble precursor a chain in a rare form of Tay-Sachs disease. Proc Natl Acad Sci USA 79: 6360–6364

    PubMed  CAS  Google Scholar 

  • Pshezhetsky AV, Richard C, Michaud L et al. (1997) Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat Genet 15: 316–320

    PubMed  CAS  Google Scholar 

  • Purpura DP, Suzuki K (1976) Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. Brain Res 116: 1–21

    PubMed  CAS  Google Scholar 

  • Quintern LE, Weitz G, Nehrkorn H, Tager JM, Schram AW, Sandhoff K (1987) Acid sphingomyelinase from human urine: purification and characterization. Biochim Biophys Acta 922: 323–336

    PubMed  CAS  Google Scholar 

  • Quintern LE, Schuchmann EH, Levran O et al. (1989) Isolation of cDNA clones encoding human acid sphingomyelinase: occurence of alternatively processed transcripts. EMBO J 8: 2469–2473

    PubMed  CAS  Google Scholar 

  • Rafi MA, Gala G de, Zhang X, Wenger DA (1993) Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency. Somat Cell Mol Genet 19: 1–7

    PubMed  CAS  Google Scholar 

  • Rafi MA, Luzi P, Chen YQ, Wenger DA (1995) A large deletion together with a point mutation in the GALC gene is a common mutant allele in patients with infantile Krabbe disease. Hum Mol Genet 4: 1285–1289

    PubMed  CAS  Google Scholar 

  • Rapola J (1994) Lysosomal storage diseases in adults. Pathol Res Pract 190: 759–766

    PubMed  CAS  Google Scholar 

  • Richards SM, Olsen TA, McPherson JM (1993) Antibody response in patients with Gaucher’s disease after repeated infusion with macrophage targeted glucocerebrosidase. Blood 82: 1402–1409

    PubMed  CAS  Google Scholar 

  • Robinson D, Stirling JL (1968) N-Acetyl-β-D-glucosaminidases in human spleen. Biochem J 107: 321–327

    PubMed  CAS  Google Scholar 

  • Rommerskirch W, Figura K von (1992) Multiple sulfatase deficiency: catalytically inactive sulfatases are expressed from retrovirally introduced cDNAs. Proc Natl Acad Sci USA 89: 2561–2565

    PubMed  CAS  Google Scholar 

  • Rorman EG, Grabowsky GA (1989) Molecular cloning of a human co-β-glucosidase cDNA — Evidence that four sphingolipid hydrolase activator proteins are encoded by single genes in humans and rats. Genomics 5: 486–492

    PubMed  CAS  Google Scholar 

  • Rorman EG, Scheinker V, Grabowski GA (1992) Structure and evolution of the human prosaposin chromosomal gene. Genomics 13: 312–318

    PubMed  CAS  Google Scholar 

  • Rudenko G, Bonten E, D’Azzo A, Hol WG (1995) Three-dimensional structure of the human „protective protein“: Structure of the precursor form suggests a complex activation mechanism. Structure 3: 1249–1259

    PubMed  CAS  Google Scholar 

  • Sacrez R, Juif JG, Gigonet JM, Gruner JE (1967) La maladie de Landing, ou idiotie amaurotique infantile précoce avec gangliosidose géneralisée. Pediatrie 22: 143–162

    PubMed  CAS  Google Scholar 

  • Sakai N, Inui K, Fujii N et al. (1994) Krabbe disease: isolation and characterization of a full-length cDNA for human galactocerebrosidase. Biochem Biophys Res Commun 198: 485–491

    PubMed  CAS  Google Scholar 

  • Sakai N, Inui K, Tatsumi N et al. (1996) Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J Neurochem 66: 1118–1124

    PubMed  CAS  Google Scholar 

  • Sandhoff K (1968) Auftrennung der Säuger-N-Acetyl-β-D-hexosaminidase in multiple Formen durch Elektrofokussierung. Hoppe Seyler Z Physiol Chem 349: 1095–1098

    PubMed  CAS  Google Scholar 

  • Sandhoff K (1969) Variation of β-N-acetylhexosaminidasepattern in Tay-Sachs disease. FEBS Lett 4: 351–354

    PubMed  CAS  Google Scholar 

  • Sandhoff K, Kolter T (1995) Glykolipide der Zelloberfläche — Biochemie ihres Abbaus. Naturwissenschaften 82: 403–413

    PubMed  CAS  Google Scholar 

  • Sandhoff K, Kolter T (1996) Topology of glycosphingolipid degradation. Trends Cell Biol 6: 98–103

    PubMed  CAS  Google Scholar 

  • Sandhoff K, Andreae U, Jatzkewitz H (1968) Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Pathol Eur 3: 278–285

    PubMed  CAS  Google Scholar 

  • Sandhoff K, Harzer K, Wässle W, Jatzkewitz H (1971) Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem 18: 2469–2489

    PubMed  CAS  Google Scholar 

  • Sandhoff K, Conzelmann E, Neufeld E, Kaback MM, Suzuki K (1989) The GM2 ganglisidoses. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, Chapt 72, pp 1807–1839

    Google Scholar 

  • Sandhoff K, Harzer K, Fürst W (1995) Sphingolipid activator proteins. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. McGraw-Hill, New York, Chapt 76, pp 2427–2441

    Google Scholar 

  • Sango K, Yamanaka S, Hoffmann A et al. (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11: 170–176

    PubMed  CAS  Google Scholar 

  • Sango K, McDonald MP, Crawley JN et al. (1996) Mice lacking both subunits of lysosomal β-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet 14: 348–352

    PubMed  CAS  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A et al. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199

    PubMed  CAS  Google Scholar 

  • Schepers U, Glombitza GJ, Lemm T, Hoffmann A, Chabs A, Ozand P, Sandhoff K (1996) Molecular analysis of a GM2-activator deficiency in two patients with GM2-gangliosidosis AB variant. Am J Hum Genet 59: 1048–1056

    PubMed  CAS  Google Scholar 

  • Schlote W, Harzer K, Paton BC et al. (1991) Sphingolipid activator protein 1 deficiency in a metachromatic leucodystrophy with normal arylsulfatase A activity. A clinical, morphological, biochemical, and immunological study. Eur J Pediatr 150: 584–591

    PubMed  CAS  Google Scholar 

  • Schmidt B, Selmer T, Ingendoh A, Figura K von (1995) A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82: 271–278

    PubMed  CAS  Google Scholar 

  • Schnaar RL (1991) Glycosphingolipids in cell surface recognition. Glycobiology 1: 477–485

    PubMed  CAS  Google Scholar 

  • Schnabel D, Schröder M, Sandhoff K (1991) Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett 284: 57–59

    PubMed  CAS  Google Scholar 

  • Schnabel D, Schröder M, Fürst W et al. (1992) Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 267: 3312–3315

    PubMed  CAS  Google Scholar 

  • Schröder M, Klima H, Nakano T et al. (1989) Isolation of a cDNA encoding the human GM2 activator protein. FEBS Lett 251: 197–200

    PubMed  Google Scholar 

  • Schröder M, Schnabel D, Suzuki K, Sandhoff K (1991) A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB. FEBS Lett 290: 1–3

    PubMed  Google Scholar 

  • Schröder M, Schnabel D, Hurwitz R, Young E, Suzuki K, Sandhoff K (1993) Molecular genetics of GM2 gangliosidosis AB variant: a novel mutation and expression in BHK cells. Hum Genet 92: 437–440

    PubMed  Google Scholar 

  • Schuchman EH, Desnick (1995) Niemann-Pick disease types A and B: acid sphingomyelinase deficiencies. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 84, pp 2601–2624

    Google Scholar 

  • Schuchman EH, Levran O, Peireira LV, Desnick RJ (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 12: 197–205

    PubMed  CAS  Google Scholar 

  • Sonderfeld S, Conzelmann E, Schwarzmann G, Burg J, Hinrichs U, Sandhoff K (1985) Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem 149: 247–255

    PubMed  CAS  Google Scholar 

  • Sorge J, West C, Westwood B, Beutler E (1985) Molecular cloning and nucleotide sequence of the human glucocerebrosidase gene. Proc Natl Acad Sci USA 82: 7289–7293

    PubMed  CAS  Google Scholar 

  • Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8: 159–167

    PubMed  CAS  Google Scholar 

  • Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci USA 75: 1399–1403

    PubMed  CAS  Google Scholar 

  • Stein C, Gieselmann V, Kreysing J et al. (1989) Cloning and expression of human arylsulfatase A. J Biol Chem 264: 1252–1259

    PubMed  CAS  Google Scholar 

  • Stevens RL, Fluharty AL, Kihara H et al. (1981) Cerebroside sulfatase activator deficiency induced metachromatic leukodystrophy Am J Hum Genet 33: 900–906

    PubMed  CAS  Google Scholar 

  • Sugita M, Dulaney JT, Moser HW (1972) Ceramidase deficiency in Farber’s disease (lipogranulomatosis) Science 178: 1100–1102

    PubMed  CAS  Google Scholar 

  • Sugita M, Williams M, Dulaney ZT, Moser HW (1975) Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys Acta 398: 125–131

    PubMed  CAS  Google Scholar 

  • Sutrina SL, Chen WW (1982) Metabolism of ceramide-containing endocytotic vesicles in human diploid fibroblasts. J Biol Chem 257: 3039–3044

    PubMed  CAS  Google Scholar 

  • Suzuki K (1987) Enzymatic diagnosis of sphingolipidoses. Methods Enzymol 138: 727–762

    PubMed  CAS  Google Scholar 

  • Suzuki K (1994) Genetic disorders of lipid, glycoprotein, and mucopolysaccharide metabolism. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 5th edn. Raven Press, New York, Chapt 38, pp 793–812

    Google Scholar 

  • Suzuki K, Suzuki Y (1970) Globoid cell leucodystrophy (Krabbe disease): deficiency of galactocerebroside β-galactosidase. Proc Natl Acad Sci USA 66: 302–309

    PubMed  CAS  Google Scholar 

  • Suzuki K, Vanier MT (1991) Biochemical and molecular aspects of late-onset GM2-gangliosidosis: Bl variant as a prototype. Dev Neurosci 13: 288–294

    PubMed  CAS  Google Scholar 

  • Suzuki K, Suzuki Y, Suzuki K (1995a) Galactosylceramid lipidosis: globoid-cell leukodystrophy (Krabbe disease). In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. McGraw-Hill, New York, Chapt 87, pp 2671–2692

    Google Scholar 

  • Suzuki Y, Sakuraba H, Oshima A (1995b) β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Scriver C, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, vol II, 7th edn. McGraw-Hill, New York, Chapt 90, pp 2785–2823

    Google Scholar 

  • Svennerholm L, Vanier MT, Mansson JE (1980) Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res 21: 53–64

    PubMed  CAS  Google Scholar 

  • Sweeley CC (1991) Sphingolipids. In: Vance DE, Vance J (eds) Biochemistry of lipids, lipoproteins, and membranes, Elsevier, Amsterdam New York, pp 327–361

    Google Scholar 

  • Sweeley CC, Klionsky B (1963) Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem 238: 3148–3150

    PubMed  CAS  Google Scholar 

  • Takahashi K, Naito M, Suzuki Y (1987) Lipid storage disease: Part III. Ultrastructural evaluation of cultured fibroblasts in sphingolipidoses. Acta Pathol Jpn 37: 261–272

    PubMed  CAS  Google Scholar 

  • Takahashi T, Desnick RJ, Takada G, Schuchman EH (1992a) Identification of a missense mutation (S436R) in the acid sphingomyelinase gene from a Japanes patient with type B Niemann-Pick disease. Hum Mutat 1: 70–71

    PubMed  CAS  Google Scholar 

  • Takahashi T, Suchi M, Desnick RJ, Takada G, Schuchman EH (1992b) Identification and expression of 5 mutations in the human acid sphingomyelinase gene causing typeA and type-B Niemann-Pick disease: molecular evidence for genetic heterogeneity in the neuronopathic and nonneuronopathic forms. J Biol Chem 267: 12.552-12.558

    Google Scholar 

  • Taniike M, Yamanaka S, Proia RL, Langaman C, Bonc-Turentine T, Suzuki K (1995) Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol (Berl) 89: 296–304

    CAS  Google Scholar 

  • Tayama M, Soeda S, Kishimoto Y, Martin BM, Callahan JW, Hiraiwa M, O’Brien JS (1993) Effect of saposins on acid sphingomyelinase. Biochem J 290: 401–404

    PubMed  CAS  Google Scholar 

  • Toda K, Kobayashi K, Goto I, Ohno K, Eto Y, Inui K, Okada S (1990) Lysosulfatide (sulfogalactosylsphingosine) accumulation in tissues from patients with metachromatic leukodystrophy. J Neurochem 55: 1585–1591

    PubMed  CAS  Google Scholar 

  • Tsuji S, Choudary PV, Martin BM, Winfield S, Barranger JA, Ginns EI (1986) Nucleotide sequence of cDNA containing the complete coding sequence for human lysosomal glucocerebrosidase. J Biol Chem 261: 50–53

    PubMed  CAS  Google Scholar 

  • Tybulewicz VLJ, Tremblay ML, LaMarca ME et al. (1992) Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357: 407–410

    PubMed  CAS  Google Scholar 

  • Van Echten G, Sandhoff K (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J Neurochem 52: 207–214

    PubMed  Google Scholar 

  • Van Echten G, Sandhoff K (1993) Ganglioside metabolism. J Biol Chem 268: 5341–5344

    PubMed  Google Scholar 

  • Van Helvoort A, Van Meer G (1995) Intracellular lipid heterogeneity caused by topology of synthesis and specificity in transport. Example: sphingolipids. FEBS Lett 369: 18–21

    PubMed  Google Scholar 

  • Vanier MT, Ferlinz K, Rousson R, Duthel S, Lousot P, Sandhoff K, Suzuki K (1993) Deletion of arginine (608) in acid sphingomyelinase is the prevalent mutation among Niemann-Pick disease type B patients from Northern Africa. Hum Genet 92: 325–330

    PubMed  CAS  Google Scholar 

  • Vogel A, Schwarzmann G, Sandhoff K (1991) Glycosphingolipid specificity of the human sulfatide activator protein. Eur J Biochem 200: 591–597

    PubMed  CAS  Google Scholar 

  • Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55: 167–193

    Google Scholar 

  • Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250: 1132–1135

    PubMed  CAS  Google Scholar 

  • Wenger DA, Sattler M, Clark C (1975) Lactosyl ceramidosis: Normal activity for two lactosyl ceramide β-galactosidases-Science 188: 1310–1312

    PubMed  CAS  Google Scholar 

  • Wenger DA, Tarby TJ, Wharton C (1978) Macular cherry-red spots and myoclonus with dementia: coexistent neuraminidase and β-galactosidase deficiencies. Biochem Biophys Res Commun 82: 589–595

    PubMed  CAS  Google Scholar 

  • Wenger DA, Sattler M, Roth S (1982) A protein activator of galactosylceramide-β-galactosidase. Biochim Biophys Acta 712: 639–649

    PubMed  CAS  Google Scholar 

  • Wiegandt H (1985) Gangliosides. In: Neuberger A, Deenen LLM van (eds) New comprehensive biochemistry 10. Elsevier, Amsterdam New York, pp 199–260

    Google Scholar 

  • Wolfe JH, Sands MS, Barker JE, Gwynn B, Rowe LB, Vagler CA, Birkenmeier EH (1992) Reversal of pathology in murine mucopolysaccharidosis type VII by somatic cell gene transfer. Nature 360: 749–753

    PubMed  CAS  Google Scholar 

  • Yamanaka S, Johnson MD, Grinberg A et al. (1994) Targeted disruption of the hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci USA 91: 9975–9979

    PubMed  CAS  Google Scholar 

  • Yoshida K, Oshima A, Shimmoto M, Fukuhara Y, Sakuraba H, Yanagisawa N, Suzuki Y (1991) Human β-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases. Am J Hum Genet 49: 435–442

    PubMed  CAS  Google Scholar 

  • Zeller CB, Marchase RB (1992) Gangliosides as modulators of cell function. Am J Physiol 262: C1341–C1355

    PubMed  CAS  Google Scholar 

  • Zhou XY, Galjart NJ, Willemsen R, Gillemans M, Galjaard H, D’Azzo A (1991) A mutation in a mild form of galactosialidosis impairs dimerization of the protective protein and renders it unstable. EMBO J 10: 4041–4048

    PubMed  CAS  Google Scholar 

  • Zhou XY, Morreau H, Rottier R et al. (1995) Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with over-expressing erythroid precursor cells. Genes Dev 9: 2623–2634

    PubMed  CAS  Google Scholar 

  • Zschoche A, Fürst W, Schwarzmann G, Sandhoff K (1994) Hydrolysis of lactosylceramide by human galactosylceramidase and GMl-b-galactosidase in a detergent-free system and its stimulation by activator proteins, sap-B and sap-C. Eur J Biochem 222: 83–90

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolter, T., Sandhoff, K. (2000). Sphingolipidosen. In: Ganten, D., Ruckpaul, K. (eds) Monogen bedingte Erbkrankheiten 1. Handbuch der Molekularen Medizin, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57043-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57043-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62995-2

  • Online ISBN: 978-3-642-57043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics