Skip to main content

Dry Etching of InP Vias

  • Chapter
  • 1612 Accesses

Abstract

Advanced monolithic millimeter-wave integrated circuits (MMICs) benefit by having through-wafer connections (known as via holes) from the frontside to the backside of the wafer [15]. MMICs are commonly fabricated on GaAs or InP substrates as these materials have advantages for high speed operation. Figure 13.1 shows a typical via hole structure for backside wafer contacts. These vias provide a common ground and a low inductance path from the source contact of a field effect transistor (FET) (or other frontside contacts) to the backside ground plane. When developing a process for via hole etching, a high etch rate and selectivity, and a nearly vertical profile are desired. For MMIC applications, via etch depths can be 50 to 100 µm. Due to the large etch depth, etch rates of several µm min-1 are desired for high throughput.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Khare, J. Brown, M. Hu, D. Pierson, and M. Melendes, “CH4/H2/Ar/Cl2 Electron Cyclotron Resonance Plasma Etching of Via Holes for InP-Based Microwave Devices,” J. Vac. Sci. Technol. B 12, 2947 (1994).

    Article  Google Scholar 

  2. S.J. Pearton, F. Ren, C.R. Abernathy, and C. Constantine, “Optical Emission End Point Detection for Via Hole Etching in InP and GaAs Power Device Structures,” Mater. Sci. Eng. B 23, 36 (1994).

    Article  Google Scholar 

  3. L.G. Hipwood and P.N. Wood, “Dry Etching of Through Substrate Via Holes for GaAs MMIC’s,” J. Vac. Sei. Technol. B 3, 395 (1985).

    Article  CAS  Google Scholar 

  4. A.E. Geissberger and P.R. Claytor, “Application of Plasma Etching to Via Hole Fabrication in Thick GaAs Substrates,” J. Vac. Sci. Technol. A 3, 863 (1985).

    Article  CAS  Google Scholar 

  5. S. Salimian, C.B. Cooper III, and M.E. Day, “Dry Etching of Via Connections for GaAs Monolithic Microwave Integrated Circuits Fabrication,” J. Vac. Sci. Technol. B 5, 1606 (1987).

    Article  CAS  Google Scholar 

  6. T.R. Fullowan, S.J. Pearton, K.F. Kopf, and P.R. Smith, “AlInAs/InGaAs Based Heterojunction Bipolar Transistors Fabricated by Electron Cyclotron Resonance Etch,” J. Vac. Sci. Technol. B 9, 1445 (1991).

    Article  CAS  Google Scholar 

  7. N.J. Sauer and K.B. Chough, “A Selective Etch for InAlAs over InGaAs and for Different InGaAlAs Quaternaries,” J. Electrochem. Soc. 139, L10 (1992).

    Article  CAS  Google Scholar 

  8. S. Thomas III, K.K. Ko, and S.W. Pang, “Monitoring InP and GaAs Etched in Cl2/Ar Using Optical Emission Spectroscopy and Mass Spectrometry,” J. Vac. Sci. Technol. A 13, 894 (1995).

    Article  CAS  Google Scholar 

  9. W.H. Juan and S.W. Pang, “High-Aspect-Ratio Si Etching for Microsensor Fabrication,” J. Vac. Sei. Technol. A 13, 834 (1995).

    Article  CAS  Google Scholar 

  10. M. Pichot, A. Durandet, J. Pelletier, Y. Arnal, and L. Vallier, “Microwave Multipolar Plasmas Excited by Distributed Electron Cyclotron Resonance: Concept and Performance,” Rev. Sei. Instrum. 59, 1072 (1988).

    Article  CAS  Google Scholar 

  11. J. Hopwood and J. Asmussen, “Neutral Gas Temperatures in a Multipolar Electron Cyclotron Resonance Plasma,” App. Phys. Lett. 58, 2473 (1991).

    Article  CAS  Google Scholar 

  12. G. King, F.C. Sze, P. Mak, T.A. Grotjohn, and J. Asmussen, “Ion and Neutral Energies in a Multipolar Electron Cyclotron Resonance Plasma Source,” J. Vac. Sci. Technol. A 10, 1265 (1992).

    Article  CAS  Google Scholar 

  13. E.S. Aydil, J.A. Gregus, and R.A. Gottscho, “Multiple Steady States in Electron Cyclotron Resonance Plasma Reactors,” J. Vac. Sei. Technol. A 11, 2883 (1993).

    Article  CAS  Google Scholar 

  14. J.L. Benton, B.E. Weir, D.J. Eaglesham, R.A. Gottscho, J. Michel, and L.C. Kimerling, “Measurement of Defect Profiles in Reactive Ion Etched Silicon,” J. Vac. Sei. Technol. B 10, 540 (1992).

    Article  CAS  Google Scholar 

  15. L. He and W.A. Anderson, “A Study of Defects Induced in GaAs by Plasma Etching,” Solid-State Electronics 35, 151 (1992).

    Article  CAS  Google Scholar 

  16. N.G. Stoffel, “Molecular Dynamics Simulations of Deep Penetration by Channeled Ions During Low-Energy Ion Bombardment of III-V Semiconductors,” J. Vac. Sci. Technol. B 10, 651 (1992).

    Article  Google Scholar 

  17. S.J. Pearton, U.K. Chakrabarti, W.S. Hobson, and A.P. Perley, “Cl2 and SiCl4 Reactive Ion Etching of In-based III-V Semiconductors,” J. Electrochem. Soc. 137, 3188 (1990).

    Article  CAS  Google Scholar 

  18. U. Niggebrugge, M. Klug, and G. Garus, “A Novel Process for Reactive Ion Etching on InP, Using CH4/H2,” Inst. Phys. Conf. Ser. 79, 367 (1985).

    Google Scholar 

  19. R.H. Burton, H. Temkin, and V.G. Keramidas, “Plasma Separation of InGaAsP/InP Light-Emitting Diodes,” Appl. Phys. Lett. 37, 411 (1980).

    Article  CAS  Google Scholar 

  20. G.A. Vawter and C.I.H. Ashby, “Reactive-Ion-Beam Etching of InP in a Chlorine-Hydrogen Mixture,” J. Vac. Sci. Technol. B 12, 3374 (1994).

    Article  CAS  Google Scholar 

  21. S.K. Noh, K. Ishibashi, Y. Aoyagi, and S. Namba, “Effects of radio-frequency Bias on GaAs Surfaces Etched by Ar-Electron-Cyclotron-Resonance Plasma,” J. Appl. Phys. 67, 2591 (1990).

    Article  CAS  Google Scholar 

  22. S.J. Pearton, U.K. Chakrabarti, A.P. Perley, C. Constantine, and D. Johnson, “Degradation-Free Electron Cyclotron Resonance Plasma Etching of InP,” Semicond. Sci. Technol. 6, 929 (1991).

    Article  CAS  Google Scholar 

  23. F. Ren, T.R. Fullowan, S.J. Pearton, J.R. Lothian, R. Esagui, C.R. Abernathy, and W.S. Hobson, “Damage Introduction in GaAs/AlGaAs and InGaAs/InP Heterojunction Bipolar Transistor Structures During Electron Cyclotron Resonance Plasma Processing,” J. Vac. Sci. Technol. A l l, 1768 (1993).

    Article  Google Scholar 

  24. T. Bickl, B. Jacobs, J. Straka, and A. Forchel, “Ultralow Damage Depth by Electron Cyclotron Resonance Plasma Etching of GaAs/InGaAs Quantum Wells,” Appl. Phys. Lett. 62, 1137 (1993).

    Article  CAS  Google Scholar 

  25. S. Thomas III and S.W. Pang, “Dependence of Contact Resistivity and Schottky Diode Characteristics on Dry Etching Induced Damage of GalnAs,” J. Vac. Sci. Technol. B 12, 2941 (1994).

    Article  CAS  Google Scholar 

  26. S.J. Pearton, U.K. Chakrabarti, A. Katz, F. Ren, and T.R. Fullowan, “Highrate, Anisotropie Dry Etching of InP in Hi-based Discharges,” Appl. Phys. Lett. 60, 838 (1992).

    Article  CAS  Google Scholar 

  27. S. Thomas III, E.W. Berg, and S.W. Pang, “In situ Fiber Optic Thermometry of Wafer Surface Etched with an Electron Cyclotron Resonance Source,” J. Vac. Sci. Technol. B 14, 1807 (1996).

    Article  CAS  Google Scholar 

  28. V.M. Donnelly, D.L. Flamm, C.W. Tu, and D.E. Ibbotson, “Temperature Dependence of InP and GaAs Etching in a Chlorine Plasma,” J. Electrochem Soc. 129, 2533 (1982).

    Article  CAS  Google Scholar 

  29. V.M. Donnelly, D.L. Flamm, and D.E. Ibbotson, “Plasma Etching of III-V Compound Semiconductors,” J. Vac. Sci. Tech. A l, 626 (1983).

    Article  Google Scholar 

  30. R.J. Contolini, “The Temperature Dependence of the Etch Rates of GaAs, AlGaAs, InP, and Masking Materials in a Boron Trichloride: Chlorine Plasma,” J. Electrochem. Soc. 135, 929 (1988).

    Article  CAS  Google Scholar 

  31. N.L. DeMeo, J.P. Donnelly, F.J. O’Donnell, M.W. Geis, and K.J. O’Connor, “Low Power Ion-Beam-Assisted Etching of Indium Phosphide,” Nuc. Instr. Meth. Phys. Res. B 7, 814 (1985).

    Article  Google Scholar 

  32. G.F. Doughty, C.L. Dargan, and C.D.W. Wilkinson, “Dry Etching of Indium Phosphide at Room Temperature,” Proc. SPIE 578, 82 (1985).

    Article  CAS  Google Scholar 

  33. E.W. Sabin, “Estimation of the Activation Energy for Ar/Cl2 Plasma Etching of InP Via Holes Using Electron Cyclotron Resonance,” J. Vac. Sci. Technol. B 16, 1841 (1998).

    Article  CAS  Google Scholar 

  34. P.I. Fedorov and V.N. Fadeev, “Equilibrium Diagram of the In-InCl3 System,” Russ. J. Inorg. Chem. 9, 207 (1964).

    Google Scholar 

  35. S.C. McNevin, “Rare Gas Ion-Enhanced Etching of InP by Cl2,” J. Vac. Sci. Technol. B 4, 1203 (1986).

    Article  CAS  Google Scholar 

  36. K. Kyuma, S. Tai, T. Sawada, and M. Nunoshita, “Fiber-Optic Instrument for Temperature Measurement,” IEEE J. Quantum. Electron QE-18, 676 (1982).

    Article  Google Scholar 

  37. I. Hussla, K. Enke, H. Grunwald, G. Lorenz, H. Stoll, “In Situ Silicon-Wafer Temperature Measurements During rf Argon-Ion Plasma Etching Via Fluoroptic Thermometry,” J. Phys. D: Appl. Phys. 20, 889 (1987).

    Article  CAS  Google Scholar 

  38. D.R. Wright, D.C. Hartman, U.C. Sridharan, M. Kent, T. Jasinski, and S. Kang, J. Vac. Sci. Technol. A 10, 1065 (1992).

    Article  CAS  Google Scholar 

  39. T. Yoshikawa, S. Kohmoto, M. Anan, N. Hamao, M. Baba, N. Takado, Y. Sugimoto, M. Sugimoto, and K. Asakawa, “Chlorine-Based Smooth Reactive Ion Beam Etching of Indium-Containing III-V Compound Semiconductor,” Jpn. J. Appl. Phys. 31, 4381 (1992).

    Article  CAS  Google Scholar 

  40. D.G. Yu, E.L. Hu, and G. Hasnain, “Radical Beam Ion-Beam Etching of InAlAs/InP Using Cl2,” J. Vac. Sci. Technol. B 12, 3378 (1994).

    Article  CAS  Google Scholar 

  41. C. Youtsey, R. Grundbacher, R. Panepucci, and I. Adesida, “Characterization of Chemically Assisted Ion Beam Etching of InP,” J. Vac. Sci. Technol. B 12, 3317 (1994).

    Article  CAS  Google Scholar 

  42. S. Thomas III and S.W. Pang, “Atomic Force Microscopy Study of III-V Materials Etched Using an Electron Cyclotron Resonance Source,” J. Vac. Sci. Technol. B 13, 2350 (1995).

    Article  CAS  Google Scholar 

  43. K.K. Ko and S.W. Pang, “High Aspect Ratio Deep Via Holes in InP Etched Using Cl2/Ar Plasma,” J. Electrochem. Soc. 142, 3945 (1995).

    Article  CAS  Google Scholar 

  44. S. Trassaert, B. Boudart, S. Piotrowicz, and Y. Crosnier, “Bromine/methanol wet chemical etching of via holes for InP microwave devices,” J. Vac. Sci. Technol. B 16, 561 (1998).

    Article  CAS  Google Scholar 

  45. C. Constantine, C. Barratt, S.J. Pearton, F. Ren, J.R. Lothian, W.S. Hobson, A. Katz, L.W. Wang, and P.C. Chao, “Dry Etching of Via Connections for InP Power Devices,” Electron. Lett. 29, 984 (1993).

    Article  CAS  Google Scholar 

  46. K.Y. Hur, R.A. McTaggart, M.P. Ventresca, R. Wohlert, L.M. Aucoin,and T.E. Kazior, “High Gain AlInAs/GalnAs/InP HEMT’s with Individually Grounded Source Finger Vias,” IEEE Electron Devices. Lett. 16, 390 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, S., Brown, J.J. (2000). Dry Etching of InP Vias. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics