Skip to main content

A Perturbed and Inexact Version of the Auxiliary Problem Method for Solving General Variational Inequalities with a Multivalued Operator

  • Chapter
Optimization

Abstract

We consider general variational inequalities with a multivalued maximal monotone operator in a Hilbert space. For solving these problems, Cohen developed several years ago the auxiliary problem method. Perturbed versions of this method have been already studied in the literature for the single-valued case. They allow to consider for example, barrier functions and interior approximations of the feasible domain. In this paper, we present a relaxation of these perturbation methods by using the concept of ε-enlargement of a maximal monotone operator. We prove that, under classical assumptions, the sequence generated by this scheme is bounded and weakly convergent to a solution of the problem. Strong convergence is also obtained under additional conditions.

In the particular case of nondifFerentiable convex optimization, the ε-subdifferential will take place of the ε-enlargement and some assumptions for convergence will be weakened. In the nonperturbed situation, our scheme reduces to the projected inexact subgradient procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, Ya.I. (1983) Recurrence Relations and Variational Inequalities. Soviet Mathematics Doklady 27, 511–517

    Google Scholar 

  2. Alber, Ya.I., Iusem, A.N., Solodov, M.V. (1998) On the Projected Subgradient Method for Nonsmooth Convex Optimization in a Hilbert Space. Math. Program. 81, 23–35

    Google Scholar 

  3. Attouch, H. (1984) Variational Convergence for Functions and Operators. Pitman, London

    Google Scholar 

  4. Auslender, A. (1976) Optimisation. Méthodes Numériques. Masson, Paris, France

    Google Scholar 

  5. Aubin, J.P., Ekeland, I. (1984) Applied Nonlinear Analysis. Wiley, New York, New York

    Google Scholar 

  6. Bertsekas, D.P., Mitter, S.K. (1973) A Descent Numerical Method for Optimization Problems with Nondifferentiable Cost Functionals. SIAM J. Cont. 11, 637–652

    Article  Google Scholar 

  7. Brønsted, A., Rockafellar, R.T. (1965) On the Subdifferentiability of Convex Functions. Proc. Am. Math. Soc. 16, 605–611

    Google Scholar 

  8. Burachik, R.S., Iusem, A.N., Svaiter, B.F. (1997) Enlargement of Maximal Monotone Operators with Application to Variational Inequalities. Set-Valued Anal. 5, 159–180

    Article  Google Scholar 

  9. Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F. (1998) ε-Enlargement of a Maximal Monotone Operator: Theory and Applications. In: Fukushima M., Qi L. (Eds.) Reformulation — Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Kluwer, Academic Publishers, 25–44

    Google Scholar 

  10. Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F. Bundle Methods for Maximal Monotone Operators. Submitted to Math. Prog.

    Google Scholar 

  11. Cohen, G. (1988) Auxiliary Problem Principle Extended to Variational Inequalities. J. Optim. Theory Appl. 59, 325–333

    Article  Google Scholar 

  12. Cohen, G., Zhu, D.L. (1984) Decomposition Coordination Methods in Large Scale Optimization Problems: The Nondifferentiable case and the Use of Augmented Lagrangians. In: Cruz J.B. (Ed.) Advances in Large Scale Systems Theory and Applications 1. JAI Press, Greenwich, Connecticut, USA, 203–266

    Google Scholar 

  13. Correa, R., Lemaréchal, C. (1993) Convergence of Some Algorithms for Convex Minimization. Math. Program. 62, 261–275

    Article  Google Scholar 

  14. Cottle, R.W., Giannessi, F., Lions, J.L. (1980) Variational Inequalities and Complementarity Problems: Theory and Applications. Wiley, New York, New York

    Google Scholar 

  15. Ekeland, I., Temam, R. (1976) Convex Analysis and Variational Inequalities. North-Holland, Amsterdam

    Google Scholar 

  16. Glowinski, R., Lions, J.L., Tremolieres, R. (1981) Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam

    Google Scholar 

  17. Harker, P.T., Pang, J.S. (1990) Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems. A Survey of Theory, Algorithms and Applications. Math. Program. 48, 161–220

    Google Scholar 

  18. Hiriart-Urruty, J-B. (1982) ε-Subdifferential Calculus. Convex Analysis and Optimization. Res. Notes in Math. 57, 1–44

    Google Scholar 

  19. Hiriart-Urruty, J.-B., Lemaréchal, C. (1993) Convex Analysis and Minimization Algorithms. Springer, Berlin

    Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G. (1980) An Introduction to Variational Inequalities and their Application. Academic Press, New York, New York

    Google Scholar 

  21. Kiwiel, K.C. (1990) Proximity Control in Bundle Methods for Convex Nondifferentiable Minimization. Math. Program. 46, 105–122

    Article  Google Scholar 

  22. Kiwiel, K.C. (1997) Proximal Minimization Methods with Generalized Bregman Functions. SIAM J. Cont. Optim. 35, 1142–1168

    Article  Google Scholar 

  23. Lions, P.-L., Mercier, B. (1979) Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J. Num. Anal. 16, 964–979

    Article  Google Scholar 

  24. Lemaire, B. (1988) Coupling Optimization Methods and Variational Convergence. In: Hoffmann K.H., Hiriart-Urruty J.B., Lemaréchal C., Zowe J. (Eds.) Trends in Mathematical Optimization International Series of Numerical Mathematics 84 Birkhäuser Verlag, Basel, 163–179

    Google Scholar 

  25. Lemaréchal, C., Nemirovskii, A., Nesterov, Yu. (1995) New Variants of Bundle Methods. Math. Program. 69, 111–148

    Article  Google Scholar 

  26. Lemaréchal, C., Strodiot, J-J., Bihain, A. (1981) On a Bundle Method for Nonsmooth Optimization. In: Mangasarian O.L., Meyer R.R., Robinson S.M. (Eds.) Nonlinear Programming 4, Academic Press, 245–282

    Google Scholar 

  27. Mahey, P., Nguyen, V.H., Pham, D.T. (1992) Proximal Techniques for the Decomposition of Convex Programs. Rapport de Recherches Laboratoire ARTEMIS RR 877, 21–37

    Google Scholar 

  28. Makler-Scheimberg, S., Nguyen, V.H., Strodiot, J.J. (1996) Family of Perturbation Methods for Variational Inequalities. J. Optim. Theory Appl. 89, 423–452

    Article  Google Scholar 

  29. Nurminski, E.A. (1986) ε-Subgradient Mapping and the Problem of Convex Optimization. Cybernetics 21(6), 796–800

    Article  Google Scholar 

  30. Pang, J.S. (1985) Asymmetric Variational Inequality Problems over Product Sets: Applications and Iterative methods. Math. Program. 31, 206–219

    Article  Google Scholar 

  31. Polyak, B.T. (1987) Introduction to Optimization. Optimization Software, New York, New York

    Google Scholar 

  32. Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  33. Salmon, G., Nguyen, V.H., Strodiot, J.J. (1999) Coupling the Auxiliary Problem Principle and the Epiconvergence Theory for Solving General Variational Inequalities. To appear in J. of Optim. Theory and Appl.

    Google Scholar 

  34. Schramm, H., Zowe, J. (1992) A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results. SIAM J. Optim. 2, 121–152

    Article  Google Scholar 

  35. Solodov, M.V., Svaiter, B.F. A Hybrid Approximate Extragradient-Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator. Submitted to Set-Valued Anal.

    Google Scholar 

  36. Solodov, M.V., Zavriev, S.K. (1998) Error-Stability Properties of Generalized Gradient-type Algorithms. J. Optim. Theory Appl. 98, 663–680

    Article  Google Scholar 

  37. Sonntag, Y. (1982) Convergence au Sens de Mosco: Théorie et Applications à l’Approximation des Solutions d’Inéquations. PhD Thesis, Université de Provence, France

    Google Scholar 

  38. Strodiot, J.J., Nguyen, V.H. (1988) On the Numerical Treatment of the Inclusion 0 ∈ ∂ f (x). In: Moreau J.J, Panagiotopoulos P.D., Strang G. (Eds.) Topics in Nonsmooth Mechanics. Birkhäuser Verlag, 267–294

    Google Scholar 

  39. Strodiot, J.J., Nguyen, V.H., Heukemes, N. (1983) ε-Optimal Solutions in Nondifferentiable Convex Programming and some Related Questions. Math. Program. 25, 307–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salmon, G., Nguyen, V.H., Strodiot, JJ. (2000). A Perturbed and Inexact Version of the Auxiliary Problem Method for Solving General Variational Inequalities with a Multivalued Operator. In: Nguyen, V.H., Strodiot, JJ., Tossings, P. (eds) Optimization. Lecture Notes in Economics and Mathematical Systems, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57014-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57014-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66905-0

  • Online ISBN: 978-3-642-57014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics