Skip to main content

Abstract

As the size of electrical and optical devices is scaled to ever smaller dimensions, the surface condition of the devices affects the performance more dramatically. Dry etching is often used for pattern transfer for high performance devices with submicrometer dimensions. Dry etching is needed to control the directionality of the etch profile for small features. Besides vertical profile, low damage and high etch rate are also important to maintain high device performance and high throughput. Dry-etching processes, with energetic particles bombarding the samples, can induce defects in the materials that degrade device properties [113]. The defects generated by dry etching often are much deeper than the ion penetration range and they make damage removal difficult [14,15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.W. Pang, D.D. Rathman, D.J. Silversmith, R.W. Mountain, and P.D. DeGraff, J. Appl. Phys. 54, 3272 (1983).

    Article  CAS  Google Scholar 

  2. S.W. Pang, G.A. Lincoln, R.W. McClelland, P.D. DeGraff, M.W. Geis, and W.J. Piacentini, J. Vac. Sci. Technol. B 1, 1334 (1983).

    Article  CAS  Google Scholar 

  3. S.W. Pang, Solid State Technol. 27, 249 (1984).

    Google Scholar 

  4. G.S. Oehrlein, R.M. Tromp, J.C. Tsang, Y.H. Lee, and E.J. Petrillo, J. Electrochem. Soc. 132, 1441 (1985).

    Article  CAS  Google Scholar 

  5. S.W. Pang, J. Electrochem. Soc. 133, 2784 (1986).

    Article  Google Scholar 

  6. S.W. Pang, W.D. Goodhue, T.M. Lyszczarz, D.J. Ehrlich, R.B. Goodman, and G.D. Johnson, J. Vac. Sci. Technol. B 6, 1916 (1988).

    Article  CAS  Google Scholar 

  7. S. Fang, and J. McVittie, IEEE Electron Device Lett. 13, 288 (1992).

    Article  CAS  Google Scholar 

  8. E.S. Aydil, K.P. Giapis, R.A. Gottscho, V.M. Donnelly, and E. Yoon, J. Vac. Sci. Technol. B 11, 195 (1993).

    Article  CAS  Google Scholar 

  9. S.J. Pearton, F. Ren, A. Katz, U.K. Chakrabarti, E. Lane, W.S. Hobson, R.F. Kopf, C.R. Abernathy, C.S. Wu, D.A. Bohling, and J.C. Ivankovits, J. Vac. Sci. Technol. B 11, 546 (1993).

    Article  CAS  Google Scholar 

  10. K. Scheugraf, and C. Hu, Semicond. Sci. Technol. 9, 989 (1994).

    Article  Google Scholar 

  11. K.K. Ko, and S.W. Pang, J. Electrochem. Soc. 141, 255 (1994).

    Article  CAS  Google Scholar 

  12. K.K. Ko, S.W. Pang, T. Brock, M.W. Cole, and L.M. Casas, J. Vac. Sci. Technol. B 12, 3382 (1994).

    Article  CAS  Google Scholar 

  13. D.G. Yu, C.-H. Chen, A.L. Holmes, Jr., S.P. DenBaars, and E.L. Hu, J. Vac. Sci. Technol. B 15, 2672 (1997).

    Article  CAS  Google Scholar 

  14. N.G. Stoffel, J. Vac. Sci. Technol. B 10, 651 (1992).

    Article  Google Scholar 

  15. D.L. Green, E.L. Hu, P.M. Petroff, V. Liberman, M. Nooey, and R. Martin, J. Vac. Sci. Technol. B 15, 2672 (1997).

    Article  Google Scholar 

  16. M. Rahman, N.P. Johnson, M.A. Foad, A.R. Long, M.C. Holland, and C.D.W. Wilkinson, Appl. Phys. Lett. 61, 2335 (1992).

    Article  CAS  Google Scholar 

  17. E.W. Berg, and S.W. Pang, J. Vac. Sci. Technol. B 15, 2643 (1997).

    Article  CAS  Google Scholar 

  18. R.J. Davis, and P. Jha, J. Vac. Sci. Technol. B 13, 242 (1995).

    Article  CAS  Google Scholar 

  19. K.T. Sung, S.W. Pang, M.W. Cole, and N. Pearce, J. Electrochem. Soc. 142, 206 (1995).

    Article  CAS  Google Scholar 

  20. A.S. Yapsir, G. Fortuno-Wiltshire, J.P. Gambino, R.H. Kastl, and C.C. Parks, J. Vac. Sci. Technol. A 8, 2939 (1990).

    Article  CAS  Google Scholar 

  21. G.S. Oehrlein, R.M. Tromp, J.C. Tsang, Y.H. Lee, and E.J. Petrillo, J. Electrochem. Soc. 132, 1441 (1985).

    Article  CAS  Google Scholar 

  22. S.W. Pang, Microelectron. Eng. 5, 351 (1986).

    Article  CAS  Google Scholar 

  23. I-Wen H. Connick, A. Bhattacharyya, and K.N. Ritz, J. Appl. Phys. 64, 2059 (1988).

    Article  CAS  Google Scholar 

  24. O.W. Purbo, C.R. Selvakumar, and D. Misra, J. Electrochem. Soc. 140, 2659 (1993).

    Article  CAS  Google Scholar 

  25. K.T. Sung, and S.W. Pang, J. Vac. Sci. Technol. A 12, 1346 (1994).

    Article  CAS  Google Scholar 

  26. J. Asmussen, J. Vac. Sci. Technol. A 7, 883 (1989).

    Article  CAS  Google Scholar 

  27. S. Nakayama, Pure Appl. Chem. 62, 1751 (1990).

    Article  CAS  Google Scholar 

  28. H.J. Dijkstra, J. Vac. Sci. Technol. B 10, 2222 (1992).

    Article  CAS  Google Scholar 

  29. C.W. Jurgensen, R.S. Hutton, and G.N. Taylor, J. Vac. Sci. Technol. B 10, 2542 (1992).

    Article  CAS  Google Scholar 

  30. R. Patrick, P. Schoenborn, and H. Toda, J. Vac. Sci. Technol. A 11, 1296 (1993).

    Article  CAS  Google Scholar 

  31. X.C. Mu, S.J. Fonash, B.Y. Yang, K. Vedam, A. Rohatgi, and J. Rieger, J. Appl. Phys. 58, 4284 (1985).

    Article  Google Scholar 

  32. T. Mizutani, T. Yunogami, and K. Tsujimoto, Appl. Phys. Lett. 57, 1654 (1990).

    Article  CAS  Google Scholar 

  33. G. Washidzu, T. Hara, J. Hiyoshi, M. Sasaki, Y. Suzuki, and K. Ukai, Jpn J. Appl. Phys. 30, 1045 (1991).

    Article  CAS  Google Scholar 

  34. M.A. Foad, S. Hefferman, J.N. Chapman, and C.D.W. Wilkinson, Int. Symp. GaAs and Related Compounds, 112, 293 (1990).

    CAS  Google Scholar 

  35. S.J. Jeng, and G.S. Oehrlein, Appl. Phys. Lett. 50, 1912 (1987).

    Article  CAS  Google Scholar 

  36. A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (North-Holland, 1987), p. 1.

    Google Scholar 

  37. M. Taneya, Y. Sugimoto, and K. Akita, J. Appl. Phys. 66, 1375 (1989).

    Article  CAS  Google Scholar 

  38. K.L. Seaward, and N.J. Moll, J. Vac. Sci. Technol. B 10, 46 (1992).

    Article  CAS  Google Scholar 

  39. A.M. Cowley, and S.M. Sze, J. Appl. Phys. 10, 3212 (1965).

    Article  Google Scholar 

  40. P.M. Owen, W.A. Phillips, and G.R. Fisher, J. Phys.: Condens. Matter. 3, 2917 (1991).

    Article  CAS  Google Scholar 

  41. A.N. Yakimenko, Sov.-Phys. Semicond. 25, 1236 (1992).

    Google Scholar 

  42. L.S. Berman, I.V. Grekhov, I.N. Karimov, and E.V. Ostroumova, Semiconductors 27, 497 (1993).

    Google Scholar 

  43. S. Biswas, and A. Mansingh, Solid-State Electron. 25, 100 (1992).

    CAS  Google Scholar 

  44. J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, 1985).

    Google Scholar 

  45. T. Tanimoto, M. Kudo, M. Mori, and H. Kodera, Jpn. J. Appl. Phys. 33, L260 (1994).

    Article  Google Scholar 

  46. S. Thomas III, and S.W. Pang, J. Vac. Sci. Technol. B 12, 2941 (1994).

    Article  CAS  Google Scholar 

  47. H. Linke, I. Maximov, D. Hessman, P. Emanuelsson, Q. Wang, L. Samuelson, P. Omling, and B.K. Meyer, Appl. Phys. Lett. 66, 1403 (1995).

    Article  CAS  Google Scholar 

  48. R. Cheung, Y.H. Lee, C.M. Knoedler, K.Y. Lee, T.P. Smith III, and D.P. Kern, Appl. Phys. Lett. 54, 2130 (1989).

    Article  CAS  Google Scholar 

  49. R. Cheung, S. Thorns, M. Watt, M.A. Foad, CM. Sotomayor-Torres, C.D.W. Wilkinson, U.J. Cox, R.A. Cowley, C. Dunscombe, and R.H. Williams, Semicond. Sci. Technol. 7, 1189 (1992).

    Article  CAS  Google Scholar 

  50. S.K. Murad, C.D.W. Wilkinson, P.D. Wang, W. Parkes, C.M. Sotomayor-Torres, and N. Cameron, J. Vac. Sci. Technol. B 11, 2237 (1993).

    Article  CAS  Google Scholar 

  51. G.F. McLane, M. Meyyappan, H.S. Lee, M.W. Cole, D.W. Eckart, R.T. Lareau, M. Namaroff, and J. Sasserath, J. Vac. Sci. Technol. B 11, 333 (1993).

    Article  CAS  Google Scholar 

  52. R. van Roijen, M.B.M. Kemp, C.W.T. Bulle-Lieuwma, L.J. van Ijzendoorn, and T.L.G. Thijssen, J. Appl. Phys. 70, 3983 (1991).

    Article  Google Scholar 

  53. V. M. Donnelly, D.L. Flamm, C.W. Tu, and D.E. Ibbotson, J. Electrochem. Soc. 129, 2533 (1982).

    Article  CAS  Google Scholar 

  54. T.A. Carlson, Photoelectron and Auger Spectroscopy, (Plenum Press, New York, 1975).

    Book  Google Scholar 

  55. X. Yin, H.M. Chen, F.H. Pollack, Y. Cao, P.A. Montano, P.D. Kirchner, G.D. Pettit, and J.M. Woodall, J. Vac. Sci. Technol. B 9, 2114 (1991).

    Article  CAS  Google Scholar 

  56. O.J. Glembocki, J.A. Tuchman, K.K. Ko, S.W. Pang, A. Giordana, R. Kaplan, and C.E. Stutz, Appl. Phys. Lett. 66, 3054 (1995).

    Article  CAS  Google Scholar 

  57. O.J. Glembocki, Proc. SPIE. 1286, 1 (1990).

    Google Scholar 

  58. F.H. Pollak, J. Vac. Sci. Technol. B 11, 1710 (1993).

    Article  CAS  Google Scholar 

  59. W.E. Spicer, Z. Liliental-Webber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B 8, 2084 (1990).

    Article  CAS  Google Scholar 

  60. R.J. Davis, and P. Jha, J. Vac. Sei. Technol. B 13, 242 (1995).

    Article  CAS  Google Scholar 

  61. A.S. Yapsir, G. Fortuno-Wiltshire, J.P. Gambino, R.H. Kastl, and C.C. Parks, J. Vac. Sei. Technol. A 8, 2939 (1990).

    Article  CAS  Google Scholar 

  62. E.L. Hu, C.H. Chen, and D.L. Green, J. Vac. Sei. Technol. B 14, 3632 (1996).

    Article  CAS  Google Scholar 

  63. H. Nakanishi, K. Wada and W. Walukiewicz, J. Appl. Phys. 78, 5103 (1995).

    Article  CAS  Google Scholar 

  64. C.H. Chen, D.G. Yu, E.L. Hu, and P.M. Petroff, J. Vac. Sci. Technol. B 14, 3684 (1996).

    Article  CAS  Google Scholar 

  65. A. Forchel, B.E. Maile, H. Leier, and R. Germann, Physics and Technology of Submicron Structures: Proc. Fifth International Winter School, 26 (1988).

    Google Scholar 

  66. S. Agarwala, and I. Adesida, Sixth International Conference on Indium Phosphide and Related Materials, 391 (1994).

    Google Scholar 

  67. E.W. Berg, and S.W. Pang, J. Electrochem. Soc. 146, 775 (1999).

    Article  CAS  Google Scholar 

  68. A.E. Blakeslee, Mater. Res. Soc. Symp. Proc. 148, 217 (1989).

    Article  CAS  Google Scholar 

  69. O.A. Popov, J. Vac. Sci. Technol., A 9, 711 (1991).

    Article  CAS  Google Scholar 

  70. S. Thomas III, and S.W. Pang, J. Vac. Sci. Technol. B 13, 2350 (1995).

    Article  CAS  Google Scholar 

  71. D.J. Kahaian, S. Thomas III, and S.W. Pang, J. Vac. Sci. Technol. B 13, 253 (1995).

    Article  CAS  Google Scholar 

  72. D.L. Green, E.L. Hu, and N.G. Stoffel, J. Vac. Sci. Technol. B 12, 3311 (1994).

    Article  CAS  Google Scholar 

  73. K.K. Ko, and S.W. Pang, J. Vac. Sci. Technol. B 13, 2376 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pang, S.W. (2000). Surface Damage Induced by Dry Etching. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics