Skip to main content

Formulating and Solving Nonlinear Programs as Mixed Complementarity Problems

  • Chapter
Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 481))

Abstract

We consider a primal-dual approach to solve nonlinear programming problems within the AMPL modeling language, via a mixed complementarity formulation. The modeling language supplies the first order and second order derivative information of the Lagrangian function of the nonlinear problem using automatic differentiation. The PATH solver finds the solution of the first order conditions which are generated automatically from this derivative information. In addition, the link incorporates the objective function into a new merit function for the PATH solver to improve the capability of the complementarity algorithm for finding optimal solutions of the nonlinear program. We test the new solver on various test suites from the literature and compare with other available nonlinear programming solvers.

This research was partially supported by National Science Foundation Grant CCR-9619765 and Air Force Office of Scientific Research Grant F49620-98-1- 0417

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billups, S. C. (1995) Algorithms for Complementarity Problems and Generalized Equations. PhD thesis, University of Wisconsin-Madison, Madison, Wisconsin

    Google Scholar 

  2. Billups, S. C., Ferris, M. C. (1997) QPCOMP: A quadratic program based solver for mixed complementarity problems. Mathematical Programming 76, 533–562

    Google Scholar 

  3. Brooke, A., Kendrick, D., Meeraus, A. (1988) GAMS: A User’s Guide. The Scientific Press, South San Francisco, CA

    Google Scholar 

  4. Conn, A. R., Gould, N. I. M., Toint, Ph. L. (1992) LANCELOT: A Fortran package for Large-Scale Nonlinear Optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, Berlin

    Google Scholar 

  5. De Luca, T., Facchinei, F., Kanzow, C. (1996) A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical Programming 75, 407–439

    Article  Google Scholar 

  6. Dirkse, S.P., Ferris, M.C. (1995) The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software 5, 123–156

    Article  Google Scholar 

  7. Eaves, B. C. (1976) A short course in solving equations with PL homotopies. In: Cottle R. W., Lemke C. E. (Eds.) Nonlinear Programming. American Mathematical Society, SIAM-AMS Proceedings. Providence, RI, 73–143

    Google Scholar 

  8. Ferris, M. C., Fourer, R., Gay, D.M. (1999) Expressing complementarity problems and communicating them to solvers. SIAM Journal on Optimization, forthcoming

    Google Scholar 

  9. Ferris, M.C., Kanzow, C., Munson, T.S. (1999) Feasible descent algorithms for mixed complementarity problems. Mathematical Programming, forthcoming

    Google Scholar 

  10. Ferris, M.C., Munson, T.S. (1999) Complementarity problems in GAMS and the PATH solver. Journal of Economic Dynamics and Control, forthcoming

    Google Scholar 

  11. Ferris, M.C., Munson, T.S. (1999) Interfaces to PATH 3.0: Design, implementation and usage. Computational Optimization and Applications, 12, 207–227

    Article  Google Scholar 

  12. Fiacco, A.V., McCormick, G.P. (1968) Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley&Sons, New York. (SIAM Classics in Applied Mathematics 4, SIAM, Philadelphia, 1990)

    Google Scholar 

  13. Fischer, A. (1992) A special Newton-type optimization method. Optimization 24, 269–284

    Article  Google Scholar 

  14. Fourer, R., Gay, D.M., Kernighan, B.W. (1993) AMPL: A Modeling Language for Mathematical Programming. Duxbury Press

    Google Scholar 

  15. Gay, D.M. (1997) Hooking your solver to AMPL. Technical report, Bell Laboratories, Murray Hill, New Jersey

    Google Scholar 

  16. Gill, P.E., Murray, W., Saunders, M.A. (1997) SNOPT: An SQP algorithm for large-scale constrained optimization. Report NA 97-2, Department of Mathematics, University of California, San Diego, San Diego, California

    Google Scholar 

  17. Gill, P.E., Murray, W., Saunders, M.A., Wright, Margaret H. (1986) User’s Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming. Technical Report SOL 86-2, Department of Operations Research, Stanford University, Stanford, California

    Google Scholar 

  18. Griewank, A., Corliss, G.F. (1991) Automatic differentiation of algorithms: Theory, implementation, and application. SIAM, Philadelphia, Pennsylvania

    Google Scholar 

  19. Griewank, A., Juedes, D., Utke, J. (1996) ADOL-C: A package for the automatic differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software 20, 131–167

    Article  Google Scholar 

  20. Hock, W., Schittkowski, K. (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems 187, Springer Verlag, Berlin

    Google Scholar 

  21. Karmarkar, N. (1984) A new polynomial time algorithm for linear programming. Combinatorica 4, 373–395

    Article  Google Scholar 

  22. Karush, W. (1939) Minima of functions of several variables with inequalities as side conditions. Master’s thesis, Department of Mathematics, University of Chicago

    Google Scholar 

  23. Khachian, L.G. (1979) A polynomial algorithm for linear programming. Soviet Mathematics Doklady 20, 191–194

    Google Scholar 

  24. H. W. Kuhn, H.W., Tucker, A.W. (1951) Nonlinear programming. In: Neyman J. (Ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, 481–492

    Google Scholar 

  25. Mangasarian, O.L. (1969) Nonlinear Programming. McGraw-Hill, New York, 1969. (SIAM Classics in Applied Mathematics 10, SIAM, Philadelphia, 1994)

    Google Scholar 

  26. Murtagh, B.A., Saunders, M.A. (1978) Large-scale linearly constrained optimization. Mathematical Programming 14, 41–72

    Article  Google Scholar 

  27. Murtagh, B.A., Saunders, M.A. (1983) MINOS 5.0 user’s guide. Technical Report SOL 83.20, Stanford University, Stanford, California

    Google Scholar 

  28. Rall, L.B. (1981) Automatic Differentiation: Techniques and Applications 120, Springer Verlag, Berlin

    Google Scholar 

  29. Ralph, D. (1994) Global convergence of damped Newton’s method for nonsmooth equations, via the path search. Mathematics of Operations Research 19, 352–389

    Article  Google Scholar 

  30. Robinson, S.M. (1992) Normal maps induced by linear transformations. Mathematics of Operations Research 17, 691–714

    Article  Google Scholar 

  31. Robinson, S.M. (1994) Newton’s method for a class of nonsmooth functions. Set Valued Analysis 2, 291–305

    Article  Google Scholar 

  32. Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  33. Shanno, D., Simantiraki, E. (1997) Interior point methods for linear and nonlinear programming. In: Duff I. S., Watson G.A. (Eds.) State of the Art in Numerical Analysis, Oxford University Press, Oxford

    Google Scholar 

  34. Wright, S.J. (1997) Primal-Dual Interior-Point Methods. SIAM, Philadelphia, Pennsylvania

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferris, M.C., Sinapiromsaran, K. (2000). Formulating and Solving Nonlinear Programs as Mixed Complementarity Problems. In: Nguyen, V.H., Strodiot, JJ., Tossings, P. (eds) Optimization. Lecture Notes in Economics and Mathematical Systems, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57014-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57014-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66905-0

  • Online ISBN: 978-3-642-57014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics