Skip to main content

Ion Beam Etching of Compound Semiconductors

  • Chapter

Abstract

Many optical and electronic devices fabricated of compound semiconductor materials have very exacting and demanding horizontal and vertical patterning requirements. Etched-facet diode lasers require extremely smooth vertical or precisely tilted facets. Blazed optical gratings use tenth-micrometer ridges etched at an angle. Ridge optical waveguide devices, such as modulators and switches, must be etched to a precise width and depth with a minimum of etch-induced damage. These, and many other, applications require a degree of control of the etch rate and etch profile not readily available with conventional reactive ion etching or many “downstream” techniques. Ion beam etch technology was developed as a means to provide additional control of the etch process by decoupling the ion current from the ion incident energy (plasma self-bias) and pressure. This chapter reviews the foundational technology of the two principal ion beam etch methods, reactive-ion-beam etching (RIBE) and chemically assisted ion-beam etching (CAIBE), and their application to etching of compound semiconductors.

Work carried out at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94A185000

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Asakawa and S. Sugata, GaAs and AlGaAs anisotropic fine pattern etching using a new reactive ion-beam etching system, J. Vac. Sci. Technol. B 3(1), 402–405 (1985).

    Article  CAS  Google Scholar 

  2. K. Gamo and S. Namba, Ion beam assisted etching and deposition, J. Vac. Sci. Technol. B 8(6), 1927–1931 (1990).

    Article  CAS  Google Scholar 

  3. P.C. Zalm, Handbook of Ion Beam Processing Technology: Principles, Deposition, Film Modification and Synthesis (Noyes Publications, 1989), 78–111.

    Google Scholar 

  4. T. Jolly, Handbook of Ion Sources (CRC Press, 1995), 209–237.

    Google Scholar 

  5. J. Hopwood, Review of inductively coupled plasmas for plasma processing, Plasma Sources Science and Technology 1, 109–116 (1992).

    Article  CAS  Google Scholar 

  6. T. Jolly, Oxford Instruments, England, unpublished, (1998).

    Google Scholar 

  7. J.W. Coburn and H.F. Winters, Ion-and electron-assisted gas-surface chemistry: An important effect in plasma etching, J. Appl. Phys. 50(5), 3189–3196 (1979).

    Article  CAS  Google Scholar 

  8. S. Matsui, T. Yamato, H. Aritome, and S. Namba, Microfabrication of LiNbO3 by reactive ion-beam etching, Jpn. J. Appl. Phys. 19(8), L463–5 (1980).

    Article  CAS  Google Scholar 

  9. M.A. Bosch L.A. Coldren and E. Good Reactive ion-beam etching of InP with Cl2 Appl. Phys. Lett. 38(4) 264–266 1981

    Article  CAS  Google Scholar 

  10. J.M.E. Harper, J.J. Cuomo, P.A. Leary, G.M. Summa, H.R. Kaufman, and F.J. Bresnock, Low energy ion-beam etching. J. Electrochem. Soc. 128(5), 1077–1083 (1981).

    Article  CAS  Google Scholar 

  11. M.W. Geis, G.A. Lincoln, N. Efremow, and W.J. Piacentini, A novel anisotropic dry etching technique, J. Vac. Sci. Technol. 19(4), 1390–1393 (1981).

    Article  CAS  Google Scholar 

  12. R.A. Powell, Reactive ion-beam etching of GaAs in CCl4, Jpn. J. Appl. Phys. Lett. 21(3), L170–L1702 (1982).

    Article  CAS  Google Scholar 

  13. S. Matsuo and Y. Adachi, Reactive ion-beam etching using a broad beam ECR ion source, Jpn. J. Appl. Phys. 21(1), L4–L6 (1982).

    Article  CAS  Google Scholar 

  14. N.L. DeMeo, J.P. Donnelly, F.J. O’Donnell, M.W. Geis, and K.J. O’Connor, Low Power Ion-Beam-Assisted Etching Of Indium Phosphide, (1985).

    Google Scholar 

  15. J.A. Skidmore, L.A. Coldren, E.L. Hu, J.L. Merz, and K. Asakawa, Radical beam/ion-beam etching of GaAs, J. Vac. Sci. Technol. B 6(6), 1885–1888 (1988).

    Article  CAS  Google Scholar 

  16. D. Korzec and J. Engemann, Optimized eight-inch extraction system for reactive ion-beam etching, J. Vac. Sci. Technol. B 7(6), 1448–1453 (1989).

    Article  CAS  Google Scholar 

  17. D. Korzec, K. Schmitz, and J. Engemann, Extraction performance of dual-grid ion optics: simulation and experiment, J. Vac. Sci. Technol. B 6(6), 2095–2099 (1988).

    Article  CAS  Google Scholar 

  18. D. Korzec, K. Schmitz, and J. Engemann, Broad ion-beam modeling for extraction optics optimization and etching process simulation, J. Vac. Sci. Technol. B 6(1), 263 (1988).

    Article  Google Scholar 

  19. J.V. Hryniewicz, Y.J. Chen, H. Shih Hsiang, C.H.D. Lee, and G.A. Porkolab, Ultrahigh vacuum chemically assisted ion-beam etching system with a three grid ion source, J. Vac. Sci. Technol. A 15(3, pt.l), 616–621 (1997).

    Article  CAS  Google Scholar 

  20. G.A. Lincoln, M.W. Geis, S. Pang, and N.N. Efremow, Large area ion-beam assisted etching of GaAs with high etch rates and controlled anisotropy, J. Vac. Sci. Technol. B l(4), 1043–1046 (1983).

    Article  Google Scholar 

  21. G.A. Vawter and W. Zubrzycki, unpublished, (1998).

    Google Scholar 

  22. M.S. Ameen and T.M. Mayer, Modulated ion-beam studies of product formation and ejection in ion-induced etching of GaAs by Cl2, J. Appl. Phys. 63(4), 1152–1157 (1988).

    Article  CAS  Google Scholar 

  23. G.C. Tyrrell, D. Marshall, J. Beckman, and R.B. Jackman, Chemical routes to GaAs etching with low-energy ion-beams, J. Phys.: Condens. Matter 3, S179–186 (1991).

    Article  Google Scholar 

  24. M. Balooch, D.R. Olander, and W.J. Siekhaus, The thermal and ion-assisted reactions of GaAs(lOO) with molecular chlorine, J. Vac. Sci. Technol. B 4(4), 794–805 (1986).

    Article  CAS  Google Scholar 

  25. J.H. Ha, E.A. Ogryzlo, and S. Polyhronopoulos, Kinetetics of the reaction of gallium arsenide with molecular chlorine, J. Chem. Phys. 89(5), 2844–2847 (1988).

    Article  CAS  Google Scholar 

  26. R.J. Davis and E.D. Wolf, A simple model of the chemically assisted ion-beam etching yield of GaAs with Cl2 at medium current densities, J. Vac. Sci. Technol. B 8(6), 1798–1803 (1990).

    Article  CAS  Google Scholar 

  27. M. Hagberg, B. Jonsson, and A.G. Larsson, Investigation of chemically assisted ion-beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs, J. Vac. Sci. Technol. B 12(2), 555–566 (1994).

    Article  CAS  Google Scholar 

  28. T. Tadokoro, F. Koyama, and K. Iga, Classification of etching mechanism in reactive ion-beam etching, Electronics and Communications in Japan, Part 2 (Electronics) 72(6), 1–6 (1989).

    Google Scholar 

  29. C.R. Eddy, O.J. Glembocki, D. Leonhardt, V.A. Shamamian, R.T. Holm, B.D. Thorns, J.E. Butler, and S.W. Pang, Gallium arsenide surface chemistry and surface damage in a chlorine high density plasma etch process, J. Electron. Mater. 26(11), 1320–1325 (1997).

    Article  CAS  Google Scholar 

  30. F.C.M.J.M. van Delft, Mechanistic framework for dry etching, beam assisted etching and tribochemical etching, Microelectron. Eng. 30(1-4), 361–364 (1996).

    Article  Google Scholar 

  31. S. Sugata and K. Asakawa, Investigation of GaAs surface morphology induced by Cl2 gas reactive ion-beam etching, Jpn. J. Appl. Phys. Lett. 22(12), L813–814 (1983).

    Article  CAS  Google Scholar 

  32. A. Behfar-Rad, S.S. Wong, R.J. Davis, and E.D. Wolf, Masking considerations in chemically assisted ion-beam etching of GaAs/AlGaAs laser structures, J. Electrochem. Soc. 136(3), 779–782 (1989).

    Article  CAS  Google Scholar 

  33. P. Buchmann, H.P. Dietrich, G. Sasso, and P. Vettiger, Chemically assisted ion-beam etching process for high quality laser mirrors, Microelectron. Eng. 9(1-4), 485–489 (1989).

    Article  CAS  Google Scholar 

  34. Y. Uenishi, K. Yanagisawa, and T. Toshima, RIBE of GaAs using single-grid ion beam etching system, ISIAT’86: Proceedings of the Tenth Symposium on Ion Sources and Ion Assisted Technology, 493–496 (1986).

    Google Scholar 

  35. H. Appelman, J. Levy, M. Pion, D. Krebs, C. Harding, and M. Zediker, Selfaligned chemically assisted ion-beam-etched GaAs/(Al,Ga)As turning mirrors for photonic applications, J. Lightwave Technol. 8(1), 39–41 (1990).

    Article  Google Scholar 

  36. Z. Xiao and B. Nilsson, Good selectivity between a NiCr mask and GaAs and AlGaAs by chemically assisted ion-beam etching with Cl2 gas, Journal of the Electrochemical Society 138(10), 3085–3089 (1991).

    Article  Google Scholar 

  37. R.C. Tiberio, G.A. Porkolab, M.J. Rooks, E.D. Wolf, R.J. Lang, A. Larsson, S. Forouhar, J. Cody, G.W. Wicks, T. Erdogan, O. King, and D.G. Hall, Facetless Bragg reflector surface-emitting AlGaAs/GaAs lasers fabricated by electron-beam lithography and chemically assisted ion-beam etching, J. Vac. Sci. Technol. B 9(6), 2842–2845 (1991).

    Article  CAS  Google Scholar 

  38. M. Hagberg, B. Jonsson, and A. Larsson, Fabrication of ultrahigh quality vertical facets in GaAs using pattern corrected electron beam lithography, J. Vac. Sci. Technol. B 10(5), 2243–2250 (1992).

    Article  CAS  Google Scholar 

  39. G.A. Vawter, R.E. Smith, H. Hou, and J.R. Wendt, Semiconductor laser with tapered-rib adiabatic-following fiber coupler for expanded-mode output diameter, IEEE Photon. Technol. Lett. 9, 425–427 (1997).

    Article  Google Scholar 

  40. G.A. Vawter, G.R. Hadley, B. Fuchs, J.R. Wendt and J.F. Klem, Integrated optical XY coupler for phase-sensitive optical power combining and suppression of radiated light, IEEE Photonics Technol. Lett. 7(4), 394–396 (1995).

    Article  Google Scholar 

  41. G.A. Vawter, R.E. Smith, B. Fuchs, J.R. Wendt, M. Hafich, and G.R. Hadley, A rib optical waveguide with cut-off mesa isolation, J. Lightwave Technol. 14, 169–172 (1996).

    Article  CAS  Google Scholar 

  42. G.A. Vawter, C.T. Sullivan, J.R. Wendt, R.E. Smith, H.Q. Hou, and J.F. Klem, Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation, IEEE J. Scl. Top. Quantum Electron. 3(6), 1361–1371 (1997).

    Article  CAS  Google Scholar 

  43. J.R. Wendt, G.A. Vawter, R.E. Smith, and M.E. Warren, Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs, J. Vac. Sci. Technol. B 13(6), 2705–2708 (1995).

    Article  CAS  Google Scholar 

  44. J.R. Wendt, G.A. Vawter, R.E. Smith, and M.E. Warren, Fabrication of subwavelength, binary, antireflection surface-relief structures in the near infrared, J. Vac. Sci. Technol. B 14(6), 4096–4099 (1996).

    Article  CAS  Google Scholar 

  45. J.R. Wendt, G.A. Vawter, R.E. Smith, and M.E. Warren, Subwavelength, binary lenses at infrared wavelengths, J. Vac. Sci. Technol. B 15(6), 2946–2949 (1997).

    Article  CAS  Google Scholar 

  46. J.R. Wendt, G.A. Vawter, P.L. Gourley, T.M. Brennan and B.E. Hammons, Nanofabrication of photonic lattice structures in GaAs/AlGaAs, J. Vac. Sci. Technol. B l l(6), 2637–2640 (1993).

    Article  Google Scholar 

  47. A. Scherer, J.P. Harbison, D.M. Hwang, and E.D. Beebe, In-situ MBE regrowth of ion-beam etched GaAs/AlGaAs heterostructures, Proc. SPIE 945, 945 (1988).

    Google Scholar 

  48. G.A. Porkolab and E.D. Wolf, Etch masks of semimetallic amorphous carbon thin films produced by electron-beam sublimation of graphitic carbon, J. Vac. Sci. Technol. B 10(6), 2681–2684 (1992).

    Article  CAS  Google Scholar 

  49. G.A. Porkolab, H. Shih-Hsiang, J.V. Hryniewicz, L. Wenhua, Y.J. Chen, S. Agarwala, F.G. Johnson, O. King, M. Dagenais, and D.R. Stone, Etch-mask of pyrolytic-photoresist thin-film for self-aligned fabrication of smooth and deep faceted three-dimensional microstructures, J. Vac. Sci. Technol. B 14(6), 3650–3653 (1996).

    Article  CAS  Google Scholar 

  50. G.A. Vawter and J.R. Wendt, Chlorine reactive ion-beam etching of InSb and InAs0.15/Sb0.85/InSb strained-layer superlattices, Appl. Phys. Lett. 58(3), 289–291 (1991).

    Article  CAS  Google Scholar 

  51. M. Sugiyama, T. Yamaizumi, M. Nezuka, Y. Shimogaki, Y. Nakano, K. Tadal, and H. Komiyama, Simple kinetic model of ECR reactive ion-beam etching reactor for the optimization of GaAs etching process, Jpn. J. Appl. Phys. 35(2B), 1235–1241 (1996).

    Article  CAS  Google Scholar 

  52. A. Matsutani, F. Koyama, and K. Iga, Surface temperature increase in reactive ion-beam etch and improvement of profiles by multistep etching, Jpn. J. Appl. Phys. 34(4A), 2053–2054 (1995).

    Article  CAS  Google Scholar 

  53. S. Sugata and K. Asakawa, GaAS radical etching with a Cl2 plasma in a reactive ion-beam etching system, Jpn. J. Appl. Phys. Lett. 23(8), L564–L566 (1984).

    Article  Google Scholar 

  54. T. Saito, H.I. Fujishiro, T. Ichioka, K. Tanaka, S. Nishi, and Y. Sano, 0.25 µm gate inverted HEMTs for an ultra-high speed DCFL dynamic frequency divider, in 11th Annual GaAs IC Symposium. Technical Digest 1989 (Cat.No.89CH2730-0), (IEEE, New York, NY, USA, San Diego, CA, USA, 1989) 117–120.

    Google Scholar 

  55. M.E. Warren, T.C. Du, J. R. Wendt, G.A. Vawter, R.F. Carson, K.L. Lear, S.P. Kilcoyne, R.P. Schneider, and J.C. Zolper, Integration of diffractive lenses with addressable vertical-cavity laser arrays, Proc. SPIE 2398, 2398 (1995).

    Google Scholar 

  56. M.E. Warren, R.E. Smith, G.A. Vawter and J.R. Wendt, High-efficiency subwavelength diffractive optical element in GaAs for 975 nm, Optics Lett. 20(12), 1441–1443 (1995).

    Article  CAS  Google Scholar 

  57. Y.B. Hahn, J.W. Lee, G.A. Vawter, R.J. Shul, C.R. Abernathy, D. Hays, E.S. Lambers, and S.J. Pearton, Reactive ion-beam etching of GaAs and related compounds in an inductively coupled plasma of Cl2-Ar mixture, J. Vac. Sci. Technol. B 17(2), 366–371 (1999).

    Article  CAS  Google Scholar 

  58. J.M. Villalvilla, C. Santos, and J.A. Valles-Abarca, Temperature dependence of reactive ion-beam etching of GaAs with CH4H2, Vacuum 43(5-7), 591–593 (1992).

    Article  CAS  Google Scholar 

  59. K. Asakawa and S. Sugata, GaAs and GaAlAs equi-rate etching using a new reactive ion-beam etching system, Jpn. J. Appl. Phys. Lett. 22(10), L653–655 (1983).

    Article  CAS  Google Scholar 

  60. M. Uchida, S. Ishikawa, N. Takado, and K. Asakawa, An AlGaAs laser with high-quality dry etched mirrors fabricated using an ultrahigh vacuum in situ dry etching and deposition processing system, IEEE J. Quantum Electron. 24(11), 2170–2177 (1988).

    Article  CAS  Google Scholar 

  61. M. Mannoh, T. Yuasa, K. Asakawa, K. Shinozaki, and M. Ishii, Low-threshold MBE GaAs/AlGaAs quantum well lasers with dry-etched mirrors, Electron. Lett. 21(17), 769–770 (1985).

    Article  CAS  Google Scholar 

  62. T. Yuasa, T. Yamada, K. Asakawa, S. Sugata, M. Ishii, and M. Uchida, Short cavity GaAs/AlGaAs multiquantum well lasers by dry etching, Appl. Phys. Lett. 49(16), 1007–1009 (1986).

    Article  CAS  Google Scholar 

  63. N. Hamao, M. Sugimoto, N. Takado, Y. Tashiro, H. Iwata, T. Yuasa, and K. Asakawa, Surface-emitting GaAs/AlGaAs lasers with dry-etched 45 degrees total reflection mirrors, Appl. Phys. Lett. 54(24), 2389–2391 (1989).

    Article  CAS  Google Scholar 

  64. G.A. Vawter, Processing issues and technologies for optoelectronics-integrated circuits and devices, Proc. SPIE 1582, 178 (1992).

    Article  Google Scholar 

  65. G.A. Vawter, J.F. Klem, G.R. Hadley, and S.H. Kravitz, Highly accurate etching of ridge-waveguide directional couplers using in situ reflectance monitoring and periodic multilayers, Appl. Phys. Lett. 62(1), 1–3 (1993).

    Article  CAS  Google Scholar 

  66. G.A. Vawter, V.M. Hietala, and S.H. Kravitz, Digital optical phase control in ridge-waveguide phase modulators, IEEE Photon. Technol. Lett. 5(3), 313–315 (1993).

    Article  Google Scholar 

  67. B.R. Stallard, R.K. Rowe, A.J. Howard, G.R. Hadley, G.A. Vawter, J.R. Wendt, and I.J. Fritz, Near-infrared spectroscopy with a dispersive waveguide device, Appl. Spectros. 51(6), 880–882 (1997).

    Article  CAS  Google Scholar 

  68. T. Numai, T. Kawakami, T. Yoshikawa, and M. Sugimoto, Record low threshold current in microcavity surface-emitting laser, Jpn. J. Appl. Phys. Lett. 32(10B), 1533–1534 (1993).

    Article  Google Scholar 

  69. H. Kawanishi, T. Morioka, A. Shimonaka, M. Taneya, and A. Suzuki, Chemically assisted ion-beam etching of GaAs/AlGaAs using chlorine ions, Jpn. J. Appl. Phys. Lett. 35(7B), L880–L882 (1996).

    Article  CAS  Google Scholar 

  70. C. Jung-Hwan and Y. S. Kwon, Longitudinal mode perturbation of laser diodes with dry etched total internal reflector, IEEE Photon. Technol. Lett. 9(10), 1310–1312 (1997).

    Article  Google Scholar 

  71. H. Kinoshita, T. Ishida, and K. Kaminishi, Surface oxidation of GaAs and AlGaAs in low-energy Ar/O2 reactive ion-beam etching, Appl. Phys. Lett. 49(4), 204–206 (1986).

    Article  CAS  Google Scholar 

  72. T. Tadokoro, F. Koyama, and K. Iga, A study on etching parameters of a reactive ion-beam etch for GaAs and InP, Jpn. J. Appl. Phys. 27(3), 389–392 (1988).

    Article  CAS  Google Scholar 

  73. T. Yoshikawa, S. Kohmoto, M. Anan, N. Hamao, M. Baba, N. Takado, Y. Sugimoto, M. Sugimoto, and K. Asakawa, Chlorine-based smooth reactive ion-beam etching of indium-containing III-V compound semiconductor, Jpn. J. Appl. Phys. 31(12B), 4381–4386 (1992).

    Article  CAS  Google Scholar 

  74. K. Mutoh, M. Nakajima, and M. Mihara, Reactive ion-beam etching of InP with Cl2, Jpn. J. Appl. Phys. 29(6), 1022–1026 (1990).

    Article  CAS  Google Scholar 

  75. A. Matsutani, F. Koyama, and K. Iga, Measurement of sidewall roughness of InP etched by RIBE, in Optoelectronic Materials Growth and Processing LEOS Summer Topical Meeting 1994, IEEE, Piscataway, NJ, USA, Lake Tahoe, NV, USA, 1994, 26–27.

    Google Scholar 

  76. G.A. Vawter and C.I.H. Ashby, Reactive-ion-beam etching of InP in a chlorinehydrogen mixture, J. Vac. Sci. Technol. B 12(6), 3374–3377 (1994).

    Article  CAS  Google Scholar 

  77. J.R. Sendra and J. Anguita, Reactive ion-beam etching of indium phosphide in electron cyclotron resonance plasma using methane/hydrogen/nitrogen mixtures, Jpn. J. Appl. Phys. Lett. 33(3A), L390–L393 (1994).

    CAS  Google Scholar 

  78. W. Katzschner, U. Niggebrugge, R. Loffler, and H. Schroter-Janssen, Reactive ion-beam etching of InP with N2 and N2O2 mixtures, Appl. Phys. Lett. 48(3), 230–232 (1986).

    Article  CAS  Google Scholar 

  79. S. Arai, M. Tamura, S. Ki-Chul, and S. Tamura, Fabrication of InP-based quantum-wires and its application to lasers, in Conference Proceedings. Seventh International Conference on Indium Phosphide and Related Materials (Cat. No.95CH35720), IEEE, New York, NY, USA, Hokkaido, Japan, 1995, 620–623.

    Chapter  Google Scholar 

  80. N. Bouadma and J. Semo, 1.3-µmu m GalnAsP/InP buried-ridge-structure laser and its monolithic integration with photodetector using reactive ion-beam etching, J. Lightwave Technol. 12(5), 742–748 (1994).

    Article  CAS  Google Scholar 

  81. S. Dzioba, J.P.D. Cook, T.V. Herak, S. Livermore, M. Young, R. Rousina, S. Jatar, and F.R. Shepherd, Wafer scale processing of InGaAsP/InP lasers, J. Vac. Sci. Technol. B 12(4), 2848–2851 (1994).

    Article  CAS  Google Scholar 

  82. T. Baba, N. Kamizawa, and M. Ikeda, Nanofabrication of GalnAsP/InP 2-dimensional photonic crystals by a methane-based reactive ion-beam etching, Physica B 227(1-4), 415–418 (1996).

    Article  CAS  Google Scholar 

  83. P. Boury and G. Landgren, Versatile reactive ion-beam etching (RIBE) of InP-based material using CH4/H2/Ar chemistry, in IPRM 1996. Eighth International Conference on Indium Phosphide and Related Materials (Cat. NO.96CH35930), IEEE, New York, NY, USA, Schwabisch-Gmund, Germany, 1996, 119–120.

    Google Scholar 

  84. J.L. Peyre, E. Gaumont, C. Labourie, A. Pinquier, P. Jarry, and J.L. Gentner, CH4H2/N2 reactive ion-beam etching for InP based photonic devices, in IPRM 1996. Eighth International Conference on Indium Phosphide and Related Materials (Cat. No.96CH35930), IEEE, New York, NY, USA, Schwabisch-Gmund, Germany, 1996, 125–128.

    Chapter  Google Scholar 

  85. B. Kempf, R. Goebel, H.W. Dinges, and H. Burkhard, N2/H2/O2: A new gas mixture for deep groove ion-beam etching of long wavelength quaternary mushroom type laser structures, (1990).

    Google Scholar 

  86. T. Yoshikawa, Y. Sugimoto, H. Yoshii, H. Kawano, S. Kohmoto, and K. Asakawa, Smooth vertical etching of AlGalnP by Cl2 reactive ion-beam etching, Electron. Lett. 29(2), 190–192 (1993).

    Article  CAS  Google Scholar 

  87. T. Yoshikawa, Y. Sugimoto, H. Hott, K. Tada, H. Kobayashi, H. Yoshi, H. Kawano, S. Kohmoto, and K. Asakawa, GalnP/AlGalnP index waveguidetype visible laser diodes with dry-etched mesa stripes, Electron. Lett. 29(19), 1690–1691 (1993).

    Article  CAS  Google Scholar 

  88. I. Kidoguchi, H. Adachi, K. Tanaka, T. Fukuhisa, M. Mannoh, and A. Takamori, High-power 650-nm-band AlGalnP visible laser diodes fabricated by reactive ion-beam etching using Cl2/N2 mixture, Jpn. J. Appl. Phys. 36(3B), 1892–1895 (1997).

    Article  CAS  Google Scholar 

  89. G.A. Vawter, I.J. Fritz, T.J. Drummond, S.R. Lee, M.J. Hafich, A.J. Howard, R.D. Briggs, S.A. Casalnuovo, L. Griego, F. Ren, S.J. Pearton, S.N.G. Chu, R.J. Shul, W. Pletschen, and T. Kamijoh, Cl2+Ar reactive ion-beam etching of InGaAlAs for smooth low-damage definition of asymmetric Fabry-Perot optical modulation transmission modulators, in Proc. Twenty-Fourth State-Of-The-Art-Program on Compound Semiconductors, (Electrochem. Soc, Pennington, NJ, USA, Los Angeles, CA, USA, 1996), 221–225.

    Google Scholar 

  90. J.R. Sendra, J. Anguita, J.J. Perez-Camacho, and F. Briones, Reactive ionbeam etching of aluminum indium antimonide, gallium indium antimonide heterostructures in electron cyclotron resonance methane/hydrogen/nitrogen/ silicon tetrachloride discharges at room temperature, Appl. Phys. Lett. 67(22), 3289–3291 (1995).

    Article  CAS  Google Scholar 

  91. J.W. Lee, H.S. Park, Y.J. Park, M.C. Yoo, T.I. Kim, H.S. Kim, and G.Y. Yeom, Dry etching of GaN using reactive ion-beam etching and chemically assisted reactive ion-beam etching, in Gallium Nitride and Related Materials II Materials Research Society Symposium Proceedings 468, 1997, (Materials Research Society, Pittsburgh, PA, USA, San Francisco, CA, USA, 1997), 373–377.

    Article  CAS  Google Scholar 

  92. K. Saotome, A. Matsutani, T. Shirasawa, M. Mori, T. Honda, T. Sakaguchi, F. Koyama, and K. Iga, Reactive ion-beam etching of GaN grown by MOVPE, in III-V Nitrides Materials Research Society Symposium Proceedings 449, 1997, (Materials Research Society, Pittsburgh, PA, USA, Boston, MA, USA, 1997), 1029–1033.

    Google Scholar 

  93. S.W. Pang, M.W. Geis, N.N. Efremow, and G.A. Lincoln, Effects of ion species and adsorbed gas on dry etching induced damage in GaAs, J. Vac. Sci. Technol. B 3(1), 398–401 (1985).

    Article  CAS  Google Scholar 

  94. W.J. Grande, J.E. Johnson, and C.L. Tang, Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion-beam etching of GaAs, J. Vac. Sci. Technol. B8(5), 1075–1079 (1990).

    Google Scholar 

  95. T.A. Strand, B.J. Thibeault, D.S.L. Mui, L.A. Coldren, P.M. Petroff, and E.L. Hu, Low regrowth-interface recombination rates in InGaAs-GaAs buried ridge lasers fabricated by in situ processing, Appl. Phys. Lett. 66(15), 1966–1968 (1995).

    Article  CAS  Google Scholar 

  96. J.D. Chinn, A. Fernandez, I. Adesida, and E.D. Wolf, Chemically assisted ionbeam etching of GaAs, Ti, and Mo, J. Vac. Sci. Technol. A 1(2, pt.l), 701–704 (1983).

    Article  CAS  Google Scholar 

  97. L.M. Bharadwaj, P. Bonhomme, J. Faure, G. Balossier, and R.P. Bajpai, Chemically assisted ion-beam etching on InP and InSb using reactive flux of iodine and Ar+ beam, J. Vac. Sci. Technol. B 9(3), 1440–1405 (1991).

    Article  CAS  Google Scholar 

  98. D. Marshall and R.B. Jackman, Novel precursors for chemically assisted ionbeam etching: reactions of dichloroethane on GaAs(lOO), Vacuum 44(3–4), 249–256 (1993).

    Article  CAS  Google Scholar 

  99. P. Vettiger, M.K. Benedict, G.L. Bona, P. Buchmann, E.C. Cahoon, K. Datwyler, H.P. Dietrich, A. Moser, H.K. Seitz, O. Voegeli, D.J. Webb, and P. Wolf, Full-wafer technology-A new approach to large-scale laser fabrication and integration, IEEE J. Quantum Electron. 27(6), 1319–1331 (1991).

    Article  CAS  Google Scholar 

  100. O. Voegeli, M.K. Benedict, G.L. Bona, P. Buchmann, N. Cahoon, K. Datwyler, H.P. Dietrich, A. Moser, G. Sasso, H.K. Seitz, P. Vettiger, D.J. Webb, and P. Wolf, Full-water technology for large-scale laser processing and testing, J. Vac. Sci. Technol. B 9(6), 2886–2892 (1991).

    Article  Google Scholar 

  101. A. Behfar-Rad and S.S. Wong, Monolithic AlGaAs-GaAs single quantum-well ridge lasers fabricated with dry-etched facets and ridges, IEEE J. Quantum Electron. 28(5), 1227–1231 (1992).

    Article  CAS  Google Scholar 

  102. J.J. Liang and J.M. Ballantyne, Self-aligned dry-etching process for waveguide diode ring lasers, J. Vac. Sci. Technol. B 12(5), 2929–2932 (1994).

    Article  CAS  Google Scholar 

  103. W.J. Grande, J.E. Johnson, and C.L. Tang, GaAs/AlGaAs photonic integrated circuits fabricated using chemically assisted ion-beam etching, Appl. Phys. Lett. 57(24), 2537–2539 (1990).

    Article  CAS  Google Scholar 

  104. W.D. Goodhue, K. Rauschenbach, C.A. Wang, J.P. Donnelly, R.J. Bailey and G.D. Johnson, Monolithic two-dimensional GaAs/AlGaAs laser arrays fabricated by chlorine ion-beam-assisted micromachining, J. Electron. Mater. 19(5), 463–469 (1990).

    Article  CAS  Google Scholar 

  105. A. Scherer, J.L. Jewell, J.P. Harbison, L.T. Florez, Y.H. Lee, and C.J. Sandroff, Fabrication of low threshold CW electrically pumped surface emitting microlasers, Lasers and Electro-Optics Society Annual Meeting. LEOS’ 89, IEEE Proceedings p. 121 (1989).

    Google Scholar 

  106. H.E. Shin, Y.G. Ju, J.H. Shin, J.H. Ser, T. Kim, E.K. Lee, I. Kim, and Y.H. Lee, 780 nm oxidised vertical-cavity surface-emitting lasers with Alo.nGao.89As quantum wells, Electron. Lett. 32(14), 1287–1288 (1996).

    Article  CAS  Google Scholar 

  107. M. Hagberg, N. Eriksson, T. Kjellberg, and A. Larsson, Fabrication of gratings for integrated optoelectronics, Microelectron. Eng. 27(1-4), 435–438 (1995).

    Article  CAS  Google Scholar 

  108. R.E. Sah, J.D. Ralston, J. Daleiden, E.C. Larkins, S. Weisser, J. Fleissner, and W. Benz, Fabrication of dry-etched mirrors in GaAs-based and InP-based lasers using chemically assisted ion-beam etching at low temperatures, J. Electron. Mat. 25(9), 1446–1450 (1996).

    Article  CAS  Google Scholar 

  109. K.M. Eisele, J. Daleiden, and J. Ralston, Low temperature chemically assisted ion-beam etching processes using Cl2, CH3I, and IBr3 to etch InP optoelectronic devices, J. Vac. Sci. Technol. B 14(3), 1780–1783 (1996).

    Article  CAS  Google Scholar 

  110. C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, and C. Caneau, Characterization of chemically assisted ion-beam etching of InP, J. Vac. Sci. Technol. B 12(6), 3317–3321 (1994).

    Article  CAS  Google Scholar 

  111. L.M. Bharadwaj, P. Bonhomme, J. Faure, G. Balossier, and R.P. Bajpai, Chemically assisted ion-beam etching of GaAs and GaSb using reactive flux of iodine and Ar+ beam, Proc. SPIE 1593, 185–192 (1992).

    Google Scholar 

  112. G.F. Doughty, S. Thorns, and C.D.W. Wilkinson, Dry etching of indium phosphide, Vacuum 36(11-12), 803–806 (1986).

    Article  CAS  Google Scholar 

  113. J. Daleiden, K. Eisele, R.E. Sah, K.H. Schmidt, and J.D. Ralston, Chemical analysis of a Cl2/BCl3/IBr3 chemically assisted ion-beam etching process for GaAs and InP laser-mirror fabrication under cryo-pumped ultrahigh vacuum conditions, J. Vac. Sci. Technol. B 13(5), 2022–2024 (1995).

    Article  CAS  Google Scholar 

  114. P. Unger, V. Boegli, P. Buchmann, and R. Germann, High-resolution electronbeam lithography for fabricating visible semiconductor lasers with curved mirrors and integrated holograms, Microelectron. Eng. 23(1-4), 461–464 (1994).

    Article  CAS  Google Scholar 

  115. M. Arafa, C. Youtsey, R. Grundbacher, I. Adesida, and J. Klem, Fabrication of nanostructures in AlGaSb/InAs using electron-beam lithography and chemically assisted ion-beam etching, J. Vac. Sci. Technol. B 12(6), 3623–3635 (1994).

    Article  CAS  Google Scholar 

  116. I. Adesida, A.T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D.T. Olson, and J.N. Kuznia, Characteristics of chemically assisted ion-beam etching of gallium nitride, Appl. Phys. Lett. 65(7), 889–891 (1994).

    Article  CAS  Google Scholar 

  117. A.T. Ping M. Asif Khan and I. Adesida Dry etching of AlxGa1-x using chemically assisted ion-beam etching Semicond. Sci. Techl. 121 133–135 1997

    Article  CAS  Google Scholar 

  118. A.T. Ping, A.C. Schmitz, M.A. Khan, and I. Adesida, Dry etching of GaN using chemically assisted ion-beam etching with HCl and H2/Cl2, J. Electron. Mat. 25(5), 825–829 (1996).

    Article  CAS  Google Scholar 

  119. G.A. Vawter, J.F. Klem, and R.E. Leibenguth, Improved epitaxial layer design for real-time monitoring of dry etching in III-V compound heterostructures with depth accuracy of ±8 nm, J. Vac. Sci. Technol. A 12(4, pt.2), 1973–1977 (1994).

    Article  CAS  Google Scholar 

  120. M. Jost, G.L. Bona, P. Buchmann, G. Sasso, P. Vettiger, and D. Webb, Ridge formation for AlGaAs GRINSCH Lasers by Cl2 Reactive Ion Etching, IEEE Photon. Technol. Lett. 2(10), 697–698 (1990).

    Article  Google Scholar 

  121. M.E. Warren, P.L. Gourley, G.R. Hadley, G.A. Vawter, and T.M. Brennan, On-axis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector, Appl. Phys. Lett. 61(13), 1484–1486 (1992).

    Article  CAS  Google Scholar 

  122. K. Hamamoto H. Chida T. Miyazaki and S. Ishikawa High-power 0.98-µm strained quantum-well lasers fabricated using in situ monitored reactive ionbeam etching IEEE Photon. Techl. Lett. 76 602–604 1995

    Article  Google Scholar 

  123. J.Y. Yoo, J.H. Shin, Y.H. Lee, H.H. Park, and B.S. Yoo, Precise nonselective chemically assisted ion-beam etching of AlGaAs/GaAs Bragg reflectors by in situ laser reflectometry, Optical and Quantum Electron. 27(5), 421–425 (1995).

    Article  CAS  Google Scholar 

  124. R.B. Jackman, Ion beam-assisted etching of semiconductors: surface chemistry vs. surface physics, Vacuum 44(3–4), 239–243 (1993).

    Article  CAS  Google Scholar 

  125. Y. Yamane, K. Yamasaki, and T. Mizutani, Annealing behavior of damage introduced in GaAs by reactive ion-beam etching, Jpn. J. Appl. Phys. Lett. 21(9), L537–L538 (1982).

    Article  Google Scholar 

  126. S. Sugata and K. Asakawa, Characterization of damage on GaAs in a reactive ion-beam etching system using Schottky diodes, J. Vac. Sci. Technol. B 6(3), 876–879 (1988).

    Article  CAS  Google Scholar 

  127. K. Asakawa and S. Sugata, Damage and contamination-free GaAs and AlGaAs etching using a novel ultrahigh-vacuum reactive ion-beam etching system with etched surface monitoring and cleaning method, J. Vac. Sci. Technol. A 4 (3, pt.l), 677–680 (1986).

    Article  CAS  Google Scholar 

  128. R.J. Shul, M.L. Lovejoy, D.L. Hetherington, D.J. Rieger, G.A. Vawter, J.F. Klem, and M.R. Melloch, Investigation of plasma etch induced damage in compound semiconductor devices, J. Vac. Sci. Technol. A 12(4, pt.l), 1351–1355 (1994).

    Article  CAS  Google Scholar 

  129. S.W. Pang, W.D. Goodhue, T.M. Lyszczarz, D.J. Ehrlich, R.B. Goodman, and G.D. Johnson, Dry etching induced damage on vertical sidewalls of GaAs channels, J. Vac. Sci. Technol. B 6(6), 1916–1920 (1988).

    Article  CAS  Google Scholar 

  130. K. Hamamoto, S. Sugou, K. Komatsu, and M. Kitamura, Extremely low loss 4×4 GaAs/AlGaAs optical matrix switch, Electron. Lett. 29(17), 1580–1581 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vawter, G.A. (2000). Ion Beam Etching of Compound Semiconductors. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics