Skip to main content

Predicting Ecologically Important Vegetation Variables from Remotely Sensed Optical/Radar Data Using Neuronal Networks

  • Chapter
Artificial Neuronal Networks

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

The large data sets engendered during the EOS era will enhance the temporal, spatial, and spectral coverage of the earth (Asrar and Greenstone 1995; Wharton and Myers 1997). The satellite digital data sets and ancillary data products will require the development of efficient algorithms that can incorporate and functionally utilize disparate data types. Numerous vegetation variables, e.g. leaf area, height, canopy roughness, land cover, stomatal resistance, latent and sensible heat flux, radiative properties, and many others, are required for global and regional studies of ecosystem processes, biosphere/atmosphere interactions, and carbon dynamics (Asrar and Dozier 1994; Hall et al. 1995). The success of efforts to extract vegetation variables such as these from remotely sensed data and available ancillary data will determine the degree and scope of vegetation-related science performed using EOS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuelgasim AA, Gopal S, Strahler AH (1997) Forward and inverse modeling of canopy directional reflectance using a neurnal network. Int J Rem Sen 19:453–471

    Google Scholar 

  • Anderson JA, Rosenfeld E (eds) (1988) Neurocomputing: Foundations of research. MIT Press, Cambridge

    Google Scholar 

  • Asrar G, Dozier J (1994) EOS-Science strategy for the earth observing system. AIP Press, Woodbury

    Google Scholar 

  • Asrar G, Greenstone R (eds) (1995) MTPE EOS reference handbook. EOS Project Science Office, NASA/ GSFC, Greenbelt

    Google Scholar 

  • Atkinson PM, Tatnall ARL (1997) Neuronal networks in remote sensing. Int J Rem Sen 18: 699 – 709

    Article  Google Scholar 

  • Chuah HT (1993) An artificial neuronal network for inversion of vegetation parameters from radar backscatter coefficients. Journal of Electromagnetic Waves and Appl 7: 1075 – 1092

    Article  Google Scholar 

  • Chuah HT, Tan HS (1989) A Monte Carlo method for radar backscatter from a half-space random medium. IEEE rans on Geoscience and Remote Sens 27: 86 – 93

    Article  Google Scholar 

  • Fu L (1994) Neuronal networks in computer intelligence. McGraw-Hill, New York

    Google Scholar 

  • Goel N (1987) Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens Rev 3: 1 – 212

    Article  Google Scholar 

  • Govaerts Y, Verstraete MM (1994) Evaluation of the capability of brdf models to retrieve structural information on the observed target as described by a three-dimensional ray tracing code. Society of Photo-Optical Instrumentation Engineers (SPIE) 2314: 9 – 20

    Google Scholar 

  • Hall FG, Townshend JR, Engman ET (1995) Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens Environ 51: 138 – 156

    Article  Google Scholar 

  • Jacquemoud S (1993) Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra — theoretical study. Remote Sens Environ 44: 281 – 292

    Article  Google Scholar 

  • Jakubauskas ME (1996) Thematic mapper characterization of lodgepole pine serai stages in Yellowstone National Park, USA. Remote Sens Environ 56: 118 – 132

    Article  Google Scholar 

  • Kimes DS, Holben BN, Nickeson JE, McKee A (1996) Extracting forest age in a Pacific northwest forest from thematic mapper and topographic data. Remote Sens Environ 56: 133 – 140

    Article  Google Scholar 

  • Kimes DS, Ranson KJ, Sun G (1997) Inversion of a forest backscatter model using neuronal networks. Int J Rem Sen 18: 2181 – 2199

    Article  Google Scholar 

  • Kimes DS, Nelson RF, Manry MT, Fung AK (1998) Attributes of neuronal networks for extraction continuous vegetation variables from optical and radar measurements. Int J Rem Sen 19: 2639 – 2663

    Article  Google Scholar 

  • Kimes DS, Nelson RF, Skole DL, Salas WA (1999) Mapping secondary tropical forest and forest age from SPOT HRV data. Int J Rem Sen 20: 3625 – 3640

    Article  Google Scholar 

  • Koza J (1993) Genetic programming. MIT Press, Cambridge

    Google Scholar 

  • Kuusk A (1994) Multispectral canopy reflectance model. Remote Sens Environ 50: 75 – 82

    Article  Google Scholar 

  • Li X, Strahler AH (1992) Geometrical optical bidirectional reflectance modelling of the discrete crown vegetation canopy. Effect of crown shape and mutual shadowing. IEEE Trans on Geosciences and Remote Sens 30: 276 – 292

    Article  Google Scholar 

  • Moghaddam M (1994) Retrieval of forest canopy parameters for OTTER. In: Society of Photo-Optical Instrumentation Engineers (SPIE) (ed) Moghaddam M, 26 – 30 Sept. Rome

    Google Scholar 

  • Myneni RB, Hall FG, Sellars PJ,Marshak AL (1995) The interpretation of spectral vegetation indices. IEEE Trans on Geoscience and Remote Sens 33: 481 – 486

    Google Scholar 

  • Myneni RB, Hall FG, Sellars PJ,Marshak AL (1995) The interpretation of spectral vegetation indices. IEEE Trans on Geoscience and Remote Sens 33: 481 – 486

    Google Scholar 

  • Pinty B, Verstraete MM (1991) Extracting information on surface properties from bidirectional reflectance measurements. J Geophy Res 96: 2865 – 2874

    Article  Google Scholar 

  • Pinty B, Verstraete MM, Dickinson RE (1990) A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and Validation. J Geophy Res 95: 11767 – 11775

    Article  Google Scholar 

  • Polatin PF, Sarabandi K, Ulaby FT (1994) An iterative inversion algorithm with application to the polarimetric radar response of vegetation canopies. IEEE Trans on Geoscience and Remote Sens 32: 62 – 71

    Article  Google Scholar 

  • Prevot L, Schmugge T (1994) Combined use of theoretical and semi-empirical models of radar backscatter to estimate characteristics of canopies. Physical Measurements and Signatures in Remote Sensing. Sixth Symposium of International Society of Photogrammetry and Remote Sensing, 17–21 January 1994, Val d’lsere, pp 415 – 430

    Google Scholar 

  • Privette JL, Myneni RB, Tucker CJ, Emery WJ (1994) Invertibility of a l-d discrete ordinates canopy reflectance model. Remote Sens Environ 48: 89 – 105

    Article  Google Scholar 

  • Privette JL, Myneni RB, Emery WJ (1996) Optimal sampling conditions for estimating grassland parameters via reflectance model inversions. IEEE Trans on Geoscience and Remote Sens 34: 272 – 284

    Article  Google Scholar 

  • Ranson KJ, Sun G, Weishampel JF, Knox RG (1997) forest biomass from combined ecosystem and radar backscatter modeling. Remote Sens Environ 59:118–133

    Google Scholar 

  • Ross JK, Marshak AL (1989) Influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance. Remote Sens Environ 24: 213 – 225

    Article  Google Scholar 

  • Saatchi SS,Moghaddam M (1994) Biomass distribution in Boreal Forest using SAR imagery. In: Society of Photo-Optical Instrumentation Engineers (SPIE) (ed) Saatchi SS,Moghaddam M, 26 – 30 Sept.

    Google Scholar 

  • Rome Sader SA, Waide RB, Lawrence WT, Joyce AT (1989) Tropical forest biomass and successional age class relationships to a vegetation index derived from landsat TM data. Remote Sens Environ 28: 143

    Article  Google Scholar 

  • Wasserman PD (1989) Neuronal computing: Theory and practice. Van Norstrand Reinhold Publishers, New York

    Google Scholar 

  • Wharton SW, Myers MF (eds) (1997) MTPE EOS data products handbook. NASA/Goddard Space Flight Center, Code 902, Greenbelt, Maryland

    Google Scholar 

  • Zornetzer SF, Davis JL, Lau C (1990) An introduction to neuronal and electronic networks. Academic Press, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimes, D.S., Nelson, R.F., Fifer, S.T. (2000). Predicting Ecologically Important Vegetation Variables from Remotely Sensed Optical/Radar Data Using Neuronal Networks. In: Lek, S., Guégan, JF. (eds) Artificial Neuronal Networks. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57030-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57030-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63116-0

  • Online ISBN: 978-3-642-57030-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics