Skip to main content

Abstract

A plasma is a collection of free atoms or molecules which is partially or fully ionized and which is charge neutral on average. Each charged particle in a plasma interacts simultaneously with many others due to the long-range nature of the electric force. For this reason plasmas are said to exhibit collective behavior. Partially ionized, low temperature plasmas are used extensively for thin film materials processing applications such as etching and deposition. This chapter will review some fundamental plasma concepts that are important in thin film processing applications. The partially ionized plasmas of interest here have electron and ion densities in the range of 1015-1019 m-3 and neutral species densities in the range of 1019-1022 m-3. These plasmas are produced in the pressure range of 1 mTorr to 10 Torr (0.133-1330 Pa). It is the combination of electrical, thermal, and chemical properties that gives these plasmas their unique attributes for materials processing. The scope of this chapter excludes many advanced plasma topics such as confinement, stability, waves, and kinetic theory, which are typically of less importance in processing applications. A number of excellent texts cover plasma physics in more rigorous detail [13] and plasma topics are reviewed in some books specific to plasma processing [411]. The intent of this chapter is to introduce the main concepts of plasma science, explain how these concepts relate to thin film processing applications, and provide some detail about how these quantities are derived. The equations used in this chapter will be stated in SI units unless noted otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Chen, Introduction to Plasma Physics, (Plenum Press, New York, 1974).

    Google Scholar 

  2. N.A. Krall, and A.W. Trivelpiece, Principals of Plasma Physics, (McGraw Hill, New York, 1973).

    Google Scholar 

  3. B.S. Tanenbaum, Plasma Physics, (McGraw Hill, New York, 1967).

    Google Scholar 

  4. B. Chapman, Glow Discharge Processes, (John Wiley & Sons, New York, 1980).

    Google Scholar 

  5. M.A. Lieberman, and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, New York, 1994).

    Google Scholar 

  6. J.L. Cecchi, Introduction to Plasma Concepts and Discharge Configurations, in: S. Rossnagel, J. Cuomo, and W. Westwood (eds.) Handbook of Plasma Processing Technology, (Noyes Publicaitons, Park Ridge, NJ, 1989).

    Google Scholar 

  7. D. Manos, and D. Flamm (eds.), Plasma Etching, (Academic Press, San Diego, 1979).

    Google Scholar 

  8. O. Popov (ed.), High Density Plasma Sources, (Noyes Publications, Park Ridge, NJ, 1995).

    Google Scholar 

  9. J. Vossen, and W. Kern (eds.), Thin Film Processes II, (Academic Press Inc., New York, 1991).

    Google Scholar 

  10. W.M. Hooke, and R.E. Fauber, in: G. Bonizzoni, W. Hooke, and E. Sindoni (eds.) Proc. of the Course and Workshop on Industrial Applications of Plasma Physics, Sept. 1992, Varenna, Italy, Editrice Compositori, Bologna, Italy, 3–14.

    Google Scholar 

  11. D.L. Book, NRL Plasma Formulary, (Naval Research Laboratory, Washington, DC, NRL Pub.No. 0084-4040, 1987).

    Google Scholar 

  12. H. Massey, Atomic and Molecular Collisions, (Taylor and Francis Ltd., London, 1979).

    Google Scholar 

  13. D. Rapp, and P. Englander-Golden, J. Chem. Phys. 43, 1464–1479 (1965).

    Article  CAS  Google Scholar 

  14. E. Eggarter, J. Chem. Phys. 62, 833–847 (1975).

    Article  CAS  Google Scholar 

  15. A. von Engel, Ionized Gases, (Oxford Univ. Press, London, 1965).

    Google Scholar 

  16. W.L. Wiese, and G.A. Martin, in: H. Anderson (ed.) A Physicists Desk Reference, (American Inst. Physics, New York, 1989), 92–103.

    Google Scholar 

  17. F.M. Penning, Naturwiss. 15, 818 (1927).

    Article  CAS  Google Scholar 

  18. V.A. Godyak, and N. Sternberg, IEEE Trans. Plasma Sci. 18, 159–168 (1990).

    Article  Google Scholar 

  19. P.R. Smy, Adv. Plasma Phys. 25, 517–553 (1976).

    Google Scholar 

  20. W.M. Hooke, S.P. Bozeman, and J.W. Olesik, in: G. Bonizzoni, W. Hooke, and E. Sindoni (eds.) Proc. of the Course and Workshop on Industrial Applications of Plasma Physics, Sept. 1992, Varenna, Italy, Editrice Compositori, Bologna, Italy, 33–46.

    Google Scholar 

  21. G.A. Hebner, J. Vac. Sci. Technol. A14, 2158–2162 (1996).

    Google Scholar 

  22. C.B. Fleddermann, and G.A. Hebner, J. Vac. Sci. Technol. A15, 1955–1962 (1997).

    Google Scholar 

  23. D. Smith, A.G. Dean, and N.G. Adams, J. Phys. D: Appl. Phys. 7, 1944–1962 (1974).

    Article  CAS  Google Scholar 

  24. J.R. Hollahan, and A.T. Bell, Techniques and Applications of Plasma Chemistry, (John Wiley & Sons, New York, 1974).

    Google Scholar 

  25. R.N. Franklin, Plasma Phenomena in Gas Discharges, (Clarendon Press, Oxford, 1976).

    Google Scholar 

  26. M.J. Druyvesteyn, and F.M. Penning, Rev. Modern Phys. 12, 88–174 (1940).

    Article  Google Scholar 

  27. D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, in: A. Guthrie, and R.K. Wakerling (eds.) (McGraw-Hill, New York, 1949), 77–86.

    Google Scholar 

  28. K.U. Riemann, J. Phys. D: Appl. Phys. 24, 493–518 (1991).

    Article  Google Scholar 

  29. J.A. Meyer, G.H. Kim, M.J. Goeckner, and N. Hershkowitz, Plasma Sources Sci. Technol. 1, 147–150 (1992).

    Article  CAS  Google Scholar 

  30. G.A. Hebner, K.E. Greenberg, and M.E. Riley, J. Appl. Phys. 76, 4036–4044 (1994).

    Article  CAS  Google Scholar 

  31. J.R. Woodworth, M.E. Riley, P.A. Miller, and G.A. Hebner, J. Appl. Phys. 81, 5950–5959 (1997).

    Google Scholar 

  32. E.A. Den Hartog, H. Persing, and R.C. Woods, Appl. Phys. Lett. 57, 661–663 (1990).

    Article  Google Scholar 

  33. T. Nakano, N. Sadeghi, and R.A. Gottscho, Appl. Phys. Lett. 58, 458–460 (1991).

    Article  CAS  Google Scholar 

  34. N. Sadeghi, T. Nakano, D. Trevor, and R.A. Gottscho, J. Appl. Phys. 70, 2552–2569 (1991).

    Article  Google Scholar 

  35. M. Hemenway, R. Henry, and M. Caultron, Physical Electronics, (J. Wiley, New York, 1967).

    Google Scholar 

  36. V. Godyak, R. Piejak, and N. Sternberg, IEEE Trans. Plasma Sci. 21, 378–382 (1993).

    Article  Google Scholar 

  37. J.B. Caughman, and W.M. Holber, J. Vac. Sci. Technol. A9, 3113–3118 (1991).

    Google Scholar 

  38. Y. Ohtsu, Y. Okuno, and H. Fujita, Jpn. J. Appl. Phys. 32, 2873–2877 (1993).

    Article  CAS  Google Scholar 

  39. T. Mantei, J. Electrochem Soc. 130, 1958–1959 (1983).

    Article  CAS  Google Scholar 

  40. K. Kohler, D.E. Home, and J.W. Coburn, J. Appl. Phys. 58, 3350–3355 (1985).

    Article  Google Scholar 

  41. W.M. Holber, J. Forster, J. Vac. Sci. Technol. A8, 3720–3725 (1990).

    Google Scholar 

  42. J. Woodworth, Sandia Nat. Labs., private communication.

    Google Scholar 

  43. P.A. Miller, G.A. Hebner, K.E. Greenberg, P.D. Pochan, and B.P. Aragon, J. Res. Natl. Inst. Stand. Technol. 100, 427–439 (1995).

    Article  CAS  Google Scholar 

  44. H.R. Koenig, and L.I. Maissei, IBM J. Res. Develop. 14, 168–171 (1970).

    Article  Google Scholar 

  45. C.B. Zarowin, J. Vac. Sci. Technol. A2, 1537–1549 (1984).

    Google Scholar 

  46. R.A. Gottscho, G. Scheller, D. Stoneback, J. Appl. Phys. 66, 492–500 (1989).

    Article  CAS  Google Scholar 

  47. J.W. Coburn, and E. Kay, J. Appl. Phys. 43, 4965–4971 (1972).

    Article  CAS  Google Scholar 

  48. C.M. Horwitz, J. Vac. Sci. Technol. A1, 60–68 (1983).

    Google Scholar 

  49. K. Kohler, J.W. Coburn, D.E. Horne, E. Kay, and J.H. Keller, J. Appl. Phys. 57, 59–66 (1985).

    Article  Google Scholar 

  50. P. Miller, H. Anderson, and M.P. Splichal, J. Appl. Phys. 71, 1171–1176 (1992).

    Article  Google Scholar 

  51. D. Smith, and M.J. Church, Int. J. Mass Spectrom. Ion Phys. 19, 185–200 (1976).

    Article  CAS  Google Scholar 

  52. S.C. Brown, Basic Data of Plasma Physics, 2nd edn., (The MIT Press, Cambridge, MA 1966).

    Google Scholar 

  53. C.C. Tsai, L.A. Berry, et al., J. Vac. Sci. Technol. A8, 2900–2904 (1990).

    Google Scholar 

  54. T. Mantei, and T. Ryle, J. Vac. Sei. Technol. B9, 29–33 (1991).

    Article  Google Scholar 

  55. J. Asmussen, in: O. Popov (ed.) High Density Plasma Sources, (Noyes Publications, Park Ridge, NJ, 1995), 251–311.

    Google Scholar 

  56. J. Pelletier, in: O. Popov (ed.) High Density Plasma Sources, (Noyes Publications, Park Ridge, NJ, 1995), 380–425.

    Google Scholar 

  57. S.V. Nguyen, G. Chrisman, D. Dobuzinsky, and D. Harmon, Solid State Technol. 33(10), 73–77 (1990).

    CAS  Google Scholar 

  58. see papers contained in: Special Issue on Modeling and Simulation of Collisional Low-Temperature Plasmas, C.H. Wu, M. Meyyappan, and D.J. Economou (eds.), IEEE Trans. Plasma Sci. 23, 501–787 (1995).

    Google Scholar 

  59. E. Meeks, and J.W. Shon, IEEE Trans. Plasma Sci. 23, 539–549 (1995).

    Article  CAS  Google Scholar 

  60. M.A. Lieberman, and R.A. Gottscho, Design of High Density Plasma Sources for Materials Processing, in: M.H. Francombe, and J.L. Vossen (eds.) Physics of Thin Films, Vol. 18, (Academic Press, San Diego, 1994), 1–119.

    Google Scholar 

  61. T.H. Stix, Waves in Plasmas, (American Inst. Phys., New York, 1992).

    Google Scholar 

  62. J. Hopwood, Plasma Sources Sci. Technol. 1, 109–116 (1992).

    Article  CAS  Google Scholar 

  63. J.E. Stevens, M.J. Sowa, and J.L. Cecchi, J. Vac. Sci. Technol. A14, 139–143 (1996).

    Google Scholar 

  64. V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, IEEE Trans. Plasma Sci. 19, 660–676 (1991).

    Article  Google Scholar 

  65. M.J. Kushner, IEEE Trans. Plasma Sci. PS-14, 188–196 (1986).

    Article  CAS  Google Scholar 

  66. B. Andries, G. Ravel, and L. Peccoud, J. Vac. Sci. Technol. A7, 2774–2783 (1989).

    Google Scholar 

  67. J.W. Butterbaugh, L.D. Baston, and H.H. Sawin, J. Vac. Sci. Technol. A8, 916–923 (1990).

    Google Scholar 

  68. M.V. Malyshev, V.M. Donnelly, A. Kornblit, and N.A. Ciampa, J. Appl. Phys. 84, 137–146 (1998).

    Article  CAS  Google Scholar 

  69. Y. Horike, K. Kubota, H. Shindo, and T. Fukasawa, J. Vac. Sci. Technol. A13, 801–809 (1995).

    Google Scholar 

  70. M.I. Boulos, Pure Appl. Chem. 57, 1321–1352 (1985).

    Article  CAS  Google Scholar 

  71. J. Keller, J. Forster, and M. Barnes, J. Vac. Sci. Technol. A11, 2487–2491 (1993).

    Google Scholar 

  72. J.P. Holland, B. Richardson, E. Bogle, W. Li, Y. Melaku, H.T. Nguyen, E. Peltzer, and D.C. Gates, Proc. SPIE 1803, 258–270 (1992).

    Google Scholar 

  73. J. Marks, K. Collins, C.L. Yang, D. Groechel, P. Keswick, C. Cunningham, and M. Carlson, Proc. SPIE 1803, 235–247 (1992).

    Google Scholar 

  74. K. Suzuki, S. Okudaira, N. Sakudo, and I. Kanomato, Jpn. J. Appl. Phys. 16, 1979–1984 (1977).

    Article  CAS  Google Scholar 

  75. R.W. Boswell, and F.F. Chen, IEEE Trans. Plasma Sci. 25, 1229–1244 (1997).

    Article  Google Scholar 

  76. F.F. Chen, and R.W. Boswell, IEEE Trans. Plasma Sci. 25, 1245–1257 (1997).

    Article  CAS  Google Scholar 

  77. J.E. Stevens, M.J. Sowa, and J.L. Cecchi, J. Vac. Sci. Technol. A13, 2476–2482 (1995).

    Google Scholar 

  78. J.L. Cecchi, J.E. Stevens, C.W. Cheah, Y.C. Huang, R.L. Jarecki, and C. Zuiker, 40th AVS Symp., Orlando, PS-TuA6 (1993).

    Google Scholar 

  79. A.R. Ellingboe, and R.W. Boswell, Phys. Plasmas 3, 2797–2804 (1996).

    Article  CAS  Google Scholar 

  80. F.F. Chen, Australian National Univ. Report ANU-PRL IR 85/12 (1985).

    Google Scholar 

  81. S. Fang, and J. McVittie, IEEE Electron Device Lett. 13, 347–349 (1992).

    Article  CAS  Google Scholar 

  82. K.P. Cheung, and C.P. Chang, J. App. Phys. 75, 4415–4426 (1994).

    Article  CAS  Google Scholar 

  83. J.M. Cook, Solid State Technol. 30(4), 147–151 (1987).

    CAS  Google Scholar 

  84. D. Smith, N.G. Adams, A.G. Dean, and M.J. Church, J. Phys. D, Appl. Phys. 8, 141–152 (1975).

    Article  CAS  Google Scholar 

  85. M.G. Blain, T.L. Meisenheimer, and J.E. Stevens, J. Vac. Sci. Technol. A14, 2151–2157 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stevens, J.E. (2000). Plasma Fundamentals for Materials Processing. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics