Skip to main content

Mukoviszidose (Zystische Fibrose, CF)

  • Chapter
Monogen bedingte Erbkrankheiten 1

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 6))

  • 150 Accesses

Zusammenfassung

Mukoviszidose ist eine autosomal-rezessiv vererbte Funktionsstörung der exokrinen Körperdrüsen und zählt zu den häufigsten lebensbedrohlichen Erbkrankheiten des Menschen (Welsh et al. 1995). Mit einer Inzidenz von etwa 1:2500 Lebendgebore nen ist sie insbesondere in der weißen Bevölkerung Europas und Nordamerikas verbreitet, sie wird jedoch auch in arabischen und asiatischen Volksgruppen sowie auf dem afrikanischen Kontinent gesehen. Historische Quellen enthalten bereits frühe Hinweise auf das Vorkommen von Mukoviszidose in Mitteleuropa, doch die ersten vollständigen Beschreibungen des Krankheitsbilds sind erst seit etwa 60 Jahren bekannt (Fanconi et al. 1936; Andersen 1938). Die häufigen fibrotischen Veränderungen der Bauchspeicheldrüse prägten zunächst die Bezeichnung „cystic fibrosis of the pancreas“, so daß im angelsächsischen Sprachraum der Name zystische Fibrose („cystic fibrosis“, CF) als Synonym für Mukoviszidose sehr gebräuchlich ist. Wir wollen im folgenden in kurzer Form auf die Symptome und Ursachen der Erkrankung eingehen. Einige Passagen unseres vorliegenden Beitrags sind einer früheren Veröffentlichung entnommen und überarbeitet worden (Dörk u. Stuhr mann 1996). Auf eine umfassende und weiterführende Darstellung der Mukoviszidose und ihrer klinischen und molekularbiologischen Grundlagen sei an dieser Stelle ebenfalls verwiesen (Welsh et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allikmets R, Gerrard B, Hutchinson A, Dean M (1996) Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet 5: 1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Singh N, Sun H et al. (1997) A photoreceptor cell specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15: 236–245

    Article  PubMed  CAS  Google Scholar 

  • Andersen DH (1938) Cystic fibrosis of the pancreas and its relation to celiac disease. Am J Dis Child 56: 344–399

    Google Scholar 

  • Anderson MP, Welsh MJ (1992) Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science 257: 1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Anderson MP, Gregory RJ, Thompson S et al. (1991a) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253: 202–205

    Article  PubMed  CAS  Google Scholar 

  • Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991b) Generation of C AMP-activated chloride currents by expression of CFTR. Science 251: 679–682

    Article  PubMed  CAS  Google Scholar 

  • Anguiano A, Oates RD, Amos JA et al. (1992) Congenital bilateral absence of the vas deferens. A primary genital form of cystic fibrosis. J Am Med Assoc 267: 1794–1797

    Article  CAS  Google Scholar 

  • Augarten A, Yahav Y, Kerem BS et al. (1994) Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet 344: 1473–1474

    Article  PubMed  CAS  Google Scholar 

  • Bear CE, Li C, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68: 809–818

    Article  PubMed  CAS  Google Scholar 

  • Beaudet AL, Tsui L-C (1993) A suggested nomenclature for designating mutations. Hum Mutat 2: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Becq F, Verrier B, Chang X-B, Riordan JR, Hanrahan JW (1996) cAMP and Ca2+-independent activation of cystic fibrosis transmembrane conductance regulator channels by phenylimidazothiazole drugs. J Biol Chem 271: 16.171-16.179

    Google Scholar 

  • Bennett WD, Olivier KN, Zeman KL, Hohnecker KW, Boucher RC, Knowles MR (1996) Effect of uridine-5’-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am J Respir Crit Care Med 153: 1796–1801

    PubMed  CAS  Google Scholar 

  • Berger HA, Anderson MP, Gregory RJ et al. (1991) Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J Clin Invest 88: 1422–1431

    Article  PubMed  CAS  Google Scholar 

  • Bienvenu T, Beldjord C, Chelly J et al. (1996) Analysis of alternative splicing patterns in the cystic fibrosis transmembrane conductance regulator gene using mRNA derived from lymphoblastoid cells of cystic fibrosis patients. Eur J Hum Genet 4: 127–134

    PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett IIIG, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Boucher RC (1996) Current status of CF gene therapy. Trends Genet 12: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Caplen NJ, Alton EWFW, Middleton PG et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Carson MR, Travis SM, Welsh MJ (1995) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem 270: 1711–1717

    Article  PubMed  CAS  Google Scholar 

  • Chang X-B, Hou Y-X, Jensen TJ, Riordan JR (1994) Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J Biol Chem 269: 18.572-18.575

    Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis for most cystic fibrosis. Cell 63: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Cheung M, Akabas MH (1997) Locating the anion selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. J Gen Physiol 109: 289–299

    Article  PubMed  CAS  Google Scholar 

  • Chillón M, Casals T, Mercier B et al. (1995a) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332: 1475–1480

    Article  PubMed  Google Scholar 

  • Chillón M, Dörk T, Casals T et al. (1995b) A novel donor splice site in intron 11 of the CFTR gene created by mutation 1811+1.6kB AG produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with a severe phenotype. Am J Hum Genet 56: 623–629

    PubMed  Google Scholar 

  • Chu CS, Trapnell BC, Murtagh JJ jr et al. (1991) Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J 10: 1355–1363

    PubMed  CAS  Google Scholar 

  • Chu CS, Trapnell BC, Curristin SM, Cutting GR, Crystal RG (1992) Extensive posttranscriptional deletion of the coding sequences for part of nucleotide binding fold 1 in re spiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestation of cystic fibrosis. J Clin Invest 90: 785–790

    Article  PubMed  CAS  Google Scholar 

  • Chu CS, Trapnell B, Curristin SM, Cutting GR, Crystal RG (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC (1992) Defective epithelial chloride transport in a gene targeted mouse model of cystic fibrosis. Science 257: 1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in CFTR(-/-) mice. Proc Natl Acad Sci USA 91: 479–483

    Article  PubMed  CAS  Google Scholar 

  • Colin AA, Sawyer SM, Mickle JE, Oates RD, Milunsky A, Amos JA (1996) Pulmonary function and clinical observations in men with congenital bilateral absence of the vas deferens. Chest 110: 440–445

    Article  PubMed  CAS  Google Scholar 

  • Colledge WH (1994) Cystic fibrosis gene therapy. Curr Opin Genet Dev 4: 466–471

    Article  PubMed  CAS  Google Scholar 

  • Colledge WH, Abella BS, Southern KW et al. (1995) Generation and characterization of a AF508 cystic fibrosis mouse model. Nat Genet 10: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256: 774–779

    Article  PubMed  CAS  Google Scholar 

  • Corey M, Durie P, Moore D, Forstner G, Levison H (1989) Familial concordance of pancreatic function in cystic fibrosis. J Pediatr 115: 274–277

    Article  PubMed  CAS  Google Scholar 

  • Costes B, Girodon E, Ghanem N, Flori E, Jardin A, Soufir JC, Goossens M (1995) Frequent occurrence of the CFTR intron 8 (TG)n5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet 3: 285–293

    PubMed  CAS  Google Scholar 

  • Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ (1996) Effect of cystic-fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator. J Biol Chem 271: 21.279-21.284

    Google Scholar 

  • Crystal RG, McElvaney NG, Rosenfeld MA et al. (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8: 42–45

    Article  PubMed  CAS  Google Scholar 

  • Davidson DJ, Dorin JR, McLachlan G et al. (1995) Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nat Genet 9: 351–357

    Article  PubMed  CAS  Google Scholar 

  • De La Salle H, Hanau D, Fricker D et al. (1994) Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265: 237–241

    Article  PubMed  Google Scholar 

  • Dean M, Santis G (1994) Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Hum Genet 93: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Dean M, White M, Amos J, Gerrard B, Stewart C, Khaw KT, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61: 863–870

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Delaney SJ, Wainwright BJ (1996) New pharmaceutical approaches to the treatment of cystic fibrosis. Nat Med 2: 392–393

    Article  PubMed  CAS  Google Scholar 

  • Delaney SJ, Rich DP, Thompson SA, Hargrave MR, Lovelock PK, Welsh MJ, Wainwright BJ (1993) Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat Genet 4: 426–431

    Article  PubMed  CAS  Google Scholar 

  • Delaney SJ, Alton EWFW, Smith SN (1996) Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J 15: 955–963

    PubMed  CAS  Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992a) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperaturesensitive. Nature 358: 761–764

    Article  PubMed  CAS  Google Scholar 

  • Denning GM, Ostedgaard LS, Welsh MJ (1992b) Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J Cell Biol 118: 551–559

    Article  PubMed  CAS  Google Scholar 

  • Di Sant’Agnese PA, Darling RC, Perera GA, Shea E (1953) Abnormal electrolytic composition of sweat in cystic fibrosis of the pancreas. Clinical significance and relationship of the disease. Pediatrics 12: 549–563

    Google Scholar 

  • Dodd A, Rowland SA, Hawkes SLJ, Kennedy MA, Love DR (1997) Mutations in the adrenoleukodystrophy gene. Hum Mutat 9: 500–511

    Article  PubMed  CAS  Google Scholar 

  • Dorin JR, Dickinson P, Alton EWFW et al. (1992) Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Dorin JR, Stevenson BJ, Fleming S, Alton EWFW, Dickinson P, Porteous DJ (1994) Long-term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild-type Cftr gene expression. Mamm Genome 5: 465–472

    Article  PubMed  CAS  Google Scholar 

  • Dörk T, Stuhrmann M (1996) Molekularbiologie der Mukoviszidose. Biologie in unserer Zeit 26: 282–291

    Article  Google Scholar 

  • Dörk T, Wulbrand U, Richter T et al. (1991) Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum Genet 87: 441–446

    Article  PubMed  Google Scholar 

  • Dörk T, Will K, Demmer A et al. (1993) A donor splice mutation (405+1G→A) in cystic fibrosis associated with exon skipping in epithelial CFTR. mRNA. Hum Mol Genet 2: 1965–1966

    Article  PubMed  Google Scholar 

  • Dörk T, Mekus F, Schmidt K et al. (1994) Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients. Hum Genet 94: 533–542

    Article  PubMed  Google Scholar 

  • Dörk T, Dworniczak B, Aulehla-Scholz C et al. (1997) Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet 100: 365–377

    Article  PubMed  Google Scholar 

  • Drittanti L, Masciovecchio MV, Gabbarini J, Vega M (1997) Cystic fibrosis: gene therapy or preventive gene transfer?. Gene Ther 4: 1001–1003

    Article  PubMed  CAS  Google Scholar 

  • Drumm ML, Wilkinson DJ, Smit LS et al. (1991) Chloride conductance expressed by δF508 and other mutant CFTRs in Xenopus oocytes. Science 254: 1797–1799

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt JF, Vankaskas JR, Ernst SA et al. (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt JF, Zepeda M, Cohn JA et al. (1994) Expression of the cystic fibrosis gene in adult human lung. J Clin Invest 93: 737–749

    Article  PubMed  CAS  Google Scholar 

  • Estivill X (1996) Complexity in a monogenic disease. Nat Genet 12: 348–350

    Article  PubMed  CAS  Google Scholar 

  • Fanconi G, Uehlinger E, Knauer C (1936) Das Coeliakiesyndrom bei angeborener zystischer Pankreasfibromatose und Bronchiektasien. Wien Med Wochenschr 86: 753–755

    Google Scholar 

  • FitzSimmons S (1993) The changing epidemiology of cystic fibrosis. J Pediatr 122: 1–9

    PubMed  CAS  Google Scholar 

  • Gabriel SE, Brigmann KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266: 107–109

    Article  PubMed  CAS  Google Scholar 

  • Gan K-H, Veeze HJ, Ouweland AMW van den et al. (1995) A cystic fibrosis mutation associated with mild lung disease. N Engl J Med 333: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23: 545–549

    PubMed  CAS  Google Scholar 

  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human β-defensin-1 is a saltsensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553–560

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427

    Article  PubMed  CAS  Google Scholar 

  • Gregory RJ, Cheng SH, Rich DP et al. (1990) Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347: 382–386

    Article  PubMed  CAS  Google Scholar 

  • Gregory RJ, Rich DP, Cheng SH et al. (1991) Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol 11: 3886–3893

    PubMed  CAS  Google Scholar 

  • Grubb BR, Pickles RJ, Ye H et al. (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371: 802–806

    Article  PubMed  CAS  Google Scholar 

  • Gunderson KL, Kopito RR (1995) Conformational states of CFTR associated with channel gating: the role of ATP binding and hydrolysis. Cell 82: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Hamosh A, Trapnell BC, Zeitlin PL et al. (1991) Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J Clin Invest 88: 1880–1885

    Article  PubMed  CAS  Google Scholar 

  • Hamosh A, Rosenstein BJ, Cutting GR (1992) CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells. Hum Mol Genet 1: 542–544 Haws CM, Nepomuceno JB, Krouse ME et al. (1996) δF508 CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am J Physiol 270:C1544-1555

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67–113

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1995) The ABC of channel regulation. Cell 82: 693–696

    Article  PubMed  CAS  Google Scholar 

  • Highsmith WE jr, Burch LH, Zhou Z et al. (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 331: 974–980

    Article  PubMed  CAS  Google Scholar 

  • Highsmith WE jr, Burch LH, Zhou Z et al. (1997) Identification of a splice site mutation (2789+5 G→A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat 9: 332–338

    Article  PubMed  CAS  Google Scholar 

  • Hull J, Shackleton S, Harris A (1993) Abnormal mRNA splicing resulting from three different mutations in the CFTR gene. Hum Mol Genet 2: 689–692

    Article  PubMed  CAS  Google Scholar 

  • Jarvi K, Zielenski J, Wilschanski M et al. (1995) Cystic fibrosis transmembrane conductance regulator and obstructive azoospermia. Lancet 345: 1578

    Article  PubMed  CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Mathews CJ, Hanrahan JW (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem 272: 4978–4984

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Finkbeiner WE, Widdicombe JH, McCray PB jr, Miller SS (1993) Altered fluid transport across airway epithelium in cystic fibrosis. Science 262: 424–427

    Article  PubMed  CAS  Google Scholar 

  • Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R, Boucher RC (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2: 21–25

    Article  PubMed  CAS  Google Scholar 

  • Kaplan E, Shwachman H, Perlmutter AD, Rule A, Khaw KT, Holsclaw DS (1968) Reproductive failure in males with cystic fibrosis. N Engl J Med 279: 65–69

    Article  PubMed  CAS  Google Scholar 

  • Kartner N, Hanrahan JW, Jensen TJ et al. (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64: 681–692

    Article  PubMed  CAS  Google Scholar 

  • Kartner N, Augustinas O, Jensen TJ, Naismith AL, Riordan JR (1992) Mislocalization of AF508 CFTR in cystic fibrosis sweat gland. Nat Genet 1: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Kelley TJ, Thomas K, Milgram LJH, Drumm ML (1997) In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant δF508 in murine nasal epithelium. Proc Natl Acad Sci USA 94: 2604–2608

    Article  PubMed  CAS  Google Scholar 

  • Kerem BS, Rommens JM, Buchanan JA et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Kerem BS, Zielenski J, Markiewicz D et al. (1990a) Identification of mutations in regions corresponding to the two putative nucleotide (ATP-) binding folds of the cystic fibrosis gene. Proc Natl Acad Sci USA 87: 8447–8451

    Article  PubMed  CAS  Google Scholar 

  • Kerem E, Corey M, Kerem BS et al. (1990b) The relation between genotype and phenotype in cystic fibrosis — analysis of the most common mutation (δF508). N Engl J Med 323: 1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter S, Macek M jr, Davis C et al. (1993) A mutation in CFTR produces different phenotypes depending on the chromosomal background. Nat Genet 5: 274–277

    Article  PubMed  CAS  Google Scholar 

  • Knowles M, Gatzy J, Boucher R (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 305: 1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Knowles MR, Hohneker KW, Zhou Z et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med 333: 823–831

    Article  PubMed  CAS  Google Scholar 

  • KO YH, Pedersen PL (1995) The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem 270: 22.093-22.096

    Google Scholar 

  • Koch D, Hoiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens JM, Tsui L-C, Durie P (1992) Genetic determinants of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet 50: 1178–1184

    PubMed  CAS  Google Scholar 

  • Kubesch P, Dörk T, Wulbrand U et al. (1993) Genetic determinants of cystic fibrosis airways’ colonization with Pseudomonas aeruginosa. Lancet 341: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ramjeesingh M, Reyes E, Jensen T, Chang X-B, Rommens JM, Bear CE (1993) The cystic fibrosis mutation (AF508) does not influence the chloride channel activity of CFTR. Nat Genet 3: 311–316

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ramjeesingh M, Wang W et al. (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271: 28.463-28.468

    Google Scholar 

  • Lukacs GL, Chang X-B, Bear CE, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993)The AF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. J Biol Chem 268: 21.592-21.598

    Google Scholar 

  • Lukacs GL, Mohamed A, Kartner N, Chang X-B, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (δF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13: 6076–6086

    PubMed  CAS  Google Scholar 

  • Macek M jr, Macek M sr, Krebsov A et al. (1997) Possible association of the allele status of the CS.7/Hhal polymorphism 5’ of the CFTR gene with postnatal female survival. Hum Genet 99: 565–572

    Article  PubMed  CAS  Google Scholar 

  • MAKV, Jarvi K (1996) The genetics of male infertility. J Urol 156: 1245–1257

    Article  Google Scholar 

  • Maquat LE (1996) Defects in RNA splicing and the consequences of shortened translational reading frames. Am J Hum Genet 59: 279–286

    PubMed  CAS  Google Scholar 

  • Marshall J, Fang S, Ostedgaard LS et al. (1994) Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. J Biol Chem 269: 2987–2995

    PubMed  CAS  Google Scholar 

  • Matthews RP, McKnight GS (1996) Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem 271: 31.869-31.877

    Google Scholar 

  • McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Morales MM, Piazza-Carroll T, Morita T et al. (1996) Both the wildtype and a functional isoform of CFTR are expressed in kidney. Am J Physiol 270:F1038–1048

    PubMed  CAS  Google Scholar 

  • Morral N, Bertranpetit J, Estivill X, et al. (1994a) The origin of the major cystic fibrosis mutation (δF508) in European populations. Nat Genet 7: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Morral N, Llevadot R, Casals T, Gasparini P, Macek M jr, Dörk T, Estivill X (1994b) Independent origins of cystic fibrosis mutations R334W, R347P, R1162X, and 3849+10 kB C→T provide evidence of mutation recurrence in the CFTR gene. Am J Hum Genet 55: 890–898

    PubMed  CAS  Google Scholar 

  • Nagel RA, Westaby D, Javaid A et al. (1989) Liver disease and bile duct abnormalities in adults with cystic fibrosis. Lancet 2: 1422–1425

    Article  PubMed  CAS  Google Scholar 

  • Oates RD, Amos JA (1994) The genetic basis of congenital bilateral absence of the vas deferens and cystic fibrosis. J Androl 15: 1–8

    PubMed  CAS  Google Scholar 

  • Osborne L, Knight RA, Santis G, Hodson M (1991) A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet 48: 608–612

    PubMed  CAS  Google Scholar 

  • Park RW, Grand RJ (1981) Gastrointestinal manifestations of cystic fibrosis: a review. Gastroenterology 81: 1143–1161

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Cohn JA, Bertuzzi G, Greengard P, Nairn AC (1992) Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 267: 12.742-12.752

    Google Scholar 

  • Pier GB, Grout M, Zaidi TS, Olsen JC, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Pier GB, Grout M, Zaidi T et al. (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269: 12.784-12.788

    Google Scholar 

  • Pittman N, Shue G, LeLeiko NS, Walsh MJ (1995) Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP mediated regulation. J Biol Chem 270: 28.848-28.857

    Google Scholar 

  • Puchelle E, Gaillard D, Ploton D et al. (1992) Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol 7: 485–491

    PubMed  CAS  Google Scholar 

  • Qu B-H, Strickland EH, Thomas PJ (1997) Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J Biol Chem 272: 15.739-15.744

    Google Scholar 

  • Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301: 421–422

    Article  PubMed  CAS  Google Scholar 

  • Quinton PM (1994) What’s good about cystic fibrosis?. Curr Biol 4: 742–743

    Article  PubMed  CAS  Google Scholar 

  • Ramsay BW (1996) Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 335: 179–188

    Article  Google Scholar 

  • Rich DP, Anderson MP, Gregory RJ et al. (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347: 358–363

    Article  PubMed  CAS  Google Scholar 

  • Rich DP, Gregory RJ, Anderson MP, Manavalan P, Smith AE, Welsh MJ (1991) Effect of deleting the R domain on CFTR-generated chloride channels. Science 253: 205–207

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55: 609–630

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem BS et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Rolfini R, Cabrini G (1993) Nonsense mutation R1162X of the cystic fibrosis transmembrane conductance regulator gene does not reduce the messenger RNA expression in nasal epithelial tissue. J Clin Invest 92: 2683–2687

    Article  PubMed  CAS  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem BS et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Rosenecker J, Eichler I, Kühn L, Harms HK, Hardt H von and the Multicenter Cystic Fibrosis Study Group (1995) Genetic determination of diabetes mellitus in patients with cystic fibrosis. J Pediatr 127: 441–443

    Article  PubMed  CAS  Google Scholar 

  • Rozmahel R, Wilschanski M, Matin A et al. (1996) Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet 12: 280–287

    Article  PubMed  CAS  Google Scholar 

  • Santis G, Osborne L, Knight RA, Hodson M (1990) Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet 336: 1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Schellen TMCM, Stratten A van (1980) Autosomal recessive hereditary congenital aplasia of the vasa deferentia in four siblings. Fertil Steril 35: 401–404

    Google Scholar 

  • Scibert FS, Linsdell P, Loo TW et al. (1996) Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem 271: 5.139-15.145

    Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild disease form Cl-channels with altered pore properties. Nature 362: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Sheppard DN, Ostedgaard LS, Winter MC, Welsh MJ (1995) Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency. EMBO J 14: 876–883

    PubMed  CAS  Google Scholar 

  • Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271: 14.995-15.001

    Google Scholar 

  • Smit LS, Nasr SZ, Iannuzzi MC et al. (1993) An African-American cystic fibrosis patient homozygous for a novel frameshift mutation associated with reduced CFTR mRNA levels. Hum Mutat 2: 148–151

    Article  PubMed  CAS  Google Scholar 

  • Smit LS, Strong TV, Wilkinson DJ et al. (1995) Missense mutation (G480 C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum Mol Genet 4: 269–273

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Karp PH, Welsh MJ (1994) Defective fluid transport by cystic fibrosis airway epithelia. J Clin Invest 93: 1307–1311

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Snouwart JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257: 1083–1088

    Article  Google Scholar 

  • Stern RC (1997) The diagnosis of cystic fibrosis. N Engl J Med 336: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Stern RC, Boat TF, Doershuk CF (1982) Obstructive azoospermia as a diagnostic criterion for the cystic fibrosis syndrome. Lancet 1: 1401–1403

    Article  PubMed  CAS  Google Scholar 

  • Stern RC, Doershuk CF, Drumm ML (1995) 3849+10 kB C→T mutation and disease severity in cystic fibrosis. Lancet 346: 274–276

    Article  PubMed  CAS  Google Scholar 

  • Strong TV, Smit LS, Turpin SV et al. (1991) Cystic fibrosis gene mutation in two sisters with mild disease and normal sweat electrolyte levels. N Engl J Med 325: 1630–1634

    Article  PubMed  CAS  Google Scholar 

  • Strong TV, Smit LS, Nasr S et al. (1992) Characterization of an intron 12 splice donor mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Mutat 1: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Strong TV, Wilkinson DJ, Mansoura MK et al. (1993) Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance. Hum Mol Genet 2: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Stuhrmann M, Macek M jr, Reis A et al. (1990) Genotype analysis of cystic fibrosis patients in relation to pancreatic sufficiency. Lancet 335: 738–739

    Article  PubMed  CAS  Google Scholar 

  • Stutts MJ, Canessa CM, Olsen JC et al. (1995) CFTR as a cAMP dependent regulator of sodium channels. Science 269: 847–850

    Article  PubMed  CAS  Google Scholar 

  • Tabcharani JA, Rommens JM, Hou X-Y, Chang X-B, Tsui L-C, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Tanner MS, Taylor CJ (1995) Liver disease in cystic fibrosis. Arch Dis Child 72: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Teem JL, Welsh MJ (1994) Partial correction of the δF508 CFTR localization defect by revertant mutation R555K. Pediatr Pulmonol Suppl 10: 180–181

    Google Scholar 

  • Teem JL, Berger HA, Ostedgaard LS, Rich DP, Tsui L-C, Welsh MJ (1993) Identification of revertants for the cystic fibrosis δF508 mutation using STE6-CFTR chimeras in yeast. Cell 73: 335–346

    Article  PubMed  CAS  Google Scholar 

  • Teng H, Jorissen M, Van Poppel H, Legius E, Cassiman J-J, Cuppens H (1997) Increased proportion of exon 9 alternatively spliced CFTR transcripts in vas deferens compared with nasal epithelial cells. Hum Mol Genet 6: 85–90

    Article  PubMed  CAS  Google Scholar 

  • The Cystic Fibrosis Genetic Analysis Consortium (1994) Population variation of common cystic fibrosis mutations. Hum Mutat 4: 167–177

    Article  Google Scholar 

  • Thomas PM, Cote GJ, Wohllk N et al. (1995) Mutation in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268: 426–429

    Article  PubMed  CAS  Google Scholar 

  • Tsui L-C (1991) Probing the basic defect in cystic fibrosis. Curr Opin Genet Dev 1: 4–10

    Article  PubMed  CAS  Google Scholar 

  • Van Doorminck JH, French PJ, Verbeek E, Peters RHPC, Morreau H, Bijman J, Scholte B (1995) A mouse model for the cystic fibrosis δF508 mutation. EMBO J 14: 4403–4411

    Google Scholar 

  • Vankerberghen A, Wei L, Jaspers M et al. (1996) Characterisation of R domain CFTR mutations. Pediatr Pulmonol Suppl 13: 226

    Google Scholar 

  • Wagner JA, Chao AC, Gardner P (1995) Molecular strategies for therapy of cystic fibrosis. Annu Rev Pharmacol Toxicol 35: 257–276

    Article  PubMed  CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Anderson MP, Rich D et al. (1992) Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8: 821–829

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Tsui L-C, Boat TF et al. (1995) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGrawHill, New York, pp 3799–3876

    Google Scholar 

  • Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC (1996) CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state. J Gen Physiol 107: 103–119

    Article  PubMed  CAS  Google Scholar 

  • Will K, Dörk T, Stuhrmann M, Meitinger T, Bertele-Harms R, Tümmler B, Schmidtke J (1994) A novel exon in the cystic fibrosis transmembrane conductance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis. J Clin Invest 93: 1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Will K, Dörk T, Stuhrmann M, Hardt H von der, Ellemunter H, Tümmler B, Schmidtke J (1995) Transcript analysis of CFTR nonsense mutations in cystic fibrosis. Hum Mutat 5: 210–220

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM (1995) Gene therapy for cystic fibrosis: challenges and future directions. J Clin Invest 96: 2547–2554

    Article  PubMed  CAS  Google Scholar 

  • Wine JJ (1995) How do CFTR mutations cause cystic fibrosis?. Curr Biol 5: 1357–1359

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Devor DC, Engelhardt JF et al. (1993a) Molecular basis of defective anion transport in L cells expressing recombinant forms of CFTR. Hum Mol Genet 2: 1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Janich S, Cohn JA, Wilson JM (1993b) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a preGolgi nonlysosomal compartment. Proc Natl Acad Sci USA 90: 9480–9484

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Engelhardt JF, Wilson JM (1994) Ultrastructural localization of variant forms of cystic fibrosis transmembrane conductance regulator in human bronchial epithelia of xenografts. Am J Respir Cell Mol Biol 11: 7–15

    PubMed  Google Scholar 

  • Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Zeiher BG, Eichwald E, Zabner J et al. (1995) A mouse model for the δF508 allele of cystic fibrosis. J Clin Invest 96: 2051–2064

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA (1994) Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 266: 1705–1708

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Tsui L-C (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29: 777–807

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Rozmahel R, Bozon D et al. (1991) Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Bozon D, Markiewicz D et al. (1993) Analysis of CFTR transcripts in nasal epithelial cells and lymphoblasts of a cystic fibrosis patient with 621+1 G→T and 711+1 G→T mutations. Hum Mol Genet 2: 683–687

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Markiewicz D, Li SP et al. (1995a) Skipping of exon 12 as a consequence of a point mutation (1898+5 GT) in the cystic fibrosis transmembrane conductance regulator gene found in a consanguineous Chinese family. Clin Genet 47: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J, Patrizio P, Corey M, Handelin B, Markiewicz D, Asch R, Tsui L-C (1995b) CFTR gene variant for patients with congenital absence of vas deferens. Am J Hum Genet 57: 958–960

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dörk, T., Stuhrmann, M. (2000). Mukoviszidose (Zystische Fibrose, CF). In: Ganten, D., Ruckpaul, K. (eds) Monogen bedingte Erbkrankheiten 1. Handbuch der Molekularen Medizin, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57043-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57043-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62995-2

  • Online ISBN: 978-3-642-57043-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics