Skip to main content

Part of the book series: Spezielle pathologische Anatomie ((3009,volume 22 / 2))

  • 129 Accesses

Zusammenfassung

Vor längerer Zeit galt eine Minderdurchblutung des Herzens als ein Alles-oder-Nichts-Ereignis, das entweder zur Nekrose führte oder keinen bleibenden Schaden hinterließ. Für eine umschriebene kontraktile Minderfunktion wurde ausschließlich infarziertes Gewebe verantwortlich gemacht. Allmählich zeichnete sich jedoch ab, daß ihr auch eine reduzierte Funktion noch vitalen Gewebes zugrundeliegen kann. Dabei wurden folgende Formenkreise herausgearbeitet: das hibernierende und das „stunned“ Myokard sowie die ischämische Präkonditionierung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

A. Durchblutungsstörungen ohne Infarkt

  • Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C et al. (1996) Preconditioning does not prevent postischemic dysfunction in aging heart. JACC 27:1777–1786

    PubMed  CAS  Google Scholar 

  • Adams JN, Norton M, Trent RJ, Mikecz P, Walton S, Evans N (1996) Incidence of hibernating myocardium after acute myocardial infarction treated with thrombolysis. Heart 75:442–446

    PubMed  CAS  Google Scholar 

  • Al-Mohammad A, Mahy IR, Norton MY, Hillis G, Patel JC, Mikecz P et al. (1998) Prevalence of hibernating myocardium in patients with severely impaired ischaemic left ventricles. Heart 80:559–564

    PubMed  CAS  Google Scholar 

  • Armstrong WF (1996) „Hibernating“ myocardium: asleep or part dead? JACC 28:530–535

    PubMed  CAS  Google Scholar 

  • Ausma J, Cleutjens T, Thoné F, Flameng W, Ramaekers F, Borgers M (1995) Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem 147:35–42

    PubMed  CAS  Google Scholar 

  • Bartling B, Hoffmann J, Holtz J, Schulz R, Heusch G, Darmer D (1999) Quantification of cardioprotective gene expression in porcine short-term hibernating mycardium. J Mol Cell Cardiol 31:147–158

    PubMed  CAS  Google Scholar 

  • Bauer B, Simkhovich BZ, Kloner RA, Przyklenk K (1993) Does preconditioning protect the coronary vasculature from subsequent ischemia/reperfusion injury? Circulation 88:659–672

    PubMed  CAS  Google Scholar 

  • Baumgart D, Liu F, Haude M, Görge G, Ge J, Erbel R (1995) Acute plaque rupture and myocardial stunning in patient with normal coronary arteriography. Lancet 346:193–194

    PubMed  CAS  Google Scholar 

  • Birnbaum Y, Kloner RA (1995) Clinical aspects of myocardial stunning. Coron Artery Dis 6:606–612

    PubMed  CAS  Google Scholar 

  • Bolli R (1990) Mechanism of myocardial „stunning“. Circulation 82:723–735

    PubMed  CAS  Google Scholar 

  • Bolli R, Bhatti ZA, Tang XL, Qiu Y, Zhang Q, Guo Y et al. (1997) Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circ Res 81:42–52

    PubMed  CAS  Google Scholar 

  • Borgers M, Ausma J (1995) Structural aspects of the chronic hibernating myocardium in man. Bas Res Cardiol 90:44–46

    CAS  Google Scholar 

  • Braunwald E, Kloner RA (1982) The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    PubMed  CAS  Google Scholar 

  • Brezinski DA, Harrison JK, Hanson MW, Wilson JS, Trigt P van, Bashore TM (1994) Ischémic hibernating myocardium demonstrated by positron emission tomography in anomalous origin of the left coronary artery from the pulmonary artery. Am Heart J 128:181–185

    PubMed  CAS  Google Scholar 

  • Bretschneider HJ (1961) Sauerstoffbedarf und-Versorgung des Herzmuskels. Verh Dtsch Ges Kreislaufforschg 27:32–59

    CAS  Google Scholar 

  • Canty JM jr, Fallavollita JA (1995) Hibernating myocardium represents a primary downregulation of regional myocardial oxygen consumption distal to a critical coronary stenosis. Bas Res Cardiol 90:5–8

    Google Scholar 

  • Cave AC (1995) Preconditioning induced protection against postischemic contractile dysfunction: characteristics and mechanisms. J Mol Cell Cardiol 27:969–979

    PubMed  CAS  Google Scholar 

  • Cave AC, Hearse DJ (1992) Ischaemic preconditioning and contractile function: studies with normothermic and hypothermic global ischemia. J Mol Cell Cardiol 14:1113–1123

    Google Scholar 

  • Chen C, Chen L, Fallon JT, Ma L, Li L, Bow L et al. (1996) Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation 94:507–516

    PubMed  CAS  Google Scholar 

  • Chen C, Ma L, Linfert DR, Lai T, Fallon JT, Gillam LD et al. (1997) Myocardial cell death and apoptosis in hibernating myocardium. JACC 30:1407–1412

    PubMed  CAS  Google Scholar 

  • Chen G, Askenase AD, Chen K, Horowitz LN, Segal BL (1992) The contraction of stunned myocardium: isovolumetric bulging and wasted ejection shortening in dog heart. Cardiovasc Res 26:115–125

    PubMed  CAS  Google Scholar 

  • Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84:341–349

    PubMed  CAS  Google Scholar 

  • Darmer D, Bartling B, Hoffmann J, Schumann H, Holtz J, Schulz R et al. (1997) Weitgehend konstante Expression von Apoptose-Genen im „short-term-hibernating“ und „stunned“ Myokard von Schweinen. Z Kardiol 86(Suppl 2): 102

    Google Scholar 

  • Das DK, Engelman RM, Kimura Y (1993) Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 27:578–584

    PubMed  CAS  Google Scholar 

  • Diamond GA, Forrester JS, Luz PL de, Wyatt HL, Swan HJC (1978) Post extrasystolic potentiation of ischémie myocardium by atrial stimulation. Am Heart J 95:204–209

    PubMed  CAS  Google Scholar 

  • Elsässer A, Schaper J (1995) Hibernating myocardium: adaptation or degeneration? Bas Res Cardiol 90:47–48

    Google Scholar 

  • Elsässer A, Schlepper M, Zimmermann R, Müller KD, Strasser R, Klövekorn WP et al. (1998) The extracellular matrix in hibernating myocardium-a significant factor causing structural defects and cardiac dysfunction. Mol Cell Biochem 186:147–158

    PubMed  Google Scholar 

  • Erikson JM, Velasco CE (1996) Endothelin-1 and myocardial preconditioning. Am Heart J 132: 84–90

    PubMed  CAS  Google Scholar 

  • Flameng W, Suy R, Schwarz F, Borgers M, Piessens J, Thone F et al. (1981) Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischémie heart disease: determinants of reversible segmental asynergy postrevascularization surgery. Am Heart J 102:846–857

    PubMed  CAS  Google Scholar 

  • Flameng W, Wouters L, Sergeant P, Lewi P, Borgers M, Thone F et al. (1984) Multivariate analysis of angiographie, histologie, and electrocardiographic data in patients with coronary heart disease. Circulation 70:7–17

    PubMed  CAS  Google Scholar 

  • Galli M, Marcassa C, Bolli R, Giannuzzi P, Temporelli PL, Imparato A et al. (1994) Spontaneous delayed recovery of perfusion and contraction after the first 5 weeks after anterior infarction. Evidence for the presence of hibernating myocardium in the infarcted area. Circulation 90:1386–1397

    PubMed  CAS  Google Scholar 

  • Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E (1997) Role of Troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80:393–399

    PubMed  CAS  Google Scholar 

  • Geft IL, Fishbein MC, Ninomiya K, Hashida J, Chaux E, Yano J et al. (1982) Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation 66:1150–1153

    PubMed  CAS  Google Scholar 

  • Hearse DJ (1994) Myocardial ischaemia: can we agree on a definition for the 21st century? Cardiovasc Res 28:1737–1744

    PubMed  CAS  Google Scholar 

  • Heyndrickx GR, Millard RW, McRitchie JR, Maroko PR, Vatner SF (1975) Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    PubMed  CAS  Google Scholar 

  • Heusch G (1992) Hibernation, Stunning, ischémie preconditioning-neue Paradigmen der koronaren Herzkrankheit? Z Kardiol 81:596–609

    PubMed  CAS  Google Scholar 

  • Heusch (1998) Hibernating myocardium. Physiol Rev 78:1055–1085

    PubMed  CAS  Google Scholar 

  • Heusch G, Schulz R (1994a) Pathophysiologie der Myokarddurchblutung. Teil I: Adaptation an Myokardischämie („hibernating“-Myokard). Dtsch Med Wochenschr 119:1589–1590

    PubMed  CAS  Google Scholar 

  • Heusch G, Schulz R (1994b) Pathophysiologie der Myokarddurchblutung. Teil II: Postischämische kontraktile Dysfunktion („stunned“-Myokard). Dtsch Med Wochenschr 119:1745–1746

    PubMed  CAS  Google Scholar 

  • Heusch G, Schulz R (1995) Pathophysiologie der Myokarddurchblutung. Teil III: Vorbereitung auf Ischämie durch Ischämie. Dtsch Med Wochenschr 120:35–36

    PubMed  CAS  Google Scholar 

  • Heusch G, Schulz R (1996) Myocardial hibernation: adaptation to ischemia. Eur Heart J 17:824–828

    PubMed  CAS  Google Scholar 

  • Heusch G, Schulz R (1998) Features of short-term myocardial hibernation. Mol Cell Biochem 186:185–193

    PubMed  CAS  Google Scholar 

  • Hort W (1955) Quantitative Untersuchungen über die Capillarisierung des Herzmuskels im Erwachsenen-und Greisenalter, bei Hypertrophie und Hyperplasie. Virchows Arch Pathol Anat 327:560–576

    CAS  Google Scholar 

  • Hort W (1968) Capillarisation of the myocardium under normal and pathological conditions. In: Lübbers DW, Luft UC, Thews G, Witzleb E (eds) Oxygen transport in blood and tissue. Thieme, Stuttgart, pp 150–158

    Google Scholar 

  • Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DAG, Li RK (1994) Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res 28:1285–1291

    PubMed  CAS  Google Scholar 

  • Jenkins DP, Baxter GF, Yellon DM (1995a) The pathophysiology of ischaemic preconditioning. Pharmacol Res 31:219–224

    PubMed  CAS  Google Scholar 

  • Jenkins DP, Pugsley WB, Yellon DM (1995b) Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol 27:1623–1632

    PubMed  CAS  Google Scholar 

  • Jeroudi MO, Cheirif J, Habib G, BoUi R (1994) Prolonged wall motion abnormalities after chest pain at rest in patients with unstable angina: a possible manifestation of myocardial stunning. Am Heart J 127:1241–1250

    PubMed  CAS  Google Scholar 

  • Juneau CF, Ito BR, del Balzo U, Engler RL (1993) Severe neutrophil depletion by leucocyte filters or cytotoxic drug does not improve recovery of contractile function in stunned porcine myocardium. Cardiovasc Res 27:720–727

    PubMed  CAS  Google Scholar 

  • Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R et al. (1998) Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 97:651–660

    PubMed  CAS  Google Scholar 

  • Kawano H, Kawano Y, Shirai T, Okada R (1994) Histologie study on adaptation of cardiac myocytes to chronic ischemia. In: Nagano M, Takeda N, Dhalla NS (eds) The adapted heart. Raven Press, New York, pp 211–219

    Google Scholar 

  • Kobayashi Y, Miyazaki S, Itoh A, Daikoku S, Morii I, Matsumoto T et al. (1998) Previous angina reduces in-hospital death in patients with acute myocardial infarction. Am J Cardiol 81:117–122

    PubMed  CAS  Google Scholar 

  • Krüger D, Sheikhzadeh A, Giannitsis E, Stierle U (1997) Cardiac release and kinetics of endothelin after severe short-lasting myocardial ischemia. JACC 30:942–946

    PubMed  Google Scholar 

  • Kusuoka H, Marban E (1992) Cellular mechanisms of myocardial stunning. Annu Rev Physiol 54:243–256

    PubMed  CAS  Google Scholar 

  • Lieberman AN, Weiss JL, Jugdutt BI, Becker LC, Bulkley BH, Garrison JG et al. (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746

    PubMed  CAS  Google Scholar 

  • Linzbach AJ (1947) Das ökonomische Prinzip in der Sauerstoffversorgung der Nieren, des Herzens und des Stützgewebes. Z Ges Inn Med 2:144

    PubMed  CAS  Google Scholar 

  • Marzullo P, Parodi O, Sambuceti G, Marcassa C, Gimelli A, Bartoli M et al. (1993) Does the myocardium become „stunned“ after episodes of angina at rest, angina on effort, and coronary angioplasty? Am J Cardiol 71:1045–1051

    PubMed  CAS  Google Scholar 

  • Matsuda M, Catena TG, Vander Heide RS, Jennings RB, Reimer KA (1993) Cardiac protection by ischaemic preconditioning is not mediated by myocardial stunning. Cardiovasc Res 27:585–592

    PubMed  CAS  Google Scholar 

  • McFalls EO, Duncker DJ, Ward H, Fashingbauer P (1995) Impaired endothelium-dependent vasodilation of coronary resistance vessels in severely stunned porcine myocardium. Bas Res Cardiol 90:498–506

    CAS  Google Scholar 

  • McKeever WP, Gregg DE, Canney PC (1958) Oxygen uptake of the nonworking left ventricle. Circ Res 6:612–623

    PubMed  CAS  Google Scholar 

  • Mitchell MB, Winter CB, Locke-Winter CR, Banerjee A, Harken AH (1993) Cardiac preconditioning does not require myocardial stunning. Ann Thorac Surg 55:395–400

    PubMed  CAS  Google Scholar 

  • Miura T, Goto M, Urabe K, Endoh A, Shimamoto K, Iimura O (1991) Does myocardial stunning contribute to infarct size limitation by ischémie preconditioning? Circulation 84:2504–2512

    PubMed  CAS  Google Scholar 

  • Mosca SM, Gelpi RJ, Milei J, Fernandez G, Cingolani A, Cingolani HE (1998) Is stunning prevented by ischémic preconditioning? Mol Cell Biochem 186:123–129

    PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischémie myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  • Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischémie preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischémie episode. Circ Res 66:913–931

    PubMed  CAS  Google Scholar 

  • Nonogi H, Miyazaki S, Goto Y, Kawase Y, Haze K (1994) Does preconditioning affect recovery in stunned myocardium? Intern Med 33:402–406

    PubMed  CAS  Google Scholar 

  • Ovize M, Aupetit JF, Rioufol G, Loufoua J, André-Fouet X, Minaire Y et al. (1995) Preconditioning reduces infarct size but accelerates time to ventricular fibrillation in ischémie pig heart. Am J Physiol 269(Heart Circ Physiol 38):H72–H79

    PubMed  CAS  Google Scholar 

  • Pamfilis SM, Plotnick GD, Stafford L (1992) Dramatic improvement of stunned myocardium. Chest 101:1147–1148

    PubMed  CAS  Google Scholar 

  • Piot CA, Padmanaban D,Ursell PC,Sievers RE, Wolfe CL (1997) Ischémie preconditioning decreases apoptosis in rat hearts in vivo. Circulation 96:1598–1604

    PubMed  CAS  Google Scholar 

  • Pirolo JS, Hutchins GM, Moore GW (1985) Myocyte vacuolization in infarct border zones is reversible. Am J Pathol 121:444–450

    PubMed  CAS  Google Scholar 

  • Qiu Y, Tang XL, Park SW, Sun JZ, Kalya A, Bolli R (1997) The early and late phases of ischémie preconditioning. A comparative analysis of their effects on infarct size, myocardial stunning, and arrhthmias in conscious pigs undergoing a 40-minute coronary occlusion. Circ Res 80: 730–742

    PubMed  CAS  Google Scholar 

  • Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB (1996) Ischémie preconditioning: a brief review. Bas Res Cardiol 91:1–4

    CAS  Google Scholar 

  • Sack S, Mohri M, Arras M, Schwarz ER, Schaper W (1993) Ischaemic preconditioning-time course of renewal in the pig. Cardiovasc Res 27:551–555

    PubMed  CAS  Google Scholar 

  • Sakata Y, Kodama K, Kitakaze M, Masuyama T, Hirayama A, Lim YJ et al. (1997) Different mechanisms of ischémie adaptation to repeated coronary occlusion in patients with and without recruitable collateral circulation. JACC 30:1679–1686

    PubMed  CAS  Google Scholar 

  • Sanchis J, Munoz J, Chorro FJ, Insa L, Egea S, Bodi V et al. (1996) Stunned myocardium after thrombolytic treatment. Identification by dobutamine echocardiography and role of the residual stenosis in the infarction artery. Int J Cardiol 53:5–13

    PubMed  CAS  Google Scholar 

  • Schaper W (1991) Molecular mechanisms in „stunned“ myocardium. Cardiovasc Drugs Ther 5:925–932

    PubMed  CAS  Google Scholar 

  • Schaper W (1996) Ischémie preconditioning, remembrances of things past and future. Bas Res Cardiol 91:8–11

    CAS  Google Scholar 

  • Schulz R, Rose J, Martin C, Brodde OE, Heusch G (1993) Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 88:684–695

    PubMed  CAS  Google Scholar 

  • Schulz R, Post H, Sakka S, Wallbridge DR, Heusch G (1995) Intraischemic preconditioning. Increasetolerance to sustained low-flow ischemia by a brief episode of no-flow ischemia without intermittent reperfusion. Circ Res 76:942–950

    PubMed  CAS  Google Scholar 

  • Schwarz ER, Schaper J, vom Dahl J, Altehoefer C, Grohmann B, Schoendube F et al. (1996) Myocyte degeneration and cell death in hibernating human myocardium. JACC 27:1577–1585

    PubMed  CAS  Google Scholar 

  • Shen YT, Kudej RK, Bishop SP, Vatner SF (1996) Inotropic reserve and histological appearance of hibernation myocardium in conscious pigs with ameroid-induced coronary stenosis. Bas Res Cardiol 91:479–485

    CAS  Google Scholar 

  • Shivalkar B, Maes A, Borgers M, Ausma J, Scheys I, Nuyta J et al. (1996) Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation 94:308–315

    PubMed  CAS  Google Scholar 

  • Shizukuda Y, Mallet RT, Lee SC, Downey HF (1992) Hypoxie preconditioning of ischaemic canine myocardium. Cardiovasc Res 26:534–542

    PubMed  CAS  Google Scholar 

  • Shnier CB, Cason BA, Horton AF, Hickey RF (1994) Coronary blood flow autoregulation and flow heterogeneity in the stunned heart. Jpn Heart J 35:645–660

    Google Scholar 

  • Speechly-Dick ME, Baxter GF, Yellon DM (1994) Ischaemic preconditioning protects hypertrophiéed myocardium. Cardiovasc Res 28:1025–1029

    PubMed  CAS  Google Scholar 

  • Strasser R, Vogt A, Schaper W (1996) Myokardprotektion durch Präkonditionierung. Experimentelle und klinische Bedeutung. Z Kardiol 85:79–89

    PubMed  CAS  Google Scholar 

  • Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R (1995) Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 95:388–403

    PubMed  CAS  Google Scholar 

  • Tanaka M, Fujiwara H, Yamasaki K, Miyamae M, Yokota R, Hasegawa K et al. (1994) Ischémie preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits. Am J Physiol 267(Heart Circ Physiol 36): H1476–H1482

    PubMed  CAS  Google Scholar 

  • Tolg R, Kurz T, Richardt G, Katus HA (1997) Läßt sich „ischämische Konditionierung“ bei PTCA nachweisen? Z Kardiol 86(Suppl 2) 1314

    Google Scholar 

  • Tzivoni D, Maybaum S (1997) Attenuation of severity of myocardial ischemia during repeated daily ischémie episodes. JACC 30:119–124

    PubMed  CAS  Google Scholar 

  • Vanoverschelde JL, Wijns W, Depré C, Essamri B, Heyndrickx GR, Borgers M et al. (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523

    PubMed  CAS  Google Scholar 

  • Verdouw PD, Gho BCG, Duncker DJ (1995) Ischaemic preconditioning: is it clinically relevant? Eur Heart J Cardiol 16:1169–1176

    CAS  Google Scholar 

  • Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Hirschwald, Berlin S 109

    Google Scholar 

  • Wouters PF, Velde M van de, Aken H van, Flameng W (1996) Ischémie event characteristics determine the extent of myocardial stunning in conscious dogs. Bas Res Cardiol 91:140–146

    CAS  Google Scholar 

  • Xu ZL, Endoh H, Ishihata A, Takahashi E, Doi K (1998) Effect of ischémie preconditioning on myocardial oxygen consumption during ischemia. J Mol Cell Cardiol 30:2165–2174

    PubMed  CAS  Google Scholar 

  • Yabe Kl, Nasa Y, Sato M, Iijima R, Takeo S (1997) Preconditioning preserves mitochondrial function and glycolytic flux during an early period of reperfusion in perfused rat hearts. Cardiovasc Res 33:677–685

    PubMed  CAS  Google Scholar 

  • Yellon DM, Alkhulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342:276–277

    PubMed  CAS  Google Scholar 

  • Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37:21–33

    PubMed  CAS  Google Scholar 

  • Zhao M, Sonnenblick EH, Zhang H, Eng C (1992) Increase in myofilament separation in the „stunned“ myocardium. J Mol Cell Cardiol 24:269–276

    PubMed  CAS  Google Scholar 

B. Kollateralen

  • Akutsu Y, Hara T, Michihata T, Watanabe T, Yamanaka H, Okazaki O et al. (1995) Functional role of coronary collaterals with exercise in infarct-related myocardium. Int J Cardiol 51: 47–55

    PubMed  CAS  Google Scholar 

  • Baroldi G, Scomazzoni G (1967) Coronary circulation in the normal and the pathologic heart. AFIP, Washington

    Google Scholar 

  • Baroldi G, Mantero O, Scomazzoni G (1956) The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4:223–229

    PubMed  CAS  Google Scholar 

  • Bloor CM, White FC (1972) Functional development of the coronary collateral circulation during coronary artery occlusion in the conscious dog. Am J Pathol 67:483–500

    PubMed  CAS  Google Scholar 

  • Buschmann I, Ito W, Höfer I, Scholz D, Schaper W (1998) Granulocyte-macrophage-colony-stimulating-factor (GM-CSF) fördert das Kollateralarterienwachstum durch prolongierte Makrophagenaktivität. Z Kardiol 87(Suppl 1): 17

    Google Scholar 

  • Cibulski AA, Lehan BPH, Timmis HH, Hellems HK (1973) Regression of intercoronary collateral vessels in mongrel dogs after coronary bypass grafting. Am J Cardiol 31:480–483

    PubMed  CAS  Google Scholar 

  • Deindl E, Neubauer E, Ito W, Zimmermann R, Schaper W (1998) VEGF besitzt in der Arteriogenese im Gegensatz zur Angiogenese keine bedeutende Funktion. Z Kardiol 87(Suppl 1): 247

    Google Scholar 

  • Eckstein RW (1957) Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res 5:230–235

    PubMed  CAS  Google Scholar 

  • Frank MW, Harris KR, Ahlin KA, Klocke FJ (1996) Endothelium-derived relaxing factor (nitric oxide) has a tonic vasodilating action on coronary collateral vessels. JACC 27:658–663

    PubMed  CAS  Google Scholar 

  • Friedman M (1967) The coronary canalized thrombus: provenance, structure, function and relationship to death due to coronary artery disease. Br J Exp Pathol 48:556–567

    PubMed  CAS  Google Scholar 

  • Fulton WFM (1964a) Anastomotic enlargement and ischémie myocardial damage. Br Heart J 26:1–15

    PubMed  CAS  Google Scholar 

  • Fulton WFM (1964b) The dynamic factor in enlargement of coronary arterial anastomoses, and paradoxical changes in the subendocardial plexus. Br Heart J 26:39

    PubMed  CAS  Google Scholar 

  • Fulton WFM (1965) The coronary arteries. Thomas, Springfield 111

    Google Scholar 

  • Gensini GG, da Costa BCB (1969) The coronary circulation in living man. Am J Cardiol 24: 393–400

    PubMed  CAS  Google Scholar 

  • Giese W, Müller-Mohnssen H (1958) Kollateralkreisläufe im Coronarsystem bei Coronarsklerose. Bad Oeynhauser Gespräche II. Springer, Berlin, S 159–178

    Google Scholar 

  • Gömöri Z (1965) Beitrag zum postmortalen Nachweis interarterieller koronarer Anastomosen im menschlichen Herzen. Z Kreislaufforschg 54:1181–1189

    Google Scholar 

  • Harris CN, Kaplan MA, Parker DP, Aronov MS, Ellestad MH (1972) Anatomie and functional correlates of intercoronary collateral vessels. Am J Cardiol 30:611–614

    PubMed  CAS  Google Scholar 

  • Helfant RH, Vokonas PS, Gorlin R (1971) Functional importance of the human coronary collateral circulation. N Engl J Med 284:1277–1281

    PubMed  CAS  Google Scholar 

  • Hunter J zit. nach Schaper W (1995)

    Google Scholar 

  • Ito WD, Oesigmann N, Sprengel U, Schaper W (1998) Kollateralwachstum ist unabhängig von Ischämie und wird durch Monozyten aktivierende Substanzen stimuliert: Eine MRT-Studie. Z Kardiol 87(Suppl 1): 247

    Google Scholar 

  • Juillière Y, Danchin N, Grentzinger A, Suty-Selton C, Lethor JP, Courtalon T et al. (1990) Role of previous angina pectoris and collateral flow to preserve left ventricular function in the presence or absence of myocardial infarction in isolated total occlusion of the left anterior descending coronary artery. Am J Cardiol 65:277–281

    PubMed  Google Scholar 

  • Kass RW, Kotier MN, Yazdanfar S (1992) Stimulation of coronary collateral growth: current developments in angiogenesis and future clinical applications. Am Heart J 123:486–496

    PubMed  CAS  Google Scholar 

  • Kodama K, Kusuoka H, Sakai A, Adachi T, Hasegawa S, Ueda Y et al. (1996) Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. JACC 27:1133–1139

    PubMed  CAS  Google Scholar 

  • Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN et al. (1996) Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074–1082

    PubMed  CAS  Google Scholar 

  • Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT et al. (1995) Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76:758–766

    PubMed  CAS  Google Scholar 

  • Liebegott G (1962) Koronarsklerose und Myokardinfarkt. Normale und pathologische Anatomie der Herzkranzgefäße. Dtsch Med J 13:379

    PubMed  CAS  Google Scholar 

  • Lower R (1669) Tractatus de corde. Anstelodami

    Google Scholar 

  • Meesmann W (1959) Untersuchungen zur Funktion der intraarteriellen Koronaranastomosen beim Herzinfarkt. Z Kreislaufforschg 48:193–203

    CAS  Google Scholar 

  • Meesmann W, Bachmann GW (1966) Pharmakodynamisch induzierte Entwicklung von Koronar-Kollateralen in Abhängigkeit von der Dosis. Arzneimittelforschung 16:501–509

    PubMed  CAS  Google Scholar 

  • Meesmann W, Schulz FW (1969) Kollateralenentwicklung an den Kranzarterien im Tierexperiment. In: Hort W (Hrsg) Herzinfarkt. Grundlagen und Probleme. Heidelberger Taschenbücher, Bd. 61. Springer, Berlin Heidelberg New York, S 48–66

    Google Scholar 

  • Melillo G, Scoccianti M, Kovesdi I, Safi J jr, Riccioni T, Capogrossi MC (1997) Gene therapy for collateral vessel development. Cardiovasc Res 35:480–489

    PubMed  CAS  Google Scholar 

  • Niebauer J, Hambrecht R, Marburger C, Hauer K, Velich T, Hodenberg E v. et al. (1995) Impact of intensive physical exercise and low-fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol 76:-77:775

    Google Scholar 

  • Oberste-Vorth K (1998) Med Dissertation, Düsseldorf 1998

    Google Scholar 

  • Ochs HR, Thelen M, Goebbels H, Schaede A, Thurn P (1977) Beziehungen zwischen Ausmaß der Koronarsklerose und Anastomosen-Induktion. Z Kardiol 66:559–564

    PubMed  CAS  Google Scholar 

  • Paulin S (1967) Interarterial coronary anastomoses in relation to arterial obstruction demonstrated in coronary arteriography. Invest Radiol 2:147–159

    Google Scholar 

  • Piek JJ, Becker AE (1988) Collateral blood supply to the myocardium at risk in human myocardial infarction: a quantitative postmortem assessment. JACC 11:1290–1296

    PubMed  CAS  Google Scholar 

  • Piek JJ, Liebergen RAM van, Koch KT, de Winter RJ, Peters RJG, David GK (1997) Pharmacological modulation of the human collateral vascular resistance in acute and chronic coronary occlusion assessed by intracoronary blood flow velocity analysis in an angioplasty model. Circulation 96:106–115

    PubMed  CAS  Google Scholar 

  • Ramanathan KB, Wilson JL, Ingram LA, Mir vis DM (1995) Effects of immature recruitable collaterals on myocardial blood flow and infarct size after acute coronary occlusion. J Lab Clin Med 125:66–71

    PubMed  CAS  Google Scholar 

  • Reig J, Jornet A, Petit M (1995) Direct connection between the coronary arteries in the human heart. Intercoronary arterial continuity. Angiology 46:235–242

    PubMed  CAS  Google Scholar 

  • Reiner L, Molnar J, Jimenez FA, Freudenthal RR (1961) Interarterial coronary anastomoses in neonates. Arch Pathol 71:103–112

    PubMed  CAS  Google Scholar 

  • Sasayama S, Fujita M (1992) Recent insights into coronary collateral circulation. Circulation 85:1197–1204

    PubMed  CAS  Google Scholar 

  • Schaper W (1995) Control of coronary angiogenesis. Eur Heart J 16(Suppl C): 66–68

    PubMed  Google Scholar 

  • Schaper W (1996a) Collateral vessel growth in the human heart. Role of fibroblast growth factor-2. Circulation 94:600–601

    PubMed  CAS  Google Scholar 

  • Schaper W (1996b) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79: 911–919

    PubMed  CAS  Google Scholar 

  • Schaper J, Schaper W (1986) Interactions between vascular wall and blood cells in the canine heart. J Applied Cardiol 1:91–107

    Google Scholar 

  • Schaper W, Schaper J (1990) Adaptation to and defense against myocardial ischemia. Cardiology 77:367–372

    PubMed  CAS  Google Scholar 

  • Schaper J, König R, Franz D, Schaper W (1976) The endothelial surface of growing coronary collateral arteries. Intimai margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 370:193–205

    PubMed  CAS  Google Scholar 

  • Schaper W, Görge G, Winkler B, Schaper J (1988) The collateral circulation of the heart. Progr Cardiovasc Dis 31:57–77

    CAS  Google Scholar 

  • Schlesinger MJ (1938) An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J 15:528–568

    Google Scholar 

  • Schulz FW, Meesmann W, Schley G (1972) Der Einfluß von Spontankollateralen auf akute experimentelle Myokardinfarkte. Med Welt 23:1375–1376

    PubMed  CAS  Google Scholar 

  • Schwartz H, Leiboff RH, Bren GB, Wasserman AG, Katz RJ, Varghese PJ et al. (1984) Temporal evolution of the human coronary collateral circulation after myocardial infarction. JACC 6:1088–1093

    Google Scholar 

  • Shou M, Thirumurti V, Rayanayagam S, Lazarous DF, Hodge E, Stiber JA et al. (1997) Effect of basic fibroblast growth factor on myocardial angiogenesis in dogs with mature collateral vessels. JACC 29:1102–1106

    PubMed  CAS  Google Scholar 

  • Spalteholz W (1924) Die Arterien der Herzwand. Leipzig

    Google Scholar 

  • Tyagi SC (1997) Vasculogenesis and angiogenesis: extracellular matrix remodeling in coronary collateral arteries and the ischémic heart. J Cell Biochem 65:388–394

    PubMed  CAS  Google Scholar 

  • Vernon SM, Camarano G, Kaul S, Sarembock IJ, Gimple LW, Powers ER et al. (1996) Myocardial contrast echocardography demonstrates that collateral flow can preserve myocardial function beyond a chronically occluded coronary artery. Am J Cardiol 78:958–960

    PubMed  CAS  Google Scholar 

  • Waltenberger J, Göller V, Bonin J v, Scheunert T, Gerber J, Theiss A et al. (1998) Die funktionelle Rolle von VEGF bei der Kollateralen-Bildung im ischämischen Myokard. Z Kardiol 87(Suppl 1): 262

    Google Scholar 

  • White FC, Bloor CM (1994) Myocardial angiogenesis and vascular remodeling induced by exercise training (Abstract). Circulation 90(Suppl I): 104

    Google Scholar 

  • Zimmermannn R, Arras M, Ullmann C, Strasser R, Sack S, Mollnau H et al. (1997) Time course of mitosis and collateral growth following coronary microembolization in the porcine heart. Cell Tissue Res 287:583–590

    Google Scholar 

  • Zoll PM, Wessler S, Schlesinger MJ (1951) Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation 4:797–815

    PubMed  CAS  Google Scholar 

Angina pectoris

  • Ambrose JA, Israel DH (1991) Angiography in unstable angina. Am J Cardiol 68:78B–84B

    PubMed  CAS  Google Scholar 

  • Anschütz F (1983) Zur Prognose der Angina pectoris. Lebensvers-Med 35:2–4

    Google Scholar 

  • Bergmann G v (1934) Erstickung im Herzmuskel als Ursache der Angina pectoris. Dtsch Med Wochenschr 60:1378–1382

    Google Scholar 

  • Bertolet BD, Dinerman J, Hartke R, Conti CR (1993) Unstable angina: relationship of clinical presentation, coronary artery pathology, and clinical outcome. Clin Cardiol 16:116–122

    PubMed  CAS  Google Scholar 

  • Braunwald E (1989) Unstable angina. A classification. Circulation 80:410–414

    PubMed  CAS  Google Scholar 

  • Büchner F (1932) Die Rolle des Herzmuskels bei der Angina pectoris. Beitr Pathol Anat 89:644–667

    Google Scholar 

  • Büchner F (1933) Das morphologische Substrat der Angina pectoris im Tierexperiment. Beitr Pathol Anat 92:311–328

    Google Scholar 

  • Büchner F (1939) Die Koronarinsuffizienz. Steinkopff, Dresden

    Google Scholar 

  • Büchner F (1970) Die Koronarinsuffizienz in alter und neuer Sicht. Studienreihe Boehringer Mannheim

    Google Scholar 

  • Burns A (1809) Observations on some of the most frequent and important diseases of the heart. Edinburg

    Google Scholar 

  • Capone G,Wolf NM, Meyer B, Meister SG (1985) Frequency of intracoronary filling defects by angiography in angina pectoris at rest. Am J Cardiol 56:403–406

    PubMed  CAS  Google Scholar 

  • Cheng TO, Bashour T, Kelser GA, Weiss L, Bacos J (1973) Variant angina of Prinzmetal with normal coronary arteriograms. A variant of the variant. Circulation 47:476–485

    PubMed  CAS  Google Scholar 

  • Cohn PF, Gorlin R (1972) Abnormalities of left ventricular function associated with the anginal state. Circulation 46:1065–1078

    PubMed  CAS  Google Scholar 

  • Collin P, Fox KM (1990) Pathophysiology of angina. Lancet 335:94–96

    Google Scholar 

  • Dati F, Hänseier E, Hohnloser S, Hubi W, Katz N, Messinger M et al. (1997) Empfehlungen zur Laboratoriumsdiagnostik bei akuten ischämischen Herzerkrankungen. J Lab Med 21: 402–408

    Google Scholar 

  • Deedwania PC, Carbajal EV (1990) Silent ischemia during daily life is an independent predictor of mortality in stable angina. Circulation 81:748–756

    PubMed  CAS  Google Scholar 

  • Detry JMR (1996) The pathophysiology of myocardial ischaemia. Eur Heart J 17(Suppl G) 48–52

    PubMed  Google Scholar 

  • Dietrich S, Schwiegk H (1933) Angina pectoris und Anoxie des Herzmuskels. Z Klin Med 125: 195–242

    Google Scholar 

  • Domburg RT van, Miltenburg-van Zijl AJ, Veerhoek RJ, Simoons ML (1998) Unstable angina: good long-term outcome after a complicated early course. JACC 31:1534–1539

    PubMed  Google Scholar 

  • Dominitz I, Boruchow IB, Hutchins GM (1996) Focal myocardial ischémie necroses associated with unstable angina pectoris. JACC 28:910–914

    PubMed  CAS  Google Scholar 

  • Droste C, Ruf G, Greenlee WM, Roskamm H (1993) Development of angina pectoris pain and cardiac events in asymptomatic patients with myocardial ischemia. Am J Cardiol 72:121–127

    PubMed  CAS  Google Scholar 

  • Dusch T v (1868) Lehrbuch der Herzkrankheiten. Engelmann, Leipzig

    Google Scholar 

  • Ebers Papyrus, zit. nach Bleifeld W, Hamm CW, Braunwald E (Hrsg) (1990) Unstable angina. Springer, Berlin, S V

    Google Scholar 

  • Elliot WC, Gorlin R (1966) The coronary circulation, myocardial ischemia, and angina pectoris. Mod Cone Cardiovasc Dis 35:117–122

    Google Scholar 

  • Fothergill zit. nach Leibowitz (1970

    Google Scholar 

  • Fuster V, Chesebro IH (1986) Mechanisms of unstable angina (Editorial) N Engl J Med 315:1023–1025

    PubMed  CAS  Google Scholar 

  • Gramling-Babb P, Miller MJ, Reeves ST, Roy RC, Zile MR (1997) Treatment of medically and surgically refractory angina pectoris with high thoracic epidural analgesia: initial clinical experience. Am Heart J 134:648–655

    Google Scholar 

  • Hamm CW, Ravkilde J, Gerhardt W, Jorgensen P, Peheim E, Ljungdahl L et al. (1992) The prognostic value of serum Troponin T in unstable angina. N Engl J Med 327:146–150

    PubMed  CAS  Google Scholar 

  • Harper RW, Kennedy G, DeSanctis RW, Hutter AM jr (1979) The incidence and pattern of angina prior to acute myocardial infarction: a study of 577 cases. Am Heart J 97:178–183

    PubMed  CAS  Google Scholar 

  • Harvey (1654) zit. nach Morgagni (1761

    Google Scholar 

  • Heberden W (1772) Some account of a disorder in the breast. Med Trans Coll Physns London 2:59–67

    Google Scholar 

  • Hekali P (1984) Narrowing of coronary artery: thresholds for the occurence of angina pectoris. Acta med Scand (Suppl) 694:77–82

    Google Scholar 

  • Höpker WW, Nüssel E, Pasternak G (1978) Pathomorphologie des Herzens bei Angina pectoris. Med Welt 29:8–15

    PubMed  Google Scholar 

  • Jenner E, zit. nach Parry

    Google Scholar 

  • Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G et al. (1991) Diagnostic efficiency of Troponin T measurements in acute myocardial infarction. Circulation 83: 902–912

    PubMed  CAS  Google Scholar 

  • Leibowitz JO (1970) The history of coronary heart disease. Clowes & Sons, London

    Google Scholar 

  • Lenègre J, Himbert J (1959) Critical study of the relationship between angina pectoris and coronary atherosclerosis. Am Heart J 58:539–542

    PubMed  Google Scholar 

  • Lindahl B, Venge P, Wallentin L (1997) Troponin T identifies patients with unstable coronary artery disease who benefit from long-term antithrombotic protection. JACC 29:43–48

    PubMed  CAS  Google Scholar 

  • Lüderitz B (1990) Stabile und instabile Angina pectoris: Prognose und Therapie. Dtsch Ärztebl 87:B397–B400

    Google Scholar 

  • Maseri A (1986) Pathogenetic classifications of unstable angina as a guideline to individual patient management and prognosis. Am J Med 80(Suppl 4C): 48–51

    PubMed  CAS  Google Scholar 

  • Maseri A, Créa F (1991) The elusive cause of instability in unstable angina. Am J Cardiol 68:16B–21B

    PubMed  CAS  Google Scholar 

  • Möckel M, Störk T, Heller G, Rocker L, Danne 0, Darrelmann K et al. (1998) Troponin T in patients with low grade or atypical angina. Identification of a high risk group for short-and longterm cardiovascular events. Eur Heart J 19:1802–1807

    PubMed  Google Scholar 

  • More BM, Sommers SC (1962) The status of the myocardial arterioles in angina pectoris. Am Heart J 64:323–333

    PubMed  CAS  Google Scholar 

  • Morgagni JB (1761) De sedibus et causis morborum. Epistula XXVI (oder VII?) Venedig

    Google Scholar 

  • Nakahashi T, Naka M, Shiotani I, Nagano R, Bun T, Aoki M et al. (1995) Vasospastic angina pectoris associated with apical hypertrophie cardiomyopathy. Int Med 34:436–440

    CAS  Google Scholar 

  • Nakamura M, Takeshita A, Nose Y (1987) Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation 75:1110–1116

    PubMed  CAS  Google Scholar 

  • Nishiyama Y (1966) Morphology of coronary insufficiency. A study by postmortem coronary arteriography and giant sections of the entire heart. Acta Pathol Japn 16:37–54

    CAS  Google Scholar 

  • Oberndorfer (1925) Die anatomischen Grundlagen der Angina pectoris. Münch Med Wochenschr 72:1495–1498

    Google Scholar 

  • Papp C, Smith KS (1960) Status anginosus. Br Heart J 22:259–273

    PubMed  CAS  Google Scholar 

  • Parashara DK, Jacobs LE, Kotler MN, Yazdanfar S, Spielman SR, Janzer SF et al. (1995) Angina caused by systolic compression of the left coronary artery as a result of pseudoaneurysm of the mitralaortic intervalvular fibrosa. Am Heart J 129:417–421

    PubMed  CAS  Google Scholar 

  • Parry (1801) Über die Syncope anginosa. Breslau

    Google Scholar 

  • Prinzmetal M, Kennamer R, Merliss R, Wada T, Bopr N (1959) Angina pectoris I. A variant form of angina pectoris. Preliminary report. Am J Med 27:375–388

    PubMed  CAS  Google Scholar 

  • Rein H (1931) Die Physiologie der Koronardurchblutung. Untersuchungen des Koronarkreislaufes am intakten Organismus. Verh Dtsch Ges Inn Med 247-26

    Google Scholar 

  • Resnik WH (1962) The significance of prolonged anginal pain (preinfarction angina) Am Heart J 63:290–298

    PubMed  CAS  Google Scholar 

  • Rieseman JEF (1966) The clinical course of angina pectoris. Am J Med Sci 252:146–158

    Google Scholar 

  • Roberts WC (1976) The coronary arteries and left ventricle in clinically isolated angina pectoris: a necropsy analysis. Circulation 54:388–390

    PubMed  CAS  Google Scholar 

  • Roberts WC, Kragel AH, Gertz SD, Roberts CS, Kalan JM (1991) The heart in fatal unstable angina pectoris. Am J Cardiol 68:22B–27B

    PubMed  CAS  Google Scholar 

  • Roberts WC, Kragel AH, Gertz SD, Roberts CS (1994) Coronary arteries in unstable angina pectoris, acute myocardial infarction, and sudden coronary death. Am Heart J 127:1588–1593

    PubMed  CAS  Google Scholar 

  • Rothschild MA, Kissin M (1932) Anginal syndrome induced by gradual general anoxemia. Proc Soc Exper Biol Med 29:577–578

    Google Scholar 

  • Scrutinio D, Biasco MG, Rizzon P (1991) Thrombolysis in unstable angina: results of clinical studies. Am J Cardiol 68:99B–104B

    PubMed  CAS  Google Scholar 

  • Sen S, Özbek C, Berg G, Bach R, Dyckmans J, Schieffer H (1991) Treatment of unstable angina pectoris (European experience). Am J Cardiol 68:47C–51C

    PubMed  CAS  Google Scholar 

  • Sharma B, Taylor SH (1974) Proceedings: localization of left ventricular regional ischaemia during exercise in angina pectoris. Br Heart J 36:402–403

    CAS  Google Scholar 

  • Stille-Siegener M, Figulla HR, Mall G, Munz D, Scholz KH, Kreuzer H (1991) Diagnosestellung durch Endomyokardbiopsie: Angina pectoris als Manifestation eines Lupus erythematodes. Z Kardiol 80:558–560

    PubMed  CAS  Google Scholar 

  • Suzuki H, Kawai S, Aizawa T, Kato K, Sunayama S, Okada R et al. (1999) Histological evaluation of coronary plaque in patients with variant angina: relationship between vasospasm and neointimal hyperplasia in primary coronary lesions. JACC 33:198–205

    PubMed  CAS  Google Scholar 

  • Tachibana K, Kazatani Y, Kodama K, Matsuzaki K, Murakami E, Kokubu T (1995) Vasospastic angina in two sisters. Jpn Heart J 36:669–673

    PubMed  CAS  Google Scholar 

  • Théroux P, Waters D, Lam J, Juneau M, McCans J (1992) Reactivation of unstable angina after the discontinuation of heparin. N Engl J Med 327:141–145

    PubMed  Google Scholar 

  • Tiedemann F (1843) Von der Verengerung und Schließung der Pulsadern in Krankheiten. Heidelberg

    Google Scholar 

  • Willard JE, Lange RA, Hillis LD (1992) The use of aspirin in ischémie heart disease. N Engl J Med 327:175–181

    PubMed  CAS  Google Scholar 

  • Williams MJA, Morison IM, Parker JH, Stewart RAH (1997) Progression of the culprit lesion unstable coronary artery disease with Warfarin and Aspirin versus Aspirin alone: preliminary study. JACC 30:364–369

    PubMed  CAS  Google Scholar 

  • Wilson RF, Holida MD, White CW (1986) Quantitative angiographie morphology of coronary stenoses leading to myocardial infarction or unstable angina. Circulation 73:286–293

    PubMed  CAS  Google Scholar 

D. Kranzarterien und Herzinfarkt

  • Allison RB, Rodriguez FL, Higgins EA jr, Leddy JP, Abelmann W II, Ellis LB et al. (1963) Clinicopathologic correlations in coronary atherosclerosis. Four hundred thirty patients studied with postmortem coronary angiography. Circulation 27:170–184

    PubMed  CAS  Google Scholar 

  • Arakawa K, Mizuno K, Shibuya T, Etsuda H, Tabata H, Nagayoshi H et al. (1997) Angioscopic coronary macromorphology after thrombolysis in acute myocardial infarction. Am J Cardiol 79:197–202

    Google Scholar 

  • Ardenne M v, Kern B (1971) Der Herzinfarkt als Folge der lysosomalen Zytolyse-Kettenreaktion. Dtsch Gesundhwes 26:1769–1780

    Google Scholar 

  • Arnett EN, Roberts WC (1976) Acute myocardial infarction and angiographically normal coronary arteries. An unproven combination. Circulation 53:395–400

    PubMed  CAS  Google Scholar 

  • Baroldi G (1965) Acute coronary occlusion as a cause of myocardial infarct and sudden coronary heart death. Am J Cardiol 16:859–880

    PubMed  CAS  Google Scholar 

  • Baroldi G (1976) Coronary thrombosis: facts and beliefs. Am Heart J 91:683–688

    PubMed  CAS  Google Scholar 

  • Baroldi G, Radice F, Schmid G, Leone A (1974) Morphology of acute myocardial infarction in relation to coronary thrombosis. Am Heart J 87:65–75

    PubMed  CAS  Google Scholar 

  • Baroldi G, Silver MD (1995) Sudden death in ischémie heart disease. An alternative view on the significance of morphologic findings. Springer, Heidelberg. RG Landes Comp Austin, Texas, pp 112–114

    Google Scholar 

  • Belle E van, Lablanche JM, Bauters C, Renaud N, McFadden EP, Bertrand ME (1998) Coronary angioscopic findings in the infarct-related vessel within 1 month of acute myocardial infarction. Natural history and the effect of thrombolysis. Circulation 97:26–33

    PubMed  Google Scholar 

  • Betriu A, Pare JC, Sanz GA, Casals F, Magrina J, Castaner A et al. (1981) Myocardial infarction with normal coronary arteries: a prospective dinical-angiographic study. Am J Cardiol 48: 28–32

    PubMed  CAS  Google Scholar 

  • Branwood HW, Montgomery GL (1956) Observations on morbid anatomy of coronary artery disease. Scot Med J 1:367–375

    PubMed  CAS  Google Scholar 

  • Brecker SJD, Stevenson RN, Roberts R, Uthayakumar S, Timmis AD, Balcon R (1993) Acute myocardial infarction in patients with normal coronary arteries. BMJ 307:1255–1256

    PubMed  CAS  Google Scholar 

  • Brosius III FC, Roberts WC (1981) Comparison of degree and extent of coronary narrowing by atherosclerotic plaque in anterior and posterior transmural acute myocardial infarction. Circulation 64:715–722

    PubMed  Google Scholar 

  • Büchner F (1973) Herzinfarkt, Koronarthrombose und akuter Koronartod des Menschen. Bericht über 500 Koronartodesfälle aus dem Freiburger pathologischen Institut 1948-1963. Fortschr Morph Pathol. Urban & Schwarzenberg, Berlin München Wien

    Google Scholar 

  • Büchner F, Weber A, Haager B (1935) Koronarinfarkt und Koronarinsuffizienz in vergleichender elektrokardiographischer und morphologischer Untersuchung. Thieme, Leipzig

    Google Scholar 

  • Butterworth JS, Poindexter CA (1973) Papilloma of cusp of the aortic valve. Report of a patient with sudden death. Circulation 48:213–215

    PubMed  CAS  Google Scholar 

  • Chandler AB (1975) Relationship of coronary thrombosis to myocardial infarction. Mod Conc Cardiovasc Dis 44:1–5

    Google Scholar 

  • Chandler AB, Chapman J, Erhardt LR, Roberts WC, Schwartz CJ, Sinapius D et al. (1974) Coronary thrombosis in myocardial infarction. Report of a workshop on the role of coronary thrombosis in the pathogenesis of acute myocardial infarction. Am J Cardiol 34:823–833

    PubMed  CAS  Google Scholar 

  • Chemarin-Alibelli MJ, Pieraggi MT, Elbaz M, Carrié D, Fourcade J, Puel J et al. (1996) Identification of coronary thrombus after myocardial infarction by intracoronary ultrasound compared with histology of tissues sampled by atherectomy. Am J Cardiol 77:344–349

    PubMed  CAS  Google Scholar 

  • Cheng TO, Bashour T, Singh BK, Kelser GA (1972) Myocardial infarction in the absence of coronary arteriosclerosis. Result of coronary spasm (?) Am J Cardiol 30:680–682

    PubMed  CAS  Google Scholar 

  • Cohnheim J, Schulthess-Rechberg A v (1881) Ueber die Folgen der Kranzarterieverschliessung für das Herz. Virchows Arch 85:503–537

    Google Scholar 

  • Davies MJ, Woolf N, Robertson WB (1976) Pathology of acute myocardial infarction with particular reference to occlusive coronary thrombi. Br Heart J 38:659–664

    PubMed  CAS  Google Scholar 

  • Davies MJ, Fulton WFM, Robertson WB (1979) The relation of coronary thrombosis to ischaemic myocardial necrosis. J Pathol 127:99–110

    PubMed  CAS  Google Scholar 

  • Davis NA (1970) Incidence of thrombosis in myocardial infarction. Aust Ann Med (Suppl): 60–62

    Google Scholar 

  • Dear HD, Rüssel RO, Jones WB, Reeves TJ (1971) Myocardial infarction in the absence of coronary occlusion. Am J Cardiol 28:718–721

    PubMed  CAS  Google Scholar 

  • DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS et al. (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    PubMed  CAS  Google Scholar 

  • DeWood MA, Stifter WF, Simpson CS, Spores J, Eugster GS, Judge TP et al. (1986) Coronary artériographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423

    PubMed  CAS  Google Scholar 

  • Doerr W (1977) The pathogenesis of cardiac infarction (a few comments on some unanswered questions). Virchows Arch A Pathol Anat Histol 373:177–190

    PubMed  CAS  Google Scholar 

  • Ehrlich JC, Shinohara Y (1964) Low incidence of coronary thrombosis in myocardial infarction: a restudy by serial block technique. Arch Pathol 78:432–445

    PubMed  CAS  Google Scholar 

  • Eliot RS, Baroldi G, Leone A (1974) Necropsy studies in myocardial infarction with minimal or no coronary luminal reduction due to atherosclerosis. Circulation 49:1127–1131

    PubMed  CAS  Google Scholar 

  • Engel HJ, Lichtlen P (1976) Angina pectoris und Myokardinfarkt ohne Koronarsklerose. Ther Umschau 33:75–86

    CAS  Google Scholar 

  • Erhardt LR, Lundman T, Mellstedt H (1973) Incorporation of 125J-labelled fibrinogen into coronary arterial thrombi in acute myocardial infarction in man. Lancet 1:387–390

    PubMed  CAS  Google Scholar 

  • Erhardt LR, Unge G, Boman G (1976) Formation of coronary arterial thrombi in relation to onset of necrosis in acute myocardial infarction in man. A clinical and autoradiographic study. Am Heart J 91:592–598

    PubMed  CAS  Google Scholar 

  • Eslami B, Russell RO, Bailey MT, Oberman A, Tieszen RL, Rackley CE (1975) Acute myocardial infarction in the absence of coronary arterial obstruction. Ala J Med Sci 12:322–329

    PubMed  CAS  Google Scholar 

  • Fisher M, Appleby M, Rittoo D, Cotter L (1996) Myocardial infarction with extensive intracoronary thrombus induced by anabolic steroids. BJCP 50:222–223

    CAS  Google Scholar 

  • Fournier JA, Sanchez-Gonzalez A, Quero J, Cortacero JAP, Cabello A, Revello A et al. (1997) Normal angiogram after myocardial infarction in young patients: a prospective clinical-angiographie and long-term follow-up study. Int J Cardiol 60:281–287

    PubMed  CAS  Google Scholar 

  • Fulton WFM, Sumner DJ (1977) Causal role of coronary thrombotic occlusion and myocardial infarction: evidence of stereo-arteriography, serial sections and 125J fibrinogen autoradiography. Am J Cardiol 39:322

    Google Scholar 

  • Garcia-Rinaldi R, Koch L v, Howell JF (1976) Aneurysm of the sinus of Valsalva producing obstruction of the left main coronary artery. J Thorac Cardiovasc Surg 72:123–126

    PubMed  CAS  Google Scholar 

  • Giese W, Müller-Mohnssen H (1958) Kollateralkreisläufe im Coronarsystem bei Coronarsklerose. Bad Oeynhauser Gespräche. Springer, Berlin, II: 159–178

    Google Scholar 

  • Gross H, Sternberg WH (1939) Myocardial infarction without significant lesions of coronary arteries. Arch Intern Med 64:249–267

    Google Scholar 

  • Gruber GB, Lanz HF (1920) Ischämische Herzmuskelnekrose bei einem Epileptiker nach Tod im Anfall. Arch Psychiatr 61:98–102

    Google Scholar 

  • Hammer A (1878) Ein Fall von thrombotischem Verschlüsse einer der Kranzarterien des Herzens. Am Krankenbette konstatirt. Wien Med Wochenschr 28:97–102

    Google Scholar 

  • Hanser A (1922) Über Fieberbeobachtungen bei Angina pectoris. Med Klin 18:1402–1405

    Google Scholar 

  • Harland WA, Holburn AM (1966) Coronary thrombosis and myocardial infarction. Lancet 2: 1158–1160

    PubMed  CAS  Google Scholar 

  • Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. J Am Med Assoc 59:2015–2020

    Google Scholar 

  • Hori M, Inoue M, Ohgitani N, Tsujioka K, Abe H, Fukui S et al. (1980) Site and severity of coronary narrowing and infarct size in man. Br Heart J 44:271–279

    PubMed  CAS  Google Scholar 

  • Horie T, Sekiguchi M, Hirosawa K (1978) Coronary thrombosis in pathogenesis of acute myocardial infarction. Histopathological study of coronary arteries in 108 necropsied cases using serial sections. Br Heart J 40:153–161

    PubMed  CAS  Google Scholar 

  • Hort W, Just H, Fischer K, Lüth G (1968) Infarktmuster in menschlichen Herzen. Virchows Arch Abt A Pathol Anat 345:45–60

    CAS  Google Scholar 

  • Hort W, Kalbfleisch H, Köhler F, Frenzel H (1977) Entstehen Herzinfarkte coronarogen oder myogen? Verh Dtsch Ges Pathol 61:343

    Google Scholar 

  • Hort W, Zeiler J (1978) Right ventricular wall in coronary heart disease: a postmortem study. In: Kaltenbach M, Lichtlen P, Balcon R, Bussmann WD (eds) Coronary heart disease. Thieme, Stuttgart, pp 215–219

    Google Scholar 

  • Houghton JL, Dohlen TW von, Frank MJ (1998) Myocardial ischemia without atherosclerosis. Postgrad Med 86:121–128

    Google Scholar 

  • Huber K (1882) Ueber den Einfluss der Koronararterienerkrankungen auf das Herz und die chronische Myokarditis. Arch Pathol Anat Physiol Klin Med 89:236–258

    Google Scholar 

  • Kalbfleisch H, Hort W, Müller E (1977) Vergleichende koronarangiographische und histologische Untersuchungen über den Hinterwandinfarkt. Z Kardiol 66:676–684

    PubMed  CAS  Google Scholar 

  • Kececioglu D, Hort W (1980) Postmortale Untersuchungen über die Lichtungsweiten von Infarktarterien und Nichtinfarktarterien von Infarktherzen. Z Kardiol 69:398–405

    PubMed  CAS  Google Scholar 

  • Kereiakes DJ, Topol EJ, George BS, Stack RS, Abbottsmith CW, Ellis S et al. (1991) Myocardial infarction with minimal coronary atherosclerosis in the era of thrombolytic reperfusion. JACC 17:304–312

    PubMed  CAS  Google Scholar 

  • Kuhn H, Loogen F, Knieriem HJ, Kreuzer H (1973) Zur funktionellen Bedeutung des Koronarspasmus. Med Welt 24:1598–1600

    PubMed  CAS  Google Scholar 

  • Likoff W, Segal BS, Kasparian H (1967) Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease. N Engl J Med 276:1063–1066

    PubMed  CAS  Google Scholar 

  • Little WC, Applegate RJ (1996) Role of plaque size and degree of stenosis in acute myocardial infarction. Cardiol Clin 14:221–228

    PubMed  CAS  Google Scholar 

  • Manzar KJ, Padder FA, Conrad AR, Freeman I, Jonas EA (1997) Acute myocardial infarction with normal coronary artery: a case report and review of literature. Am J Med Sci 314:342–345

    PubMed  CAS  Google Scholar 

  • Marius-Nunez AI (1990) Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide. Chest 97:491–494

    PubMed  CAS  Google Scholar 

  • McGranahan GM, Murgg JP, Dorethy JF (1974) Transmural myocardial infarction without demonstrable coronary occlusion. Circulation 50 (Suppl III): 150

    Google Scholar 

  • Miller RD, Burchell HB, Edwards JE (1951) Myocardial infarction with and without acute coronary occlusion. A pathologic study. Arch Intern Med 88:597–604

    CAS  Google Scholar 

  • Mitchell JRA, Schwartz CJ (1963) The relation between myocardial lesions and coronary artery disease. II. A selected group of patients with massive cardiac necrosis or scarring. Br Heart J 25:1–24

    PubMed  CAS  Google Scholar 

  • Morgagni GB (1761) De sedibus et causis morborum per anatomen indagatis libri quinque. Padua

    Google Scholar 

  • Nakagawa T, Yasuno M, Tanahashi H, Ohnishi S, Nishino M, Yamada Y et al. (1994) A case of acute myocardial infarction. Intracoronary thrombosis in two major coronary arteries due to hormone therapy. Angiology 45:333–338

    PubMed  CAS  Google Scholar 

  • Natelson BH, Suarez RV, Terrence CF, Turizo R (1998) Patients with epilepsy who die suddenly have cardiac disease. Arch Neurol 55:857–860

    PubMed  CAS  Google Scholar 

  • Neubürger (1928) Über Herzmuskelveränderungen bei Epileptikern. Verh Dtsch Ges Pathol 23: 487–491

    Google Scholar 

  • Obrastzow WP, Strachesko ND (1910) Zur Kenntnis der Thrombose der Koronararterien des Herzens. Z Klin Med 71:116–132

    Google Scholar 

  • Panum PL (1862) Experimentelle Beiträge zur Lehre von der Embolie. Arch Pathol Anat Physiol Klin Med 25:308–336

    Google Scholar 

  • Pardee HEB (1920) An elect rocardiographic sign of coronary artery obstruction. Ann Intern Med 26:244

    Google Scholar 

  • Parkinson J, Bedford E (1928) Cardiac infarction and coronary thrombosis. Lancet 1:4–11

    Google Scholar 

  • Pecora MJ, Roubin GS, Cobbs BW, Ellis SG, Weintraub WS, King HI SB (1988) Presentation and late outcome of myocardial infarction in the absence of angiographically significant coronary artery disease. Am J Cardiol 62:363–367

    PubMed  CAS  Google Scholar 

  • Popper L, Feiks FK (1961) Herzinfarkt und Koronarthrombose. Wien Klin Wochenschr 73:421–423

    PubMed  CAS  Google Scholar 

  • Qiao JH, Fishbein MC (1991) The severity of coronary atherosclerosis at sites of plaque rupture with occlusive thrombosis. JACC 17:1138–1142

    PubMed  CAS  Google Scholar 

  • Richter G (1989) Myokardinfarkt bei normalem Koronarangiogramm. Z Kardiol 78:408–411

    PubMed  CAS  Google Scholar 

  • Ridolfi RL, Hutchins GM (1977) The relationship between coronary artery lesions and myocardial infarcts: ulcération of atherosclerotic plaques precipitating coronary thrombosis. Am Heart J 93:468–486

    PubMed  CAS  Google Scholar 

  • Roberts WC (1972) Relationship between coronary thrombosis and myocardial infarction. Mod Conc Cardiovasc Dis 41:7–10

    CAS  Google Scholar 

  • Roberts WC, Buja LM (1972) The frequency and significance of coronary arterial thrombi and other observations in fatal acute myocardial infarction. Am J Med 52:425–443

    PubMed  CAS  Google Scholar 

  • Roberts WC, Virmani R (1984) Formation of new coronary arteries within a previously obstructed epicardial coronary artery (intraarterial arteries): a mechanism for occurrence of angiographically normal coronary arteries after healing of acute myocardial infarction. Am J Cardial 54:1361–1362

    CAS  Google Scholar 

  • Rosenblatt A, Selzer A (1977) The nature and clinical features of myocardial infarction with normal coronary arteriogram. Circulation 55:578–580

    PubMed  CAS  Google Scholar 

  • Saffitz JE, Fredrickson RC, Roberts WC (1986) Relation of size of transmural acute infarct to mode of death, interval between infarction and death and frequency of coronary arterial thrombus. Am J Cardiol 57:1249–1254

    PubMed  CAS  Google Scholar 

  • Salem HH, Koutts J, Firkin BG (1980) Circulating platelet aggregates in ischémic heart disease and their correlation to platelets life span. Thromb Res 17:707–711

    PubMed  CAS  Google Scholar 

  • Santamore WP, Yelton BW, Ogilby JD (1991) Dynamics of coronary occlusion in the pathogenesis of myocardial infarction. JACC 18:1397–1405

    PubMed  CAS  Google Scholar 

  • Schimert G, Schimmler W, Schwalb H, Eberl J (1960) Die Coronarerkrankungen. In: Handbuch der Inneren Medizin, 4. Aufl IX, 3. Teil. Springer, Berlin, S 653 ff

    Google Scholar 

  • Scholz H (1978) Koronarstenose und Myokardveränderungen. Untersuchungen über die Lokalisation und Quantität koronarogener Narben. Diss. Marburg/Lahn

    Google Scholar 

  • Schuster EH, Achuff SC, Bell WR (1980) Multiple coronary thromboses in previously normal coronary arteries: a rare cause of acute myocardial infarction. Am Heart J 99:506–509

    PubMed  CAS  Google Scholar 

  • Shirai K, Ogawa M, Kawaguchi H, Kawano T, Nakashima Y, Arakawa K (1994) Acute myocardial infarction due to thrombus formation in congenital coronary artery fistula. Eur Heart J 15: 577–579

    PubMed  CAS  Google Scholar 

  • Sidd JJ, Kemp HG, Gorlin R (1970) Acute myocardial infarction in a nineteen-year-old student in the absence of coronary obstructive disease. N Engl J Med 282:1306–1307

    PubMed  CAS  Google Scholar 

  • Silver MD, Baroldi G, Mariani F (1980) The relationship between acute occlusive coronary thrombi and myocardial infarction studied in 100 consecutive patients. Circulation 61:219–227

    PubMed  CAS  Google Scholar 

  • Sinapius D (1972) Beziehungen zwischen Koronarthrombosen und Myokardinfarkten. Dtsch Med Wochenschr 97:443–448

    PubMed  CAS  Google Scholar 

  • Spach MS, Howell DA, Harris JS (1963) Myocardial infarction and multiple thombosis in a child with primary thrombocytosis. Pediatrics 31:268–276

    PubMed  CAS  Google Scholar 

  • Spain DM, Bradess VA (1960) The relationship of coronary thrombosis to coronary atherosclerosis and ischémie heart disease. A necropsy study covering a period of 25 years. Am J Med Sci 240: 701–710

    Google Scholar 

  • Stehbens WE (1985) Relationship of coronary-artery thrombosis to myocardial infarction. Lancet 2:639–642

    PubMed  CAS  Google Scholar 

  • Virchow R (1852) Über parenehymatöse Entzündung. Arch Pathol Anat Physiol Klin Med 4:261–324

    Google Scholar 

  • Vollmar F, Bernstein K, Böttger W (1977) Myokardinfarkt ohne stenosierende Arteriosklerose und ohne Thrombose der Kranzgefäße. Zentralbl Allg Pathol Pathol Anat 121:207–217

    CAS  Google Scholar 

  • Wagdi P, Kaufmann U, Salzmann C, Meier B (1994) Der Myokardinfarkt beim Patienten mit normalen Koronararterien. Schweiz Med Wochenschr 124:671–677

    PubMed  CAS  Google Scholar 

  • Waller BF (1989) Atherosclerotic and nonatherosclerotic coronary artery factors in acute myocardial infarction. Cardiovasc Clin 20:29–104

    PubMed  CAS  Google Scholar 

  • Weigert C (1880) Über die pathologischen Gerinnungsvorgänge. Arch Pathol Anat Physiol Klin Med 79:87–123

    Google Scholar 

  • Wenger NK (1978) Nonatherosclerotic causes of myocardial ischemia and necrosis. In: Hurst JW (ed) The heart, 4th ed. McGraw-Hill, New York, pp 1345–1362

    Google Scholar 

  • Wirth L (1960) Myocardial infarction as the initial manifestation of polycythemia vera. Milit Med 125:544

    CAS  Google Scholar 

  • Ziemssen v (1891) Diskussion über Angina pectoris. Verh Dtsch Kongr Inn Med 1891, S 279

    Google Scholar 

  • Zülch KJ (1985) The cerebral infarct. Pathology, pathogenesis and computed tomography. Springer, Berlin Heidelberg New York

    Google Scholar 

E. Infarktgröße

  • Adegboyega PA, Adesokan A, Haque AK, Boor PJ (1997) Sensitivity and specifity of triphenyl tetrazolium chloride in the gross diagnosis of acute myocardial infarcts. Arch Pathol Lab Med 121:1063–1068

    PubMed  CAS  Google Scholar 

  • Altschuld RA (1996) Intracellular calcium regulatory systems during ischemia and reperfusion. In: Karmazym M (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 87–97

    Google Scholar 

  • Ambrosio G, Zweier JL, Becker LC (1998) Apoptosis is prevented by administration of Superoxide dismutase in dogs with reperfused myocardial infarction. Basic Res Cardiol 93:94–96

    PubMed  CAS  Google Scholar 

  • Bend JR, Karmazyn M (1996) Role of eicosanoids in the ischémic and reperfused myocardium. In: Karmazyn M (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 243–262

    Google Scholar 

  • Beresewicz A, Karwatowska-Prokopczuk E, Lewartowski B, Cedro-Ceremuzynska K (1995) A protective role of nitric oxide in isolated ischaemic/reperfused rat heart. Cardiovasc Res 30:1001–1008

    PubMed  CAS  Google Scholar 

  • Bridges AB, McNeill GP, Pringle TH, Belch JJF (1995) A late increase in free radical activity post myocardial infarction. Eur Heart J 16:899–902

    PubMed  CAS  Google Scholar 

  • Bril A (1996) Cellular mechanisms of cardiac arrhythmias in the ischémie and reperfused heart. In: Karmazyn M (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 135–153

    Google Scholar 

  • Bulkley BH, Hutchins GM (1977) Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of revascularization. Circulation 56:906–913

    Google Scholar 

  • Bulkley BH, Ridolfi RL, Salyer WR, Hutchins GM (1976) Myocardial lesions of progressive systemic sclerosis. A cause of cardiac dysfunction. Circulation 53:483–490

    PubMed  CAS  Google Scholar 

  • Carlyle WC, Jacobson AW, Judd DL, Tian B, Chu C, Hauer KM et al. (1997) Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J Mol Cell Cardiol 29:2451–2463

    PubMed  CAS  Google Scholar 

  • Chen LY, Nichols WW, Hendricks J, Mehta JL (1995) Myocardial neutrophil infiltration, lipid peroxidation, and antioxidant activity after coronary artery thrombosis and thrombolysis. Am Heart J 129:211–218

    PubMed  CAS  Google Scholar 

  • Damm CJ, Bigger JT, Ursell PC, Steinberg JS, Smith R, Lennon PF et al. (1995) Computer-assisted mapping of infarcted and viable regions of gross cardiac sections following experimental myocardial infarction. Comput Biomed Res 28:221–238

    PubMed  CAS  Google Scholar 

  • Das DK, Maulik N, Moraru II (1995) Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 27: 181–193

    PubMed  CAS  Google Scholar 

  • Doerr W (1950) Über die Anwendung des Reduktionsindicators Triphenyltetrazoliumchlorid (TTC) in Histologie und Histophysiologie. Frankf Zschr Pathol 61:557–573

    CAS  Google Scholar 

  • Downey JM, Omar B, Ooiwa H, McCord J (1991) Superoxide dismutase therapy for myocardial ischemia. Free Rad Res Comms 12-13:703–720

    Google Scholar 

  • Dusting GJ (1996) Nitric oxide in coronary artery disease: roles in atherosclerosis, myocardial reperfusion and heart failure. In: Karmazyn M (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 33–55

    Google Scholar 

  • Fallon JT (1996) Pathology of myocardial infarction and reperfusion. In: Fuster V, Ross R, Topol FJ (eds) Atheroclerosis and coronary artery disease. Lippincott-Raven Publ, Philadelphia, pp 791–796

    Google Scholar 

  • Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC et al. (1981) Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600

    PubMed  CAS  Google Scholar 

  • Fliss H, Gattinger D (1996) Apoptosis in ischémie and reperfused rat myocardium. Circ Res 79: 949–956

    PubMed  CAS  Google Scholar 

  • Frangogiannis NG, Youker KA, Entman ML (1996) The role of neutrophil in myocardial ischemia and reperfusion. In: Karmazyn M (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 263–284

    Google Scholar 

  • Garcia-Dorado D, Théroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Avilés F et al. (1992) Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am J Physiol 262(Heart Circ Physiol 31): H17–H22

    Google Scholar 

  • Ghaleh B, Shen YT, Vatner SF (1996) Spatial heterogeneity of myocardial blood flow presages salvage versus necrosis with coronary artery reperfusion in conscious baboons. Circulation 94:2210–2215

    PubMed  CAS  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    PubMed  CAS  Google Scholar 

  • Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R et al. (1996) Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. JACC 28:247–252

    PubMed  CAS  Google Scholar 

  • Hansen PR (1995) Myocardial reperfusion injury: experimental evidence and clinical relevance. Eur Heart J 16:734–740

    PubMed  CAS  Google Scholar 

  • Harada K, Komuro I, Hayashi D, Sugaya T, Murakami K, Yazaki Y (1998) Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias.Circulation 97:315–317

    CAS  Google Scholar 

  • Hasche ET, Fernandes C, Freedman SB, Jeremy RJ (1995) Relation between ischemia time, infarct size, and left ventricular function in humans. Circulation 92:710–719

    PubMed  CAS  Google Scholar 

  • Heads RJ, Latchman DS, Yellon DM (1996) The molecular basis of adaptation to ischemia in the heart: the role of stress proteins and anti-oxidants in the ischémie and reperfused heart. In: Karmazym N (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 383–407

    Google Scholar 

  • Horrigan MCG, Maclsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG et al. (1996) Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94:1927–1933

    PubMed  CAS  Google Scholar 

  • Hort W, da Canalis S (1965) Untersuchungen an Rattenherzen nach temporärer Unterbindung der linken Kranzarterie. Virchows Arch Pathol Anat 339:61–71

    CAS  Google Scholar 

  • Hort W, Kalbfleisch H, Köhler F, Frenzel H (1977) Entstehen Herzinfarkte coronarogen oder myogen? Verh Dtsch Ges Pathol 61:343

    Google Scholar 

  • Hort W, Kalbfleisch H, Frenzel H (1982) Coronary atherosclerosis and its relation to myocardial infarction. Verh Dtsch Ges Inn Med 88:1298–1301

    Google Scholar 

  • Jennings RB, Steenbergen C jr, Reimer KA (1995) Myocardial ischemia and reperfusion. Monogr Pathol 37 47–80

    PubMed  CAS  Google Scholar 

  • Jestädt R, Sandritter W (1959) Erfahrungen mit der TTC-Reaktion für die pathologisch-anatomische Diagnose des frischen Herzinfarktes. Z Kreislaufforschg 48:802–809

    Google Scholar 

  • Jong W de, Lukovic L, Jones CR, Petty MA (1995) Receptor density in the rat heart following ischaemia and prolonged reperfusion. Clin Exp Pharmacol Physiol Suppl KS279-S280

    Google Scholar 

  • Kalbfleisch H (1975) Eine Methode zur portmortalen Größenbestimmung der Versorgungsgebiete einzelner Herzkranzarterien. Z Kardiol 64:987–994

    PubMed  CAS  Google Scholar 

  • Klein HH, Puschmann S, Schaper J, Schaper W (1981) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch 393:287–297

    CAS  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow“ phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    PubMed  CAS  Google Scholar 

  • Kouretas PC, Kim YD, Cahill PA, Myers AK, To LN, Wang YN et al. (1998) Heparin preserves nitric oxide activity in coronary endothelium during ischemia-reperfusion injury. Ann Thorac Surg 66:1210–1215

    PubMed  CAS  Google Scholar 

  • Kuzuya T, Hoshida S, Nishida M, Kim Y, Fuji H, Kitabatake A et al. (1989) Role of free radicals and neutrophils in canine myocardial reperfusion injury: myocardial salvage by a novel free radical scavenger, 2-octadecylascorbic acid. Cardiovasc Res 23:323–330

    PubMed  CAS  Google Scholar 

  • Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H et al. (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. In: Karmazym N (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 99–114

    Google Scholar 

  • Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC (1989) Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80:1816–1827

    PubMed  CAS  Google Scholar 

  • Liu P, Hock CE, Nagele R, Wong PYK (1997) Formation of nitric oxide, Superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 272 (Heart Circ Physiol 41): H2327–H 2336

    Google Scholar 

  • Lo HM, Kloner RA, Braunwald E (1985) Effect of intracoronary Verapamil on infarct size in the ischémic, reperfused canine heart: critical importance of the timing of treatment. Am J Cardiol 56:672–677

    PubMed  CAS  Google Scholar 

  • Marcus ML, Kerber RE, Ehrhardt J, Abboud FM (1975) Three dimensional geometry of acutely ischémic myocardium. Circulation 52:254–263

    PubMed  CAS  Google Scholar 

  • Martorana PA, Goebel B, Ruetten H, Koehl D, Keil M (1998) Coronary endothelial dysfunction after ischemia and reperfusion in the dog: a functional and morphological investigation. Basic Res Cardiol 93:257–263

    PubMed  CAS  Google Scholar 

  • Matoba S, Tatsumi T, Keira N, Kawahara A, Akashi K, Kobara M et al. (1999) Cardioprotective effect of angiotensin-converting enzyme inhibition against hypoxia/reoxygenation injury in cultured rat cardiac myocytes. Circulation 99:817–822

    PubMed  CAS  Google Scholar 

  • Matsuda M, Fujiwara H, Onodera T, Tanaka M, Wu DJ, Fujiwara T et al. (1987) Quantitative analysis of infarct size, contraction band necrosis, and coagulation necrosis in human autopsied hearts with acute myocardial infarction after treatment with selective intracoronary thrombolysis. Circulation 76:981–989

    PubMed  CAS  Google Scholar 

  • Mattfeldt T, Schwarz F, Schuler G, Hofmann M, Kubier W (1984) Necropsy evaluation in seven patients with evolving acute myocardial infarction treated with thrombolytic therapy. Am J Cardiol 54:530–534

    PubMed  CAS  Google Scholar 

  • Maulik N, Yoshida T, Engelman RM, Deaton D, Flack III JE, Rousou JA et al. (1998) Ischémie preconditioning attenuates apoptotic cell death with ischemia/reperfusion. Mol Cell Biochem 186:139–145

    PubMed  CAS  Google Scholar 

  • McDonald K, Chu C, Francis G, Judd D, Carlyle W, Toher C et al. (1997) The effect of delayed reperfusion following infarction in the rat on structural changes in viable myocardium. Cardiovascular Res 36:347–353

    CAS  Google Scholar 

  • McDonough JL, Arrell DK, Eyk JE van (1999) Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 84:9–20

    PubMed  CAS  Google Scholar 

  • Milavetz JJ, Giebel DW, Christian TF, Schwartz RS, Holmes DR, Gibbons RJ (1998) Time to therapy and salvage myocardial infarction. JACC 31:1246–1251

    PubMed  CAS  Google Scholar 

  • Miura T, Downey JM, Ooiwa H, Ogawa S, Adachi T, Noto T et al. (1989) Progression of myocardial infarction in a collateral flow deficient species. Jpn Heart J 30:695–708

    PubMed  CAS  Google Scholar 

  • Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu DJ et al. (1987) Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 75:1074–1082

    PubMed  CAS  Google Scholar 

  • Naka Y, Stern DM, Pinsky DJ (1996) The pathophysiology and biochemistry of myocardial ischemia, necrosis, and reperfusion. In: Fuster V, Ross R, Topol EJ (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven Publ, Philadelphia, pp 807–817

    Google Scholar 

  • Nichols WW, Mehta J, Wargovich TJ, Franzini D, Lawson D (1989) Reduced myocardial neutrophil accumulation and infarct size following thromboxane synthetase inhibitor or receptor antagonist. Angiology 40:209–221

    PubMed  CAS  Google Scholar 

  • Nonami Y (1997) The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J 61:119–132

    PubMed  CAS  Google Scholar 

  • Pabla R, Curtis MJ (1996) Nitric oxide: an endogenous cardioprotectant? In: Karmazym N (ed) Myocardial ischemia: Mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 71–85

    Google Scholar 

  • Pace NL de, Iskandrian AS, Nadell R, Colby J, Hakki AH (1983) Variation in the size of jeopardized myocardium in patients with isolated left anterior descending coronary artery disease. Circulation 67:988–994

    Google Scholar 

  • Picard S, Rouet R, Duval D, Chesnay F, Gérard JL (1998) KATP channel modulators and myocardial damages induced by ischemia-reprefusion: membrane lipids injury and arrhythmias. J Mol Cell Cardiol 30:2613–2621

    PubMed  CAS  Google Scholar 

  • Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    PubMed  CAS  Google Scholar 

  • Poche R, Arnold G, Nier H (1969) Die Ultrastruktur der Muskelzellen und der Blutcapillaren des isolierten Rattenherzens nach diffuser Ischämie und Hyperkapnie. Virchows Arch Abtlg A Pathol Anat 346:239–268

    CAS  Google Scholar 

  • Raos V, Jeren-Strujic B, Ljutic D, Horvatin-Godler S, Straus B (1995) The effect of intravenous nitroglycerin therapy on infarct size in patients with acute myocardial infarction. Acta Med Croat 49:5–14

    CAS  Google Scholar 

  • Reimer KA, Jennings RB (1979) The “wavefront phenomenon“ of myocardial ischémic cell death. II. Transmural progression of necrosis within the framework of ischémie bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB (1984) Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischémie myocardium without limitation of ultimate infarct size. Lab Invest 51: 655–666

    PubMed  CAS  Google Scholar 

  • Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischémie cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56: 786–794

    PubMed  CAS  Google Scholar 

  • Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork A, Lucchesi BR (1983) Reduction of the extent of ischémie myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    PubMed  CAS  Google Scholar 

  • Rona G, Badonnell MC, Hüttner I, Bier C, Boutet M (1979) Reperfusion effect upon ischémie myocardial injury. Exp Mol Pathol 31:211–218

    PubMed  CAS  Google Scholar 

  • Roth M, Sawa Y, Nagasawa K, Schaper J (1996) Der Effect der leukozytenarmen Reperfusion auf die Wiedererholbarkeit des Herzmuskelgewebes. Z Herz-Thorax-Gefäßchir 10:27–34

    Google Scholar 

  • Schaper W (1990) Der aktuelle Stand der experimentellen Herzinfarktforschung. Z Kardiol 79: 811–818

    PubMed  CAS  Google Scholar 

  • Schaper W, Frenzel H, Hort W (1979a) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74:46–53

    PubMed  CAS  Google Scholar 

  • Schaper W, Frenzel H, Hort W, Winkler B (1979b) Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74:233–239

    PubMed  CAS  Google Scholar 

  • Schmidt SB, Varghese PJ, Bloom S, Yackee JM, Ross AM (1986) The influence of residual coronary stenosis on size of infarction after reperfusion in a canine preparation. Circulation 73:1354–1359

    PubMed  CAS  Google Scholar 

  • Sheppard AJ, Gavin JB (1988) The transmural progression of the no-reflow phenomenon in globally ischémie hearts. Bas Res Cardiol 83:611–617

    CAS  Google Scholar 

  • Shin P, Onishi S, Minamino T, Kitamura H (1981) Histologie mapping of infarcted myocardium. A new method for evaluation of myocardial infarct in autopsy cases. Acta Pathol Jpn 31:559–568

    PubMed  CAS  Google Scholar 

  • Smith III EF, Egan JW, Bugelski PJ, Hillegass LM, Hill DE, Griswold DE (1988) Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am J Physiol 255 (Heart Circ Physiol 24): H1060–H1068

    Google Scholar 

  • Solares J, Garcia-Dorado D, Oliveras J, González MA, Ruiz-Meana M, Barrabés JA et al. (1995) Contraction band necrosis at the lateral borders of the area at risk in reperfused infarcts. Observations in a pig model of in situ coronary occlusion. Virchows Arch 426:393–399

    PubMed  CAS  Google Scholar 

  • Sonntag M, Deussen A, Schultz J, Loncar R, Hort W, Schrader J (1996) Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pflügers Arch Eur J Physiol 432:439–450

    CAS  Google Scholar 

  • Szabo G, Fazekas L, Bährle S, MacDonald D, Stumpf N, Vahl CF et al. (1998) Endothelin-A and-B antagonists protect myocardial and endothelial function after ischemia/reperfusion in a rat heart transplantation model. Cardiovasc Res 39:683–690

    PubMed  CAS  Google Scholar 

  • Taniyama Y, Ito H, Iwakura K, Masuyama T, Hori M, Takiuchi S et al. (1997) Beneficial effect of intracoronary Verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. JACC 30:1193–1199

    PubMed  CAS  Google Scholar 

  • Vecchi E de, Paroni R, Pala MG, Credico G di, Agape V, Gobbi C et al. (1997) Role of leucocytes in free radical production during myocardial revascularisation. Heart 77:449–455

    PubMed  Google Scholar 

  • Wargovich TJ, Mehta J, Nichols WW, Ward MB, Lawson D, Franzini D et al. (1987) Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U-63,557A. Am Heart J 114:1078–1085

    PubMed  CAS  Google Scholar 

  • Wiggers H, Klebe T, Heickendorff L, Host NB, Danielson CC, Baandrup U et al. (1997) Ischemia and reperfusion of the procine myocardium: effect on collagen. Mol Cell Cardiol 29:289–299

    CAS  Google Scholar 

  • Zahler S, Kupatt C, Seligmann C, Kowalski C, Becker BF, Gerlach E (1997) Retention of leucocytes in reperfused, isolated hearts does not cause haemodynamically relevant permanent capillary plugging. Pflügers Arch Eur J Physiol 433:713–720

    CAS  Google Scholar 

F. Pathologische Anatomie des Herzinfarktes

  • Aarseth S, Lange HF (1958) The influence of anticoagulant therapy on the occurence of cardiac rupture and hemopericardium following heart infarction. I. A study of 89 cases of hemopericardium (81 of them cardiac ruptures). Am Heart J 56:250–256

    PubMed  CAS  Google Scholar 

  • Achor RWP, Futch WD, Burchell Hb, Edwards JE (1956) The fate of patients surviving acute myocardial infarction. Arch Intern Med 98:162–173

    CAS  Google Scholar 

  • Adler CP, Sandritter W (1971) Numerische Hyperplasie der Herzmuskelzellen bei Herzhypertrophie. Dtsch Med Wochenschr 96:1895–1897

    PubMed  CAS  Google Scholar 

  • Adler CP, Neuburger M, Herget GW, Mühlbach D (1997) Regeneration process in human myocardium after acute ischaemia-quantitative determination of DNA, cell number and collagen content. Virchows Arch 430:149–153

    PubMed  CAS  Google Scholar 

  • Akiyama K, Gluckman TL, Terhakopian A, Jinadasa PM, Narayan S, Singaswamy S et al. (1997) Apoptosis in experimental myocardial infarction in situ and in the perfused heart in vitro. Tissue and Cell 29:733–743

    PubMed  CAS  Google Scholar 

  • Allwork SP, Bentall HH (1986) Usefulness of the phenomenon of histofluorescence in the identification of early myocardial necrosis. Cardiosvasc Res 20:451–457

    CAS  Google Scholar 

  • Anand IS, Liu D, Chugh SS, Prahash AJC, Gupta S, John R et al. (1997) Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 96:3974–3984

    PubMed  CAS  Google Scholar 

  • Anderson PG, Bishop SP, Digerness SB (1987) Transmural progression of morphologic changes during ischémic contracture and reperfusion in the normal and hypertrophied rat heart. Am J Pathol 129:152–167

    PubMed  CAS  Google Scholar 

  • Anversa P, Kajstura J (1998) Myocyte cell death in the diseased heart. Circ Res 82:1231–1233

    PubMed  CAS  Google Scholar 

  • Anversa P, Sonnenblick EH (1990) Ischémie cardiomyopathy: Pathophysiologic mechanisms. Cardiovasc Dis 33:49–70

    CAS  Google Scholar 

  • Anversa P, Loud AV, Levicky V, Guideri AG (1985) Left ventricular failure induced by myocardial infarction. I. Myocyte hypertrophy. Am J Physiol 248 (Heart Cir Physiol 17): H 876–H 882

    Google Scholar 

  • Anversa P, Beghi C, Kikkawa Y, Olivetti G (1985) Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Pathol 118:484–492

    PubMed  CAS  Google Scholar 

  • Anversa P, Capasso JM, Puntillo E, Sonnenblick EH, Olivetti G (1989) Morphometric analysis of the infarcted heart. Pathol Res Pract 185:544–550

    PubMed  CAS  Google Scholar 

  • Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Capasso JM (1990a) Hypertensive Cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. J Clin Invest 85:994–997

    PubMed  CAS  Google Scholar 

  • Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM (1990b) Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. 67:871–885

    CAS  Google Scholar 

  • Anversa P, Li P, Zhang Y, Olivetti G, Capasso JM (1993) Ischaemic myocardial injury and ventricular remodelling. Cardiovasc Res 27:145–157

    PubMed  CAS  Google Scholar 

  • Anversa P, Olivetti G, Capasso JM (1991) Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 68: 7D–16D

    PubMed  CAS  Google Scholar 

  • Anversa P, Zhang X, Li P, Capasso JM (1992) Chronic coronary artery constriction leads to moderate myocyte loss and left ventricular dysfunction and failure in rats. J Clin Invest 89:618–629

    PubMed  CAS  Google Scholar 

  • Anversa P, Kajstura J, Reiss K, Quaini F, Baldini A, Olivetti G, Sonnenblick EH (1995) Ischémie cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia. Ann NY Acad Sci 752:48–64

    Google Scholar 

  • Anzai T, Yoshikawa T, Shiraki H, Asakura Y, Akaishi M, Mitamura H et al. (1997) C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 96:778–784

    PubMed  CAS  Google Scholar 

  • Appelbaum E, Nicolson GHB (1934) Occlusive diseases of the coronary arteries. An analysis of the pathological anatomy in one hundred sixty-eight cases, with electrocardiographic correlation in thirty-six of these. Am Heart J 10:662–680

    Google Scholar 

  • Armiger LC, Gavin JB (1975) Changes in the microvasculature of ischémie and infarcted myocardium. Lab Invest 33:51–56

    PubMed  CAS  Google Scholar 

  • Asanuma A, Sonoki H, Koga T (1995) Experimental myocardial infarction with cartilaginous and osseous metaplasia in SHR and WKY rats. Exp Anim 44:163–167

    PubMed  CAS  Google Scholar 

  • Ashraf M (1978) Ultrastructural alterations in the mitochondrial membranes of ischémic myocardium as revealed by freeze-fracture technique. J Mol Cell Cardiol 10:535–543

    PubMed  CAS  Google Scholar 

  • Ashraf M, Bloor CM (1976) X-ray microanalysis of mitochondrial deposits in ischémie myocardium. Virchows Arch B Cell Pathol 22:287–297

    PubMed  CAS  Google Scholar 

  • Ashraf M, Halverson CA (1977) Structural changes in the freeze-fractured sarcolemma of ischémie myocardium. Am J Pathol 88:583–594

    PubMed  CAS  Google Scholar 

  • Astorri E, Bolognesi R, Colla B, Chizzola A, Visioli O (1977) Left ventricular hypertrophy: a cytometric study on 42 human hearts. J Mol Cell Cardiol 9:763–775

    PubMed  CAS  Google Scholar 

  • Astorri E, Fiorina P, Gavaruzzi G, Contini GA, Fesani F (1996) Perioperative myocardial cell damage assessed by immunoradiometric assay of β-myosin heavy chain serum levels in patients undergoing coronary bypass surgery. Intern J Cardiology 55:157–162

    CAS  Google Scholar 

  • Azrin MA (1992) The use of antibodies in dincial cardiology. Am Heart J 124:753–768

    PubMed  CAS  Google Scholar 

  • Badir B, Knight B (1987) Fluorescence microscopy in the detection of early myocardial infarction. Forens Sci Internat 34:99–102

    CAS  Google Scholar 

  • Bakst A, Lewis BS, Mitha AS, Gotsman MS (1974) Isolated obstruction of the right coronary artery. Chest 65:18–24

    PubMed  CAS  Google Scholar 

  • Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R et al. (1991) Effects of acidic fibroblast growth factor on normal and ischémie myocardium. Circ Res 69:76–85

    PubMed  CAS  Google Scholar 

  • Bardales RH, Hailey LS, Xie SS, Schaefer RF, Hsu SM (1996) In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 149:821–829

    PubMed  CAS  Google Scholar 

  • Bartling B, Holtz J, Darmer D (1998) Contribution of myocyte apoptosis to myocardial infarction? Basic Res Cardiol 93:71–84

    PubMed  CAS  Google Scholar 

  • Bassand JP (1995) Left ventricular remodelling after acute myocardial infarction-solvend and unresolved issues. Eur Heart J 16(Suppl I): 58–63

    PubMed  Google Scholar 

  • Bäumler C (1872) zit. nach Blumer

    Google Scholar 

  • Bauriedel G, Schluckebier S, Welsch U, Klingel K, Kandolf R, Steinbeck G (1996) Inzidenz und Lokalisation von Apoptosekörpern in humanen Arterioskleroseläsionen. Z Kardiol 85: 509–518

    PubMed  CAS  Google Scholar 

  • Bean WB (1938) Infarction of the heart. III. Clinical course and morphological findings. Ann Intern Med 12:71–94

    Google Scholar 

  • Bedotto JB, Rutherford BD, Hartzler GO (1992) Intramyocardial hemorrhage due to prolonged intracoronary infusion of Urokinase into a totally occluded saphenous vein bypass graft. Cathet Cardiovascul Diagnos 25:52–56

    CAS  Google Scholar 

  • Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E et al. (1994) Structural basis of end-stage failure in ischémie cardiomyopathy in humans. Circulation 89:151–163

    PubMed  CAS  Google Scholar 

  • Bernsmeier A, Schaefer J, Schwarzkopf HJ, Niedermayer W, Schlaak M (1964) Die Bedeutung von Komplikationen für die Prognose des Herzinfarktes. Med Klin 59:606–610

    PubMed  CAS  Google Scholar 

  • Berry CL, Walt J van der, Wyse R (1981) Sarcomere relaxation and ischaemic myocardial injury. Virchows Arch Pathol Anat 390:205–210

    PubMed  CAS  Google Scholar 

  • Beyersdorf F, Allen BS, Buckberg GD, Acar C, Okamoto F, Sjöstrand F et al. (1989) Studies on prolonged acute regional ischemia. I. Evidence for preserved cellular viability after 6 h of coronary occlusion. J Thorac Cardiovasc Surg 98:112–126

    PubMed  CAS  Google Scholar 

  • Bhattacharya S, Liu XJ, Senior R, Jain D, Leppo JA, Lahiri A (1991) 111In antimyosin antibody uptake is related to the age of myocardial infarction. Am Heart J 122:1583–1587

    PubMed  CAS  Google Scholar 

  • Bilbao FJ, Zabalza IE, Vilanova JR, Froufe J (1987) Atrioventricular block in posterior acute myocardial infarction: a clinicopathologic correlation. Circulation 75:733–736

    PubMed  CAS  Google Scholar 

  • Bloom S, Peric-Golia L (1989) Geographic variation in the incidence of myocardial calcification associated with acute myocardial infarction. Hum Pathol 20:726–731

    PubMed  CAS  Google Scholar 

  • Blum A (1996) Interleukin-i in acute myocardial infarction. Lancet 347:56

    PubMed  CAS  Google Scholar 

  • Blum A, Scklarovsky S, Rehavia E, Shohat B (1994) Levels of T-lymphocyte subpopulations, interleukin-1β, and soluble interleukin-2 receptor in acute myocardial infarction. Am Heart J 127:1226–1230

    PubMed  CAS  Google Scholar 

  • Blumer G (1936) Pericarditis epistenocardica. Frank Billings Lecture. JAMA 107:178–181

    Google Scholar 

  • Blumgart HL, Gillighan DR, Schlesinger MD (1941) Experimental studies on effect of temporary occlusion of coronary arteries, production of myocardial infarction. Am Heart 22:374–389

    Google Scholar 

  • Böttger W, Güthert H, Völlmar F, Müller L (1976) Koronarsklerose, Koronarthrombose und Myokardinfarkt im Obduktionsgut. IV. Mitteilung: Der Myokardinfarkt. Zentralbl Allg Pathol 120:487–499

    PubMed  Google Scholar 

  • Bohle RM, Pich S, Gehrke D, Klein HH, Lindert-Heimberg S, Nebendahl K (1993) Interstitial myocardial neutrophil accumulation between 3 and 73H of reperfusion does not significantly affect infarct size in porcine hearts. Am J Cardiovasc Pathol 4:336–342

    PubMed  CAS  Google Scholar 

  • Borchard F (1978) The adrenergic nerves of the normal and the hypertrophied heart. Biochemical, histochemical, electron microscopical and morphometric studies. In: Bargmann W, Doerr W (eds) Normal and pathological anatomy, vol 33. Thieme, Stuttgart

    Google Scholar 

  • Borchard F, Paessens R (1980) Morphology of cardiac nerves in experimental infarction of rat hearts. II. Electron microscopical findings. Virchows Arch A Pathol Anat Histol 386:279–291

    PubMed  CAS  Google Scholar 

  • Borgers M, Piper HM (1986) Calcium-shifts on anoxic cardiac myocytes. A cytochemical study. J Mol Cell Cardiol 18:439–448

    PubMed  CAS  Google Scholar 

  • Böttger W, Güthert H, Völlmar F, Müller L (1976) Koronarsklerose, Koronarthrombose und Myokardinfarkt im Obduktionsgut. VI. Mitteilung. Der Myokardinfarkt. Zentralbl Allgem Pathol 120:487–499

    Google Scholar 

  • Bouchardy B, Majno G (1974) Histopathology of early myocardial infarcts. A new approach. Am J Pathol 74:301–330

    PubMed  CAS  Google Scholar 

  • Brady AJB, Williams FM, Williams TJ (1992) Inflammatory injury in myocardial ischemia. Clin Sci 83:511–518

    PubMed  CAS  Google Scholar 

  • Brean HP, Marks JH, Sosman MC, Schlesinger MJ (1950) Massive calcification in infareted myocardium. Radiology 54:33–42

    PubMed  CAS  Google Scholar 

  • Bretschneider HJ, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann PG (1975) Myocardial resistance and tolerance to ischemia: physiological and biochemical basis. J Cardiovasc Surg 16:241–260

    CAS  Google Scholar 

  • Büchner F, Onishi S (1967) Frühstadien der akutem hypoxischen Veränderung des Herzmuskels im elektronenmikroskopischen Bild und ihre Bedeutung für die akute hypoxische Herzinsuffizienz. Beitr Pathol Anat 135:153–182

    PubMed  Google Scholar 

  • Bueno H, Lopez-Palop R, Bermejo J, Lopez-Sendon JL, Dekan JL (1997) In-hospital outcome of elderly patients with acute inferior myocardial infarction and right ventricular involvement. Circulation 96:436–441

    PubMed  CAS  Google Scholar 

  • Buja LM, Chien KR, Burton KP, Hagler HK, Mukherjee A, Willerson JT (1983) Membrane damage in ischemia. Adv Exper Med Biol 161:421–431

    CAS  Google Scholar 

  • Cabin HS, Clubb KS, Wackers FJT, Zaret BL (1987) Right ventricular myocardial infarction with anterior wall left ventricular infarction: an autopsy study. Am Heart J 113:16–23

    PubMed  CAS  Google Scholar 

  • Camilleri JP, Joseph D, Fabiani JN, Deloche A, Schlumberger M, Relland J et al. (1976) Microcirculatory changes following early reperfusion in experimental myocardial infarction. Virchows Arch A Pathol Anat Histol 369:315–333

    PubMed  CAS  Google Scholar 

  • Camilleri JP, Nlom MO, Joseph D, Michel JB, Barres D, Mignot J (1983) Capillary perfusion patterns in reperfused ischémie subendocardial myocardium: Experimental study using fluorescent dextran. Exper Molec Pathol 39:89–99

    CAS  Google Scholar 

  • Cannon RO, Butany JW, McManus BM, Speir E, Kravitz AB, Bolli R et al. (1983) Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol 52:390–395

    PubMed  CAS  Google Scholar 

  • Capone RJ, Most AS (1978) Myocardial hemorrhage after coronary reperfusion in pigs. Am J Cardiol 41:259–266

    PubMed  CAS  Google Scholar 

  • Carlson EB, Reimer KA, Rankin JS, Peter RH, McCormack KM, Alexander LG (1985) Right ventricular subendocardial infarction in a patient with pulmonary hypertension, right ventricular hypertrophy, and normal coronary arteries. Clin Cardiol 8:499–502

    PubMed  CAS  Google Scholar 

  • Carter G, Gavin JB (1986) Morphological changes in endocardium subjected to global ischaemia. Bas Res Cardiol 81:465–472

    CAS  Google Scholar 

  • Carter G, Gavin JB (1989) Endocardial injury and the pathogenesis of mural thrombosis in the left ventricle. Cardiovasc Res 23:478–483

    PubMed  CAS  Google Scholar 

  • Case 46/1989: Case records of the Massachusetts general hospital (1989) N Engl J Med 321:1391–1402

    Google Scholar 

  • Casscells W, Kimura H, Sanchez JA, Yu ZY, Ferrans VJ (1990) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137:801–810

    PubMed  CAS  Google Scholar 

  • Castagnino HE, Toranzos FA, Milei J, Weiss V, Beigelman R, Sarchi MI et al. (1992) Preservation of the myocardial collagen framework by human growth hormone in experimental infarctions and reduction in the incidence of ventricular aneurysms. Int J Cardiol 35:101–114

    PubMed  CAS  Google Scholar 

  • Caulfield J, Klionsky B (1959) Myocardial ischemia and early infarction: an electron microscopic study. Am J Pathol 35:489–523

    PubMed  CAS  Google Scholar 

  • Cerra FB, Lajos TZ, Montes M, Siegel JH (1975) Hemorrhagic infarction: a reperfusion injury following prolonged myocardial ischémie anoxia. Surgery 78:95–104

    PubMed  CAS  Google Scholar 

  • Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH et al. (1995) Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259

    PubMed  CAS  Google Scholar 

  • Cheung A, Choi A (1990) Infection of mural thrombus: a case report and literature review. J Intern Med 227:281–283

    PubMed  CAS  Google Scholar 

  • Cheung PK, Myers ML, Arnold JMO (1991) Early constrictive pericarditis and anaemia after Dressler’s syndrome and inferior wall myocardial infarction. Br Heart J 65:360–362

    PubMed  CAS  Google Scholar 

  • Chiu CJ, Mersereau WA, Scott HJ (1972) Subendocardial hemorrhagic necrosis. J Thorac Cardiovasc Surg 64:66–75

    PubMed  CAS  Google Scholar 

  • Chiu RCJ, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60:12–18

    PubMed  CAS  Google Scholar 

  • Chow LTC, Chow WH (1992) Multinudeated myogenic giant cell formation: an unusual cellular reaction in acute myocardial infarction. Int J Cardiol 35:268–269

    PubMed  CAS  Google Scholar 

  • Cittadini A, Grossman JD, Napoli R, Katz SE, Strömer H, Smith RJ et al. (1997) Growth hormone attenuates early left ventricular remodeling and improves cardiac function in rats with large myocardial infarction. JACC 29:1109–1116

    PubMed  CAS  Google Scholar 

  • Clerc A, Lévy R (1925) Infarctus auriculaire. Tachyarythmie terminale. Bull Mém Soc Med Hop Paris 3. Ser 49:1603–1607

    Google Scholar 

  • Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995a) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    PubMed  CAS  Google Scholar 

  • Cleutjens JPM, Verluyten MJA, Smits JFM, Daemen MJAP (1995b) Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338

    PubMed  CAS  Google Scholar 

  • Connelly GP, Matthay RA, Sponzo RW, Smith FE (1974) Salmonella typhimurium abscess formation in a calcified ventricular aneurysm. Chest 66:457–459

    PubMed  CAS  Google Scholar 

  • Connolly EP, Littmann D (1951) Coronary arteriosclerosis and myocardial hypertrophy. N Engl J Med 245:753–756

    PubMed  CAS  Google Scholar 

  • Connelly C, Vogel WM, Hernandez YM, Apstein CS (1982) Movement of necrotic wavefront after coronary artery occlusion in rabbit. Am J Physiol 243: H682–H690

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 266:1812–1816

    PubMed  CAS  Google Scholar 

  • Cristal N, Peterburg I, Inbar-Yanai I (1979) Atrial infarction leading to rupture. Br Heart J 41: 350–353

    PubMed  CAS  Google Scholar 

  • Croisille P, Moore CC, Judd RM, Lima JAC, Arai M, McVeigh ER et al. (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-Day-old reperfused canine infarcts. Circulation 99:284–291

    PubMed  CAS  Google Scholar 

  • Crozatier B, Ashraf M, Franklin D, Ross J jr (1977) Sarcomere length in experimental myocardial infarction: evidence for sarcomere overstretch in dyskinetic ventricular regions. J Mol Cell Cardiol 9:785–797

    PubMed  CAS  Google Scholar 

  • Cushing EH, Feil HS, Stanton EJ, Wartman WB (1942) Infarction of the cardiac auricles (atrial). Clinical, pathological, and experimental studies. Br Heart J 4:17–34

    PubMed  CAS  Google Scholar 

  • Dalvi B (1990) Left ventricular thrombi and reduced postinfarction mortality. JACC 16:247–248

    PubMed  CAS  Google Scholar 

  • David H, Hecht A (1961) Submikroskopische Strukturveränderungen der Herzmuskelkapillaren im Infarktgebiet. Zentralbl Allg Pathol 103:68–73

    PubMed  CAS  Google Scholar 

  • Davies MJ (1971) Pathology of the conducting tissue of the heart. Butterworths, London

    Google Scholar 

  • Davis D, Blumgart HL (1937) Cardiac hypertrophy, its relation to coronary arteriosclerosis and congestive heart failure. Ann Intern Med 11:1024–1038

    Google Scholar 

  • Davis M JE, Ireland MA (1986) Effect of early anticoagulation on the frequency of left ventricular thrombi after anterior wall acute myocardial infarction. Am J Cardiol 57:1244–1247

    PubMed  CAS  Google Scholar 

  • Dean JH, Gallagher PJ (1980) Cardiac ischemia and cardiac hypertrophy. An autopsy study. Arch Pathol Lab Med 104:175–178

    PubMed  CAS  Google Scholar 

  • de Carvalho Frimm C, Sun Y, Weber KT (1997) Angiotensin II receptor blockade and myocardial fïbrosis of the infarcted rat heart. J Lab Clin Med 129:439–446

    PubMed  Google Scholar 

  • Denker MW, Bergman RA, Nachlas MM (1969) Ultrastructural changes in myocardium during experimental ischemia. Hopkins Med J 124:311–329

    CAS  Google Scholar 

  • Derias NW, Adams CWM (1979) The non-specific nature of the myocardial wavy fibre. Histopathology 3:241–245

    PubMed  CAS  Google Scholar 

  • Desselberger U, Schneider HH (1970) Über das Verhalten der Glutamat-Oxalacetat-Transaminase beim experimentellen Herzinfarkt der Ratte. Vergleichende histochemische und plasmachemische Untersuchungen. Virchows Arch A Pathol Anat Histol 351:347–364

    CAS  Google Scholar 

  • Domenicucci S, Chiarella F, Bellotti P, Bellone P, Lupi G, Vecchio C (1999) Long-term prospective assessment of left ventricular thrombus in anterior wall acute myocardial infarction and implications for a rational approach to embolie risc. Am J Cardiol 83:519–524

    PubMed  CAS  Google Scholar 

  • Donald DE, Essex HE (1954) Massive destruction of the myocardium of the canine right ventricle. A study of the early and late effects. Am J Physiol 177:477–488

    PubMed  CAS  Google Scholar 

  • Doran JP, Howie AJ, Townend JN, Bonser RS (1996) Detection of myocardial infarction by immunohistological staining for C9 on formalin fixed, paraffin wax embedded sections. J Clin Pathol 49:34–37

    PubMed  CAS  Google Scholar 

  • Dressler W (1956) A post-myocardial-infarction syndrome. Preliminary report of a complication resembling idiopathic, recurrent, benign pericarditis. JAMA 160:1379–1383

    CAS  Google Scholar 

  • Dropmann K (1960) Über die Anordnung, die Feinstruktur und die Entstehung von bindegewebigen Fasern in Herzmuskelnarben unter besonderer Berücksichtigung der Bildung elastischer Fasern. Frankf Z Pathol 70:311–323

    PubMed  CAS  Google Scholar 

  • Dusek J, Rona G, Kahn DS (1971) Healing process in the marginal zone of an experimental myocardial infarct. Findings in the surviving cardiac muscle cells. Am J Pathol 62:321–332

    PubMed  CAS  Google Scholar 

  • Eaton LW, Bulkley BH (1981) Expansion of acute myocardial infarction: its relationship to infarct morphology in a canine model. Circ Res 49:80–88

    PubMed  CAS  Google Scholar 

  • Eggers P, Vogelberg K, Zylmann E (1962) Klinische Studie an 570 Herzinfarkten. Münchn Med Wochenschr 104:2545–2548

    Google Scholar 

  • Eichbaum FW (1995) “Wavy” myocardial fibers in spontaneous and experimental adrenergic cardiopathies. Cardiology 60:358–365

    Google Scholar 

  • Elvan A, Zipes DP (1998) Right ventricular infarction causes heterogeneous autonomie denervation of the viable peri-infarct area. Circulation 97:484–492

    PubMed  CAS  Google Scholar 

  • Engels W, Reiters PHCM, Daeman MJAP, Smits JFS, Vusse GJ van der (1995) Transmural changes in mast cell density in rat heart after infarct induction in vivo. J Pathol 177:423–429

    PubMed  CAS  Google Scholar 

  • Erhardt LR (1974) Clinical and pathological observations in different types of acute myocardial infarction. A study of 84 patients decreased after treatment in a coronary care unit. Acta Med Scand Suppl 560:1–78

    PubMed  CAS  Google Scholar 

  • Erlebacher JA, Weiss JL, Eaton LW, Kallman C, Weisfeldt ML, Bulkley BH (1982) Late effects of acute infarct dilation on heart size: a two dimensional echocardiographic study. Am J Cardiol 49:1120–1126

    PubMed  CAS  Google Scholar 

  • Factor SM, Sonnenblick EH, Kirk ES (1978) The histologie border zone of acute myocardial infarction-islands or peninsulas? Am J Pathol 92:111–124

    PubMed  CAS  Google Scholar 

  • Factor SM, Okun EM, Kirk ES (1981) The histological lateral border of acute canine myocardial infarction. A function of microcirculation. Circul Res 48:640–649

    CAS  Google Scholar 

  • Factor SM, Flomenbaum M, Zhao MJ, Eng C, Robinson TF (1988) The effects of acutely increased ventricular cavity pressure on intrinsic myocardial connective tissue. JACC 12:1582–1589

    PubMed  CAS  Google Scholar 

  • Falkenhahn M, Franke F, Bohle RM, Zhu YC, Stauss HM, Bachmann S et al. (1995) Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 25:219–226

    PubMed  CAS  Google Scholar 

  • Feil H, Cushing EH, Hardesty IT (1938) Accuracy in diagnosis and localization of myocardial infarction. Am Heart J 15:721–738

    Google Scholar 

  • Ferrans VJ, Roberts WC (1971/72) Myocardial ultrastructure in acute and chronic hypoxia. Cardiology 56:144–160

    PubMed  CAS  Google Scholar 

  • Filipchuk NG, Peshock RM, Malloy CR, Corbett JR, Rehr RB, Buja LM et al. (1986) Detection and localization of recent myocardial infarction by magnetic resonance imaging. Am J Cardiol 58:214–219

    PubMed  CAS  Google Scholar 

  • Finestone AJ, Geschickter CF (1949) Bone formation in the heart. Am J Clin Pathol 19:974–980

    PubMed  CAS  Google Scholar 

  • Finley RW, Marr JJ (1985) Anaerobic myocardial abscess following myocardial infarction. Am J Med 78:513–514

    PubMed  CAS  Google Scholar 

  • Fishbein MC, Maclean D, Maroko PR (1978a) The histopathologic evolution of myocardial infarction. Chest 73:843–849

    PubMed  CAS  Google Scholar 

  • Fishbein MC, Maclean D, Maroko PR (1978b) Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution. Am J Pathol 90:57–70

    PubMed  CAS  Google Scholar 

  • Fishbein MC, Ganz W, Rit JY, Lando U, Kanmatsuse K, Mercier JC (1982) Relevance of hemorrhage after reperfusion in acute myocardial infarction. In: Kaltenbach M et al. (eds) Transluminal coronary angioplasty and intracoronary thrombolysis. Springer, Berlin Heidelberg New York, pp 284–290

    Google Scholar 

  • Forman MB, Wilson BH, Sheller JR, Kopelman HA, Vaughn WK, Virmani R et al. (1987) Right ventricular hypertrophy is an important determinant of right ventricular infarction complicating acute inferior left ventricular infarction. JACC 10:1180–1187

    PubMed  CAS  Google Scholar 

  • Fraker TD, Wagner GS, Rosati RA (1979) Extension of myocardial infarction: incidence and prognosis. Circulation 60:1126–1129

    PubMed  Google Scholar 

  • Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB. Mendoza LH et al. (1998) Resident cardiac mast cells degranulate and release preformed TNF-α initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    PubMed  CAS  Google Scholar 

  • Frank H, Weissleder R, Papisov M (1995) Darstellung und Quantifizierung von akuten Myokardinfarkten mittels Antikörper-gebundenem MR-Kontrastmittel. Z Kardiol 84:311–315

    PubMed  CAS  Google Scholar 

  • Frank JS, Beydler S, Wheeler N, Shine KI (1988) Myocardial sarcolemma in ischemia: a quantitative freeze-fracture study. Am J Physiol 255: H 467–H 475

    CAS  Google Scholar 

  • Freude B, Masters TN, Kostin S, Robicsek F, Schaper J (1998) Cardiomyocyte apoptosis in acute and chronic conditions. Basic Res Cardiol 93:85–89

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Saimyoji H, Kawai C, Hazama F, Haebara H (1977) Left atrial infarction with saddle embolism. Jpn Heart J 18:272–276

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Onodera T, Tanaka M, Fujiwara T, Wu DJ, Kawai C et al. (1985) Macroscopic hemorrhagic infarction following selective coronary thrombolysis in acute myocardial infarction. Jpn Circul J 49:649–652

    CAS  Google Scholar 

  • Fujiwara H, Onodera T, Tanaka M, Fujiwara T, Wu DJ, Kawai C et al. (1986) A dinicopathologic study of patients with hemorrhagic myocardial infarction treated with selective coronary thrombolysis with urokinase. Circulation 73:749–757

    PubMed  CAS  Google Scholar 

  • Fukuda K, Kojiro M, Chiu JF (1993) Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: apoptosis or necrosis? Am J Pathol 142:935–946

    PubMed  CAS  Google Scholar 

  • Fulton WFM (1965) The coronary arteries. Thomas, Springfield/III, p 155 ff

    Google Scholar 

  • Gabbiani G (1998) Evolution and clinical implications of the myofibroblast concept. Cardiovasc Res 38:545–548

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    PubMed  CAS  Google Scholar 

  • Ganote C, Armstrong S (1993) Ischaemia and the myocyte cytosceleton: review and speculation. Cardiovasc Res 27:1387–1403

    PubMed  CAS  Google Scholar 

  • Ganote CE, Seabra-Gomes R, Nayler WG, Jennings RB (1975) Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol 80:419–450

    PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Théroux P, Desco M, Solares J, Elizaga J, Fernandez-Avilés F et al. (1989) Cellto-cell interaction: a mechanism to explain wave-front progression of myocardial necrosis. Am J Physiol 256: H1266–H1273

    PubMed  CAS  Google Scholar 

  • Gardin JM, Singer DH (1981) Atrial infarction. Importance, diagnosis, and localization. Arch Intern Med 141:1345–1348

    PubMed  CAS  Google Scholar 

  • Gaudron P, Eilles C, Ertl G, Kochsiek K (1990) Early remodelling of the left ventricle in patients with myocardial infarction. Eur Heart J 11(Suppl B): 139–146

    PubMed  Google Scholar 

  • Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763

    PubMed  CAS  Google Scholar 

  • Gavin JB, Wheeler EE, Herdson PB (1973) Scanning electron microscopy of the endocardial endothelium overlying early myocardial infarcts. Pathology 5:145–148

    PubMed  CAS  Google Scholar 

  • Geer JC, Crago CA, Little WC, Gardner LL, Bishop SP (1980) Subendocardial ischémic myocardial lesions associated with severe coronary atherosclerosis. Am J Pathol 98:663–679

    PubMed  CAS  Google Scholar 

  • Georas CS, Dahlquist E, Cutts FB (1963) Subendocardial infarction. Correlation of clinical, electrocardiographic and pathologic data in 17 cases. Arch Intern Med 111:488–497

    PubMed  CAS  Google Scholar 

  • Giannuzzi P, Temporelli PL, Corra U, Gattone M, Giordano A, Tavazzi L (1997) Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction. Results of the exercise in left ventricular dysfunction (ELVD trial. Circulation 96:1790–1797

    PubMed  CAS  Google Scholar 

  • Gidh-Jain M, Huang B, Jain P, Gick G, El-Sherif N (1998) Alterations in cardiac gene expression during ventricular remodeling following experimental myocardial infarction. J Mol Cell Cardiol 30:627–637

    PubMed  CAS  Google Scholar 

  • Goder G (1960) Der akute tödliche Myokardinfarkt. Z Kreislaufforschg 49:105–120

    CAS  Google Scholar 

  • Golia G, Rossi A, Anselmi M, Prioli MA, Caraffî G, Marino P et al. (1997) Opposite effects of the remodeling of infarcted and non-infarcted myocardium on left ventricular function early after infarction in humans. An echocardiographic study in patients examined before and after myocardial infarction. Int J Cardiol 60:81–90

    PubMed  CAS  Google Scholar 

  • Goldstein RE (1990) Involvement of leucocytes and leukotrienes in ischaemic dysfunction of the coronary microcirculation. Eur Heart J 11(Suppl B): 16–26

    PubMed  CAS  Google Scholar 

  • Gore I, Arons W (1949) Calcification of the myocardium. A pathologic study of thirteen cases. Arch Pathol 48:1–12

    CAS  Google Scholar 

  • Gotlieb A, Masse S, Allard J, Dobell A, Huang SN (1977) Concentric hemorrhagic necrosis of the myocardium. A morphological and clinical study. Hum Pathol 8:27–37

    PubMed  CAS  Google Scholar 

  • Gottdiener JS, Roberts WC (1998) Severe mitral régurgitation late after healing of myocardial infarction from calcification of the posteromedial left ventricular papillary muscle. Am J Cardiol 81:662

    PubMed  CAS  Google Scholar 

  • Gottwik MG, Kirk ES, Kennett FF, Weglicki WB (1978) Release of lysosomal enzymes during ischémie injury of canine myocardium. In: Kobayashi T, Ito Y, Rona G (eds) Cardiac adaptation. Recent Advances in Studies on Cardiac Structure and Metabolism 12:431–438

    Google Scholar 

  • Gould SE (1968) Pathology of the heart and blood vessels. Thomas, Springfield, 111.

    Google Scholar 

  • Grajek S, Lesiak M, Pyda M, Zajak M, Paradowski S, Kaczmarek E (1993) Hypertrophy or hyperplasia in cardiac muscle. Post-mortem human morphometric study. Eur Heart J 14:40–47

    PubMed  CAS  Google Scholar 

  • Green CR, Severs NJ (1993) Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry 99:105–120

    PubMed  CAS  Google Scholar 

  • Grève G (1990) Ultrastructural findings in hearts with regional ischemia. Virchows Arch A Pathol Anat 417:1–3

    Google Scholar 

  • Grève G, Stangeland L (1992) Relationship between morphological signs of cell injury in myocardial ischaemia. Acta Anat 144:135–144

    PubMed  Google Scholar 

  • Grève G, Rotevatn S, Grong K, Stangeland L (1988) Cellular morphometric changes in cat hearts subjected to three hours of regional ischaemia. Virchows Arch A Pathol Anat Histopathol 412:205–213

    PubMed  Google Scholar 

  • Grève G, Rotevatn S, Stangeland L (1989) Morphological changes across the border zone of cat hearts subjected to regional ischaemia. Virchows Arch A Pathol Anat 415:323–333

    Google Scholar 

  • Grève G, Rotevatn S, Svendby K, Grong K (1990) Early morphologic changes in cat heart muscle cells after acute coronary artery occlusion. Am J Pathol 136:273–283

    PubMed  Google Scholar 

  • Griepentrog F (1951) Chronisches Herzaneurysma mit Angina pectoris durch Hypoplasie einer Herzkranzarterie. Z Kreislaufforschg 40:432–436

    CAS  Google Scholar 

  • Grimm D, Cameron D, Griese DP, Riegger GAJ, Kroner EP (1998) Differential effects of growth hormone on cardiomyocyte and extracellular matrix protein remodeling following experimental myocardial infarction. Cardiovasc Res 40:297–306

    PubMed  CAS  Google Scholar 

  • Gwechenberger M, Mendoza LH, Youker KA, Frangogiannis NG, Smith CW, Michael LH et al. (1999) Cardiac myocytes produce interleukin 6 in culture and in viable border zone of reperfused infarctions. Circulation 99:546–551

    PubMed  CAS  Google Scholar 

  • Haber E (1985) Quantifying cell death in the myocardium: Myosin specific antibody in the evaluation of membrane defects. J Mol Cell Cardiol 17(Suppl 2) 153–158

    Google Scholar 

  • Haber E, Katus HA, Hurrell JG, Matsueda GR, Ehrlich P, Zurawski VR jr et al. (1982) Detection and quantification of myocardial cell death: Application on monoclonal antibodies specific for cardiac myosin. J Mol Cell Cardiol 14(Suppl 3): 139–146

    PubMed  CAS  Google Scholar 

  • Hackel DB, Wagner G, Ratliff NB, Cies A, Estes EH (1972) Anatomic studies of the cardiac conducting system in acute myocardial infarction. Am Heart J 83:77–81

    PubMed  CAS  Google Scholar 

  • Hammerman H, Kloner RA, Hale S, Schoen FJ, Braunwald E (1983) Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function. Circulation 68:446–452

    PubMed  CAS  Google Scholar 

  • Hanrath P, Bleifeld W, Mathey D (1974) Einfluß der Infarktlokalisation auf die Hämodynamik beim frischen Myokardinfarkt. Verh Dtsch Ges Kreislaufforschg 40:446–448

    CAS  Google Scholar 

  • Hart DNJ, Fabre JW (1981) Demonstration and characterization of la-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. E Exper Med 153: 347–361

    Google Scholar 

  • Hartikainen J, Kuikka J, Mäntysaari M, Länsimies E, Pyörälä K (1996) Sympathetic reinnervation after acute myocardial infarction. Am J Cardiol 77:5–9

    PubMed  CAS  Google Scholar 

  • Haugland JM, Asinger RW, Mikell FL, Elsperger J, Hodges M (1984) Embolic potential of left ventricular thrombi detected by two-dimensional echocardiography. Circulation 70:588–598

    PubMed  CAS  Google Scholar 

  • Haupt HM, Hutchins GM, Moore GW (1983) Right ventricular infarction: role of the moderator band artery in determining infarct size. Circulation 67:1268–1272

    PubMed  CAS  Google Scholar 

  • Hausamen TU, Poche R (1965) Die Ultrastruktur des Herzmuskels der Ratte nach einmaligen und wiederholten Unterdruckversuchen. Virchows Arch Pathol Anat 339:212–224

    CAS  Google Scholar 

  • Hearse DJ, Yellon DM (1982) The “border zone“ and myocardial protection: a time for reassessment? Acta Med Scand (Suppl) 651:37–46

    Google Scholar 

  • Hecht A, Wehr M (1985) Die sog. Abblassung des Herzmuskels und ihre Wertigkeit als Ausdruck einer ischämischen Myokardschädigung. Zentralbl Allg Pathol Pathol Anat 130:467–471

    CAS  Google Scholar 

  • Heipel K (1976) Rechtsinfarkt des Herzens. Literatur Übersicht und eigene Beobachtung. Med Diss Marburg

    Google Scholar 

  • Hellerstein HK, Martin JW (1947) Incidence of thrombo-embolic lesions accompanying myocardial infarction. Am Heart J 33:443–452

    PubMed  CAS  Google Scholar 

  • Hellstrom HR (1979) Chronic cardiac denervation, infarct size, and myocardial blood flow. Am Heart J 97:270–271

    PubMed  CAS  Google Scholar 

  • Henning R, Lundman T (1975) Swedish co-operative CCU study. A study of 2008 patients with acute myocardial infarction from twelve Swedish hospitals with coronary care unit. Part I: a description of the early stage. Acta Med Scand (Suppl) 586:1–64

    CAS  Google Scholar 

  • Herdson PB, Sommers HM, Jennings RB (1965) A comparative study of the fine structure of normal and ischémie dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am J Pathol 46:367–386

    PubMed  CAS  Google Scholar 

  • Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51

    PubMed  CAS  Google Scholar 

  • Heusch G (1985) Sympathische Herznerven und Myokardischämie. Tierexperimentelle Untersuchungen. Thieme, Stuttgart

    Google Scholar 

  • Hevelke G, Schmidt H (1961) Statistische Untersuchungen zum Auftreten und zur Lokalisation von Herzinfarkten bei Stoffwechselgesunden und Diabetikern in Abhängigkeit von Alter und Geschlecht. Dtsch Zschr Verdauungs-Stoffwechselerkr 21:11–22

    CAS  Google Scholar 

  • Heyman TD, Culling W (1994) Cardiac tamponade after thrombolysis. Postgrad Med J 70:455–456

    Google Scholar 

  • Higginson LAJ, Beanlands DS, Nair RC, Temple V, Sheldrick K (1983) The time course and characterization of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation 67:1024–1031

    PubMed  CAS  Google Scholar 

  • Hirose K, Reed JE, Rumberger JA (1995) Serial changes in regional right ventricular free wall and left ventricular septal wall lengths during the first 4 to 5 years after index anterior wall myocardial infarction. JACC 26:394–400

    PubMed  CAS  Google Scholar 

  • Hirsch EF (1970) The innervation of the vertebrate heart. Thomas, Springfield 111.

    Google Scholar 

  • Hochman JS, Bulkley BH (1982) Expansion of acute myocardial infarction: an experimental study. Circulation 65:1446–1450

    PubMed  CAS  Google Scholar 

  • Hochman JS, Healy B (1986) Effect of exercise on acute myocardial infarction in rats. JACC 7: 126–132

    PubMed  CAS  Google Scholar 

  • Hoffmeister HM, Kaiser W, Hanke H, Müller-Schauenburg W, Karsch KR, Feine U et al. (1985) Erkennung, Quantifizierung und Lokalisation von Myokardinfarkten: Vergleich der Thallium-Single-Photon-Emissions-Computertomographie mit biplaner Angiographie. Z Kardiol 74: 625–632

    PubMed  CAS  Google Scholar 

  • Hokimoto S, Yasue H, Fujimoto K, Yamamoto H, Nakao K, Kaikita K et al. (1996) Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction. Circulation 94:1513–1518

    PubMed  CAS  Google Scholar 

  • Holmes JW, Nunez JA, Covell JW (1997) Functional implications of myocardial scar structure. Am J Physiol 272: H 2123–H 2130

    CAS  Google Scholar 

  • Holtz J (1993) Myokardhypertrophie nach Myokardinfarkt: Welche Bedeutung haben die Phänotypveränderungen der Kardiozyten? Herz 18:387–394 (Sonderheft 1)

    PubMed  Google Scholar 

  • Holtz J, Heinrich H (1999) Apoptose-was ist das? Bedeutung bei koronarer Herzkrankheit und Infarkt. Herz 24:1916–1210

    Google Scholar 

  • Hort W (1955) Quantitative Untersuchungen über die Capillarisierung des Herzmuskels im Erwachsenen-und Greisenalter, bei Hypertrophie und Hpyerplasie. Virchows Arch 327:560–576

    PubMed  CAS  Google Scholar 

  • Hort W (1960) Untersuchungen zur funktionellen Morphologie des Myokards. Klin Wochenschr 38:785–790

    PubMed  CAS  Google Scholar 

  • Hort W (1962) Hämorrhagische Infarzierung des Herzens bei angeborenem Herzbeuteldefekt. Zentralbl Pathol 103:392–399

    CAS  Google Scholar 

  • Hort W (1965) Ventrikeldilatation und Muskelfaserdehnung als früheste morphologische Befunde beim Herzinfarkt. Virchows Arch Pathol Anat 339:72–82

    CAS  Google Scholar 

  • Hort W (1968) Mikroskopische Beobachtungen an menschlichen Infarktherzen. Virchows Arch Pathol Anat 345:61–70

    CAS  Google Scholar 

  • Hort W (1979) Morphologie des frischen Herzmuskelinfarktes beim Menschen. Verh Dtsch Ges Herz-Kreislaufforschg 45:7–15

    Google Scholar 

  • Hort W (1993) Strukturdynamik des Myokard. In: Doerr W, Seifert G (Hrsg) Spezielle pathologische Anatomie, Bd 22/I: Pathologische Anatomie des Herzens und seiner Hüllen. Springer, Berlin Heidelberg New York Tokyo, pp 201–236

    Google Scholar 

  • Hort W, da Canalis S, Just HJ (1964a) Untersuchungen bei chronischem experimentellen Herzinfarkt der Ratte. Arch Kreislaufforschg 44:288–299

    CAS  Google Scholar 

  • Hort W, Just H, da Canalis S (1964b) Untersuchungen bei ausgedehntem experimentellen Infarkt der linken Kammerwand. Verh Dtsch Ges Kreislaufforschg 30:288–292

    CAS  Google Scholar 

  • Hort W, da Canalis S (1965a) Untersuchungen an Rattenherzen mit Dauerligatur der linken Kranzarterie unter besonderer Berücksichtigung der Infarktgröße. Virchows Arch Pathol Anat 339:53–60

    CAS  Google Scholar 

  • Hort W, da Canalis S (1965b) Untersuchungen an Rattenherzen nach temporärer Unterbindung der linken Kranzarterie. Virchows Arch Pathol Anat 339:61–71

    CAS  Google Scholar 

  • Hort W, Just H, Fischer K, Lüth G (1968) Infarktmuster in menschlichen Herzen. Virchows Arch Abt A Pathol Anat 345:45–60

    CAS  Google Scholar 

  • Hort W, Moosdorf R, Kalbfleisch H, Köhler F, Milzner-Schwarz U, Frenzel H (1977) Postmortale Untersuchungen über Lokalisation und Form der stärksten Stenosen in den Koronararterien und ihre Beziehung zu den Risikofaktoren. Z Kardiol 66:333–340

    PubMed  CAS  Google Scholar 

  • Hort W, Zeiler J (1978) Right ventricular wall in coronary heart disease: a postmortem study. In: Kaltenbach M, Lichtlen P, Balcon R, Bussmann WD (eds) Coronary heart disease. 3rd International Symposion Frankfurt February 1978. Thieme, Stuttgart, pp 215–219

    Google Scholar 

  • Hort W, Hort I (1981) Von der Amöbe zum schlagenden Herzen: Evolution und Feinstruktur des intrazellulären Bewegungsapparates. Klin Wochenschr 59:915–927

    PubMed  CAS  Google Scholar 

  • Hotes C Hort W (1968) Herzgewichte bei frischen und vernarbten Infarkten, bei Herzruptur und Herzwandaneurysma. Z Kreislaufforschg 57:1040–1049

    CAS  Google Scholar 

  • Hoyt R, Cohen ML, Corr PB, Saffitz JE (1990) Alterations of intercellular junctions induced by hypoxia in canine myocardium. Am J Physiol 258: H1439–H1448

    PubMed  CAS  Google Scholar 

  • Hu BJ, Chen YC, Zhu JZ (1996) Immunohistochemical study of fibronectin for postmortem diagnosis of early myocardial infarction. Forens Sci Internat 78:209–217

    CAS  Google Scholar 

  • Huggins G, Fuster V (1994) Left ventricular thromboembolism after myocardial infarction. Heart Dis Stroke 3:355–360

    PubMed  CAS  Google Scholar 

  • Hutchins GM, Bannayan GA (1971) Development of endocardial fibroelastosis following myocardial infarction. Arch Pathol 91:113–118

    PubMed  CAS  Google Scholar 

  • Hutchins GM, Bulkley BH (1978) Infarct expansion versus extension: two different complications of acute myocardial infarction. Am J Cardiol 41:1127–1132

    PubMed  CAS  Google Scholar 

  • Hutter JJ, Mestril R, Tarn EKW, Sievers RE, Dillmann WH, Wolfe CL (1996) Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94:1408–1411

    PubMed  CAS  Google Scholar 

  • Ikeda U, Ohkawa F, Seino Y, Yamamoto K, Hidaka Y, Kasahara T et al. (1992) Serum interleukin 6 levels become ejevated in acute myocardial infarction. J Mol Cell Cardiol 24:579–584

    PubMed  CAS  Google Scholar 

  • Ikeda U, Ikeda M, Kano S, Shimada K (1994) Neutrophil adherence to rat cardiac myocyte by proinflammatory cytokines. J Cardiovasc Pharmacol 23:647–652

    PubMed  CAS  Google Scholar 

  • Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH (1999) Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 84:21–33

    PubMed  CAS  Google Scholar 

  • Inoue K, Kusachi S, Niiya K, Kajikawa Y, Tsuji T (1995) Sequential changes in the distribution of type I and III collagens in the infarct zone: immunohistochemical study of experimental myocardial infarction in the rat. Coron Artery Dis 6:153–158

    PubMed  CAS  Google Scholar 

  • Ishibashi-Ueda H, Imakita M, Fujita H, Katsuragi M, Yutani C (1992) Cardiac rupture complicating hemorrhagic infarction after intracoronary thrombolysis. Acta Pathol Jpn 42:504–507

    PubMed  CAS  Google Scholar 

  • Isner JM, Roberts WC (1978) Right ventricular infarction complicating left ventricular infarction secondary to coronary heart disease. Frequency, location, associated findings and significance from analysis of 236 necropsy patients with acute or healed myocardial infarction. Am J Cardiol 42:885–894

    PubMed  CAS  Google Scholar 

  • Isner JM, Roberts WC (1983) Double rupture of the heart: a consequence of the unique pathology of right ventricular myocardial infarction. Circulation 68:111–392

    Google Scholar 

  • Isner JM, Fortin RV, Katsas GG, Foster EA (1982) Wavy myocardial fibers: relation of anatomical distribution to specificity for acute myocardial infarction. Lab Invest 46:39A–40A

    Google Scholar 

  • Ito G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M et al. (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    PubMed  Google Scholar 

  • Iwai K, Hori M, Kitabatake A, Kurihara H, Uchida K, Inoue M et al. (1990) Disruption of microtubules as an early sign of irreversible ischémic injury. Immunohistochemical study of in situ canine hearts. Circ Res 67:694–706

    PubMed  CAS  Google Scholar 

  • Jaffé R (1928) Über plötzliche Todesfälle und ihre Pathogenese. Dtsch Med Wochenschr 54:1010–1012

    Google Scholar 

  • James TN (1985) Anatomy of the crista supraventricularis: its importance for understanding right ventricular function, right ventricular infarction and related conditions. JACC 6:1083–1095

    PubMed  CAS  Google Scholar 

  • James TN (1998) The variable morphological coexistence of apoptosis and necrosis in human myocardial infarction: significance for understanding its pathogenesis, clincial course, diagnosis and prognosis. Coron Artery Dis 9:291–308

    PubMed  CAS  Google Scholar 

  • Jennings RB, Reimer KA (1981) Lethal myocardial ischémie injury. Am J Pathol 102:241–255

    PubMed  CAS  Google Scholar 

  • Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischémie. Annu Rev Med 42:225–246

    PubMed  CAS  Google Scholar 

  • Jennings RB, Baum JH, Herdson PB (1965) Fine structural changes in myocardial ischemia injury. Arch Pathol 79:135–143

    PubMed  CAS  Google Scholar 

  • Jennings RB, Ganote CE, Reimer KA (1975) Ischémie tissue injury. Am J Pathol 81:179–198

    PubMed  CAS  Google Scholar 

  • Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–214

    PubMed  CAS  Google Scholar 

  • Jestädt R, Sandritter W (1959) Erfahrungen mit der TTC-Reaktion für die pathologisch-anatomische Diagnoe des frischen Herzinfarktes. Z Kreislaufforschg 48:802–809

    Google Scholar 

  • Jodalen H, Stangeland L, Grong K, Vik-Mo H, Lekven J (1985) Lipid accumulation in the myocardium during acute regional ischaemia in cats. J Mol Cell Cardiol 17:973–980

    PubMed  CAS  Google Scholar 

  • Johnson RC, Crissman RS, DiDio LJA (1979) Endocardial alterations in myocardial infarction. Lab Invest 40:183–193

    PubMed  CAS  Google Scholar 

  • Jones CE, Devous ND, Thomas JX jr, Dupont E (1978) The effect of chronic cardiac denervation on infarct size following acute coronary occlusion. Am Heart J 95:738–746

    PubMed  CAS  Google Scholar 

  • Jordan RA, Miller RD, Edwards JE, Parker RL (1952) Thromboembolism in acute and in healed myocardial infarction. I. Intracardiac mural thrombosis. Circulation 6:1–6

    PubMed  CAS  Google Scholar 

  • Ju H, Zhao S, Jassal DS, Dixon IMC (1997) Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovasc Res 35:223–232

    PubMed  CAS  Google Scholar 

  • Ju H, Zhao S, Tappia PS, Panagia V, Dixon IMC (1998) Expression of G and PLC-β in scar and border tissue in heart failure due to myocardial infarction. Circulation 97:892–899

    PubMed  CAS  Google Scholar 

  • Jugdutt BI (1985) Delayed effects of early infarct-limiting therapies on healing after myocardial infarction. Circulation 72:907–914

    PubMed  CAS  Google Scholar 

  • Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: timing and duration of therapy. Can J Cardiol 9:103–114

    PubMed  CAS  Google Scholar 

  • Jugdutt BI, Amy RWM (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. JACC 7:91–102

    PubMed  CAS  Google Scholar 

  • Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation 94:94–101

    PubMed  CAS  Google Scholar 

  • Kalbfleisch H, Hort W, Müller E (1977) Vergleichende koronarangiographische und histologische Untersuchungen über den Hinterwandinfarkt. Z Kardiol 66:676–684

    PubMed  CAS  Google Scholar 

  • Kajstura J, Zhang Y, Reiss K, Szoke E, Li P, Lagrasta C et al. (1994) Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 74:383–400

    PubMed  CAS  Google Scholar 

  • Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S et al. (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    PubMed  CAS  Google Scholar 

  • Kajstura J, Leri A, Finato N, di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci 95:8801–8805

    PubMed  CAS  Google Scholar 

  • Kalra J, Chaudhary AK, Prasad K (1989) Role of oxygen free radicals and pH on the release of cardiac lysosomal enzymes. J Mol Cell Cardiol 21:1125–1136

    PubMed  CAS  Google Scholar 

  • Kambayashi M, Miura T, 0h BH, Murata K, Rockman HA, Parra G et al. (1992) Myocardial cell hypertrophy after myocardial infarction with reperfusion in dogs. Circulation 86:1935–1944

    PubMed  CAS  Google Scholar 

  • Kaneko K, Kanda T, Yokoyama T, Nakazato Y, Iwasaki T, Kabayashi I et al. (1997) Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction. Res Communie Mol Pathol Pharmacol 97:3–12

    CAS  Google Scholar 

  • Kaufmann E (1911) Lehrbuch der speziellen pathologischen Anatomie für Studierende und Ärzte, 6. Aufl. Georg Reimer, Berlin, S 38

    Google Scholar 

  • Kawamura K, Cowley MJ, Karp RB, Mantle JA, Logic JR, Rogers WJ et al. (1978) Intramitochondrial inclusions in the myocardial cells of human hearts with coronary disease. J Molec Cell Cardiol 10:797–811

    CAS  Google Scholar 

  • Keeley EC, Hillis LD (1996) Left ventricular mural thrombus after acute myocardial infarction. Clin Cardiol 19:83–86

    PubMed  CAS  Google Scholar 

  • Kent SP (1966) Intracellular plasma proteins: a manifestation of cell injury in myocardial ischemia. Nature 210:1279–1281

    PubMed  CAS  Google Scholar 

  • Kent SP (1967) Diffusions of plasma proteins into cells: A manifestation of cell injury in human myocardial ischemia. Am J Pathol 50:623–637

    PubMed  CAS  Google Scholar 

  • Keulenaer GW de, Fransen P, Brutsaert DL, Sys SU (1995) Decreased myocardial contractility after damage to endocardial endothelium is not merely caused by loss of endothelin production. Cardiovasc Res 30:646–647

    PubMed  Google Scholar 

  • Khaw BA, Narula J (1995) Non-invasive detection of myocyte necrosis in myocarditis and dilated cardiomyopathy with radiolabelled antimyosin. Europ Heart J 16(Suppl O): 119–123

    Google Scholar 

  • Kieval RS, Spear JF, Moore EN (1992) Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circul Res 71:127–136

    CAS  Google Scholar 

  • Kleber FX, Sabin GV, Winter UJ, Reindl I, Beil S, Wenzel M et al. (1997) Angiotensin-converting enzyme inhibitors in preventing remodeling and development of heart failure after acute myocardial infarction: results of the German multicenter study of the effects of Captopril on cardiopulmonary exercise parameters (ECCE). Am J Cardiol 30(3 A): 162 A–167 A

    Google Scholar 

  • Kloner RA, Kloner JA (1983) The effect of early exercise on myocardial infarct scar formation. Am Heart J 106:1009–1013

    PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Whalen DA, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74:399–422

    PubMed  CAS  Google Scholar 

  • Kloner RA, Fishbein MC, Hare CM, Maroko PR (1979) Early ischémie ultrastructural and histochemical alterations in the myocardium of the rat following coronary artery occlusion. Exper Mol Pathol 30:129–143

    CAS  Google Scholar 

  • Kloner RA, Rude RE, Carlson N, Maroko PR, deBoer LWV, Braunwald E (1980) Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 62:945–952

    PubMed  CAS  Google Scholar 

  • Knieriem HJ (1979) Reizleitungssystem beim frischen Infarkt. Verh Dtsch Ges Herz-Kreislaufforschg 45:16–22

    Google Scholar 

  • Knieriem HJ, Finke E (1974) Morphologie und Ätiologie des totalen AV-Blocks. Urban & Schwarzenberg, München

    Google Scholar 

  • Koester C (1888) Ueber Myocarditis. Diss. Bonn

    Google Scholar 

  • Kohn RM, Harris R, Gorham LW (1954) Atrial rupture of the heart. Report of case following atrial infarction and summary of 79 cases collected from the literature. Circulation 10: 221–231

    PubMed  CAS  Google Scholar 

  • Korb G, Knorr G (1962) Vergleichende licht-und fluoreszenzmikroskopische Untersuchungen frischer Herzmuskelschäden beim Menschen. Virchows Arch Pathol Anat 335:159–164

    CAS  Google Scholar 

  • Korup E, Dalsgaard D, Nyvad O, Jensen TM, Toft E, Berning J (1997) Comparison of degrees of left ventricular dilation within three hours and up to six days after onset of first acute myocardial infarction. Am J Cardiol 80:449–453

    PubMed  CAS  Google Scholar 

  • Kossowsky WA, Mohr BD, Rafii S, Lyon AF (1976) Superimposition of transmural infarction following acute subendocardial infarction. How frequent? Chest 69:758–761

    CAS  Google Scholar 

  • Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL et al. (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865

    PubMed  CAS  Google Scholar 

  • Kuch J, Chorzelski T (1971) Immunofluorescence studies in recent myocardial infarction. Cardiovasc Res 5:353–357

    PubMed  CAS  Google Scholar 

  • Kuroki S, Miyahara K, Uematsu T (1993) Immunological aspects in patients with acute myocardial infarction. Jpn Circ J 57:37–46

    PubMed  CAS  Google Scholar 

  • Kuwao S, Kameya T, Kasai K, Niitsuya M, Nishiyama Y (1992) Characterization of transmural and subendocardial infarction by typing and grading of ischémie lesions in autopsied human hearts. Acta Pathol Jpn 42:476–482

    PubMed  CAS  Google Scholar 

  • Laarse A van der, Leeuwen ET van, Krul R, Tuinstra CL, Lie KI (1988) The size of infarction as judged enzymatically in 1974 patients with acute myocardial infarction. Relation with symptomatology, infarct localization and type of infarction. Int J Cardiol 19:191–207

    PubMed  Google Scholar 

  • Lagrand WK,Niessen HWM, Wolbinak GJ, Jasprs LH, Visser CA, Verheugt FWA et al. (1997) C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation 95:97–103

    PubMed  CAS  Google Scholar 

  • Laine P, Kaartinen M, Penttilä A, Panula P, Paavonen T, Kovanen PT (1999) Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99:361–369

    PubMed  CAS  Google Scholar 

  • Laurie W, Woods JD (1963) Infarction (ischaemic fibrosis) in the right ventricle of the heart. Acta Cardiol 18:399–411

    PubMed  CAS  Google Scholar 

  • Lazar EJ, Goldberger J, Peled H, Sherman M, Frishman WH (1988) Atrial infarction: diagnosis and management. Am Heart J 116:1058–1063

    PubMed  CAS  Google Scholar 

  • Lee JA (1995) The pathology of cardiac ischaemia: cellular and molecular aspects. J Pathol 175: 167–174

    PubMed  CAS  Google Scholar 

  • Léger J, Chevalier J, Larue C, Gautier P, Planchenault J, Aumaitre E et al. (1991) Imaging of myocardial infarction in dogs and humans using monoclonal antibodies specific for human myosin heavy chains. JACC 18:473–484

    PubMed  Google Scholar 

  • Lerman RH, Apstein CS, Kagan HM, Osmers EL, Chichester CO, Vogel WM et al. (1983) Myocardial healing and repair after experimental infarction in the rabbit. Circ Res 53:378–388

    PubMed  CAS  Google Scholar 

  • Leszczynski D, Renkonen R, Häyry P (1985) Turnover of dendritic cells in rat heart. Scand J Immunol 22:351–355

    PubMed  CAS  Google Scholar 

  • Levin DC (1974) Pathways and functional significance of the coronary collateral circulation. Circulation 50:831–837

    PubMed  CAS  Google Scholar 

  • Levine HD (1985) Subendocardial infarction in retrospect: Pathologic, cardiographic, and ancillary features. Circulation 72:790–800

    PubMed  CAS  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD Mickle DAG, Mohabeer MK, Rao V et al. (1996a) The optimal time for cardiomyocyte transplantation after myocardial necrosis. Circulation 94(Suppl I):1–171

    Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DAG, Zhang J, Mohabeer MK et al. (1996b) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62:654–661

    PubMed  CAS  Google Scholar 

  • Li RK, Mickle DAG, Weisel RD, Zhang J, Mohabeer MK (1996c) In vivo survival and function of transplanted rat cardiomyocytes. Circul Res 78:283–288

    CAS  Google Scholar 

  • Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y et al. (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuation ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100:1991–1999

    PubMed  CAS  Google Scholar 

  • Lie JT, Holley KE, Kampe WR, Titus JL (1971) New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clin Proc 46:319–327

    PubMed  CAS  Google Scholar 

  • Lie JT, Lawrie GM, Morris GC, Winters WL (1978) Hemorrhagic myocardial infarction associated with aortocoronary bypass revascularization. Am Heart J 96:295–302

    PubMed  CAS  Google Scholar 

  • Lim MJ, Karolle BL, Wood JC, Buda AJ (1992) Ischémie expansion during acute myocardial infarction and reversal by coronary reperfusion. Am Heart J 123:1456–1463

    PubMed  CAS  Google Scholar 

  • Lindpaintner K, Niedermaier N, Drexler H, Ganten D (1992) Left ventricular remodeling after myocardial infarction: does the cardiac renin-angiotensin system play a role? J Cardiovasc Pharmacol 20(Suppl 1):S41–S47

    PubMed  CAS  Google Scholar 

  • Linz W, Martorana PA, Wiemer G, Wirth K, Schölkens BA (1996) Role of kinins in myocardial ischemia. In: Karmazyn M (ed) Myocardial ischemia: mechanisms, reperfusion, protection. Birkhäuser, Basel, pp 231–241

    Google Scholar 

  • Linzbach J (1947) Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchows Arch 314:534–594

    PubMed  CAS  Google Scholar 

  • Linzbach J (1960a) Die pathologische Anatomie der Herzinsuffizienz. In: v Bergman G, Frey W, Schwiegk H (Hrsg): Handbuch der inneren Medizin, Bd IX, 1. Springer, Berlin, S 706–800

    Google Scholar 

  • Linzbach AJ (1960b) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    PubMed  CAS  Google Scholar 

  • Linzbach AJ, Linzbach M (1951) Die Herzdilatation. Klin Wochenschr 29:621–630

    PubMed  CAS  Google Scholar 

  • Lisa F di, Barnardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184:379–391

    PubMed  Google Scholar 

  • Litwin SE, Raya TE, Anderson PG, Litwin CM, Bressler R, Goldman S (1991) Induction of myocardial hypertrophy after coronary ligation in rats decreases ventricular dilatation and improves systolic function. Circulation 84:1819–1827

    PubMed  CAS  Google Scholar 

  • Lockard VG, Bloom S (1991) Morphologic features and nuclide composition of infarction-associated cardiac myocyte mineralization in humans. Am J Pathol 139:565–572

    PubMed  CAS  Google Scholar 

  • Lüderitz B, d’Alnoncourt CN (1980) Herzrhythmusstörungen bei Myokardinfarkt. Internist 21: 652–661

    PubMed  Google Scholar 

  • MacLellan WR, Schneider MD (1997) Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137–144

    PubMed  CAS  Google Scholar 

  • Mahmarian JJ, Moyé LA, Chinoy DA, Sequeira RF, Habib GB, Henry WJ et al. (1998) Transdermal nitroglycerin patch therapy improves left ventricular function and prevents remodeling after acute myocardial infarction. Results of a multicenter prospective randomized, double-blind, placebo-controlled trial. Circulation 97:2017–2024

    PubMed  CAS  Google Scholar 

  • Mallory GK, White PD, Salcedo-Salgar J (1939) The speed of healing of myocardial infarction. A study of the pathologic anatomy in seventy two cases. Am Heart J 18:647–671

    Google Scholar 

  • Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu-Costello O (1994) Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomen. Am J Physiol 266:H1541–H1550

    PubMed  CAS  Google Scholar 

  • Mannisi JA, Weisman HF, Bush DE, Dudeck P, Healy B (1987) Steroid administration after myocardial infarction promotes early infarct expansion. J Clin Invest 79:1431–1439

    PubMed  CAS  Google Scholar 

  • Marijianowski MMH, Teeling P, Becker AE (1997) Remodeling after myocardial infarction in humans is not associated with interstitial fibrosis of noninfarcted myocardium. JACC 30: 76–82

    PubMed  CAS  Google Scholar 

  • Marx N, Neumann FJ, Ott I, Gawaz M, Koch W, Pinkau T et al. (1997) Induction of cytokine expression in leukocytes in acute myocardial infarction. JACC 30:165–170

    PubMed  CAS  Google Scholar 

  • Mathey D, Bleifeld W, Buss H, Hanrath P (1975) Creatine kinase release in acute myocardial infarction: correlation with clinical, electrocardiographic, and pathological findings. Br Heart J 37: 1161–1168

    PubMed  CAS  Google Scholar 

  • Mathey DG, Schofer J, Kuck KH, Beil U, Klöppel G (1982) Transmural, haemorrhagic myocardial infarction after intracoronary streptokinase. Clinical, angiographie, and necropsy findings. Br Heart J 48:546–551

    PubMed  CAS  Google Scholar 

  • Maxwell L, Gavin JB (1991) The contribution of ischaemia to the development of microvascular incompetence in the myocardium. Cardiovasc Res 25:491–495

    PubMed  CAS  Google Scholar 

  • Mazzoleni A, Reiner L, Rodriguez FL, Freudenthal RR (1964) The weight of the human heart. III. Ischémic heart disease. Arch Pathol 77:205–217

    PubMed  CAS  Google Scholar 

  • McCain FH, Kline EM, Gilson JS (1950) Clinical study of 281 autopsy reports on patients with myocardiac infarction. Am Heart J 39:263–272

    PubMed  CAS  Google Scholar 

  • McCormick RJ, Musch TI, Bergman BC, Thomas DP (1994) Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 266: H354–359

    Google Scholar 

  • Meisel SR, Shapiro H, Radnay J, Neuman Y, Khaskia AR, Gruener N et al. (1998) Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and MAC-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction. Possible implications for leukocyte aggregation and microvascular plugging. JACC 31:120–125

    PubMed  CAS  Google Scholar 

  • Meyer J, Bockisch A, Darius H, Heusch G, Hort W, Mohr-Kahaly S et al. (1996) In: Erdmann E, Riecker G (Hrsg) Klinische Kardiologie, 4. Aufl. Springer, Berlin, S 419–554

    Google Scholar 

  • Michel JB, Nicolletti A, Arnal JF (1995) Left ventricular remodelling following experimental myocardial infarction. Eur Heart J 16(Suppl I): 49–57

    PubMed  Google Scholar 

  • Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512

    PubMed  CAS  Google Scholar 

  • Mitchell GF, Lamas GA, Pfeffer MA (1993) Ventricular remodeling after myocardial infarction. In: Sideman S, Beyar R (eds) Interactive phenomena in the cardiac system. Plenum Press, New York, pp 265–276

    Google Scholar 

  • Mitchell IRA, Schwartz CJ (1963) The relation between myocardial lesions and coronary artery disease. II. A selected group of patients with massive cardiac necrosis or scarring. Br Heart J 25:1–24

    PubMed  CAS  Google Scholar 

  • Mitsunami K, Fukuhara T, Kato S, Bito K, Kinoshita M, Kawakita S (1984) The border zone in acute myocardial ischemia in the dog-a histochemical, biochemical and ultrastructural study-. Jpn Circ J 48:18–31

    PubMed  CAS  Google Scholar 

  • Mittal SR (1994) Isolated right ventricular infarction. Int J Cardiol 46:53–60

    PubMed  CAS  Google Scholar 

  • Mittal SR, Pamecha S, Rohatgi R, Saxena R, Gokhroo R (1992) Isolated right ventricular infarction. Int J Cardiol 36:187–196

    PubMed  CAS  Google Scholar 

  • Miyao Y, Yasue H, Ogawa H, Misumi I, Masuda T, Sakamoto T et al. (1993) Elevated plasma interleukin-6 levels in patients with acute myocardial infarction. Am Heart J 126:1299–1304

    PubMed  CAS  Google Scholar 

  • Miyazima K, Matsubara T, Nakao M, Iyeda N, Nishida T, Okamoto Y et al. (1991) Ischémic myocardial mitochondrial function and ultrastructural change-influence of regional myocardial blood flow. Jpn Circ J 55:714–720

    PubMed  CAS  Google Scholar 

  • Modena MG, Molinari R, Rossi R, Muia N jr, Castelli A, Mattioli G et al. (1998) Modification in serum concentrations of aminoterminal propeptide of type III procollagen in patients with previous transmural myocardial infarction. Am Heart J 135:287–292

    PubMed  CAS  Google Scholar 

  • Moeller HC, Schilg J (1956) Basisnaher Rechtsinfarkt des Herzens. (Kasuistischer Beitrag). Z Kreislaufforschg 45:206–210

    CAS  Google Scholar 

  • Mohammad S, Austin SM (1996) Hemopericardium with cardiac tamponade after intravenous thrombolysis for myocardial infarction. Clin Cardiol 19:432–434

    PubMed  CAS  Google Scholar 

  • Mölbert E (1957) Die Herzmuskelzelle nach akuter Oxydationshemmung im elektronenmikroskopischen Bild. Beitr Pathol Anat 118:421–435

    PubMed  Google Scholar 

  • Molstad P (1993) Prognostic significance of type and location of a first myocardial infarction. J Intern Med 233:393–399

    PubMed  CAS  Google Scholar 

  • Montoya A, Mulet J, Pifarré R, Brynjolfsson G, Moran JM, Sullivan HJ et al. (1978) Hemorrhagic infarct following myocardial revascularization. J Thorac Cardiovasc Surg 75:206–212

    PubMed  CAS  Google Scholar 

  • Moppert J (1962) Beitrag zur Pathologie des Herzinfarkts. Untersuchungen an 862 Fällen. Schweiz Med Wochenschr 92:1114–1120

    Google Scholar 

  • Morishita N, Kusachi S, Yamasaki S, Kondo J, Tsuji T (1996) Sequential changes in laminin and type IV collagen in the infarct zone-immunohistochemical study in rat myocardial infarction. Jpn Circ J 60:108–114

    PubMed  CAS  Google Scholar 

  • Mörl H (1964) Über den Myokardinfarkt. Virchows Arch 337:383–394

    Google Scholar 

  • Murray RH (1968) Perispherical calcification at the site of old myocardial infarction. Am J Roentgenol Radium Ther Nucl Med 102:297–300

    PubMed  CAS  Google Scholar 

  • Murry CE, Giachelli CM, Schwartz SM, Vracko R (1994) Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol 145:1450–1462

    PubMed  CAS  Google Scholar 

  • Mutin M, Canavay I, Blann A, Bory M, Sampol J, Dignat-George F (1999) Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 93:2951–2958

    PubMed  CAS  Google Scholar 

  • Nakahara K, Matsushita S, Ohkawa S, Kuramoto K (1989) Isolated right ventricular infarction resulting from thrombotic occlusion of a hypoplastic right coronary artery. Jpn Heart J 30:95–101

    PubMed  CAS  Google Scholar 

  • Nakao K, Yasue H, Fujimoto K, Jougasaki M, Yamamoto H, Hitoshi Y et al. (1992) Increased expression and regional differences of atrial myosin light chain 1 in human ventricles with old myocardial infarction. Analyses using two monoclonal antibodies. Circulation 86:1727–1737

    PubMed  CAS  Google Scholar 

  • Neskovic AN, Marinkovic J, Bojic M, Popovic AD (1998) Predictors of left ventricular thrombus formation and disappearance after anterior wall myocardial infarction. Eur Heart J 19:908–916

    PubMed  CAS  Google Scholar 

  • Nevalainen TJ, Armiger LC, Gavin JB (1986) Effects of ischaemia on vasculature. J Mol Cell Cardiol 18(Suppl 4):7–10

    PubMed  Google Scholar 

  • Nihoyannopoulos P, Smith GC, Maseri A, Foale RA (1989) The natural history of left ventricular thrombus in myocardial infarction: a rationale in support of masterly inactivity. JACC 14: 903–911

    PubMed  CAS  Google Scholar 

  • Nolan AC, Clark WA, Karwoski T, Zak R (1983) Patterns of cellular injury in myocardial ischemia determined by monoclonal antimyosin. Proc Natl Acad Sci 80:6046–6050

    PubMed  CAS  Google Scholar 

  • Nomoto KI, Mori N, Miyamoto J, Shoji T, Nakamura K (1989) Relationship between sarcolemmal damage and appearance of amorphous matrix densities in mitochondria following occlusion of coronary artery in rats. Exper Mol Pathol 51:231–242

    CAS  Google Scholar 

  • Oberpriller JO, Oberpriller JC (1991) Cell division in adult newt cardiac myocytes. In: Oberpriller JO, Oberpriller JC, Mauro A (eds) The development and regenerative potential of cardiac muscle. Harword Acad Publ, London, pp 293–311

    Google Scholar 

  • Ohnishi H, Oka T, Kusachi S, Nakanishi T, Takeda K, Nakahama M et al. (1998) Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 30:2411–2422

    PubMed  CAS  Google Scholar 

  • Oliva PB, Hammill SC, Talano JV (1994) Effect of definition on incidence of postinfarction pericarditis. Is it time to redefine postinfarction pericarditis? Circulation 90:1537–1541

    CAS  Google Scholar 

  • Olivetti G, Ricci R, Beghi C, Guideri G, Anversa P (1986) Response of the border zone to myocardial infarction in rats. Am J Pathol 125:476–483

    PubMed  CAS  Google Scholar 

  • Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67:23–34

    PubMed  CAS  Google Scholar 

  • Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68:856–869

    PubMed  CAS  Google Scholar 

  • Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P (1994) Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophie senescent heart in humans. JACC 24:140–149

    PubMed  CAS  Google Scholar 

  • Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E et al. (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28:2005–2016

    PubMed  CAS  Google Scholar 

  • Omens JH, Miller TR, Covell JW (1997) Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc Res 33:351–358

    PubMed  CAS  Google Scholar 

  • Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 98:149–156

    PubMed  CAS  Google Scholar 

  • Oropeza ES, Lopez GN, Petriz JH, Garces HT (1986) Trombo mural del ventriculo izquierdo en el infarto agudo del miocardio de localizacion anterior. Arch Inst Cardiol Mex 56:333–338

    Google Scholar 

  • Overbeck J v, Saraga P, Gardiol D (1986) An autofluorescence method for the diagnosis of early ischaemic myocardial lesions. A systematic study on 732 autopsies, including 182 cases of sudden death. Virchows Arch Pathol Anat 409:535–542

    Google Scholar 

  • Paessens R, Borchard F (1980) Morphology of cardiac nerves in experimental infarction of rat hearts. I. Fluorescence microscopical findings. Virchows Arch A Pathol Anat Histol 386:265–278

    PubMed  CAS  Google Scholar 

  • Page E, Polimeni PI (1977) Ultrastructural changes in the ischémie zone bordering experimental infarcts in rat left ventricles. Am J Pathol 87:81–104

    PubMed  CAS  Google Scholar 

  • Paulson EK, Miller FJ (1988) Embolization of cardiac mural thrombus: Complication or intraarterial fibrinolysis. Radiology 168:95–96

    PubMed  CAS  Google Scholar 

  • Pérez-Cárceles MD, Osuna E, Vieira DN, Luna A (1995) Usefulness of myosin in the postmortem diagnosis of myocardial damage. Int J Legal Med 108:14–18

    PubMed  Google Scholar 

  • Peter RH, Ramo BW, Ratliff N, Morris JJ (1972) Collateral vessel development after right ventricular infarction in the pig. Am J Cardiol 29:56–60

    PubMed  CAS  Google Scholar 

  • Peters NS (1995) Myocardial gap junction organization in ischemia and infarction. Microsc Res Techn 31:375–386

    CAS  Google Scholar 

  • Peuhkurinen KJ, Risteli L, Melkko JT, Linnaluoto M, Juonela A, Risteli J (1991) Thrombolytic therapy with streptokinase stimulates collagen breakdown. Circulation 83:1969–1975

    PubMed  CAS  Google Scholar 

  • Peuhkurinen K, Risteli L, Juonela A, Risteli J (1996) Changes in interstitial collagen metabolism during acute myocardial infarction treated with streptokinase or tissue plasminogen activator. Am Heart J 131:7–13

    PubMed  CAS  Google Scholar 

  • Pfeffer JM (1991) Progressive ventricular dilation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am J Cardiol 68:17D–25D

    PubMed  CAS  Google Scholar 

  • Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observation and clinical implications. Circulation 81:1161–1172

    PubMed  CAS  Google Scholar 

  • Piérard LA, Albert A, Gilis F, Sprynger M, Calier J, Kulbertus HE (1987) Hemodynamic profile of patients with acute myocardial infarction at risk of infarct expansion. Am Cardiol 60:5–9

    Google Scholar 

  • Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 17: 885–896

    PubMed  CAS  Google Scholar 

  • Pirolo JS, Hutchins GM, Moore GW (1986) Infarct expansion: pathologic analysis of 204 patients with a single myocardial infarct. JACC 7:349–354

    PubMed  CAS  Google Scholar 

  • Pislaru SV, Barrios L, Stassen T, Jun L, Pislaru C, Werf F van den (1997) Infarct size, myocardial hemorrhage, and recovery of function after mechanical versus pharmacological reperfusion. Effects of lytic state and occlusion time. Circulation 96:659–666

    PubMed  CAS  Google Scholar 

  • Pizzetti G, Belotti G, Margonato A, Carlino M, Gerosa S, Carandente O etal. (1996) Thrombolytic therapy reduces the incidence of left ventricular thrombus after anterior myocardial infarction. Relationship to vessel patency and infarct size. Eur Heart J 17:421–428

    PubMed  CAS  Google Scholar 

  • Poley RW, Fobes CD, Hall MJ (1964) Fuchsinophilia in early myocardial infarction (a method for the demonstration of early myocardial infarction using acid fuchsin staining). Arch Pathol 77:325–329

    PubMed  CAS  Google Scholar 

  • Pollak S, Breindl D (1988) Ulceröse Defektbildung nach subepikardialem Myokardinfarkt. Beitr Gerichtl Med 46:417–421

    PubMed  CAS  Google Scholar 

  • Pratt CM, Mahmarian JJ, Morales-Ballejo H, Casareto R, Moyé LA (1998) Design of a randomized, placebo-controlled multicenter trial on the long-term effects of intermittent transdermal nitroglycerin on left ventricular remodeling after acute myocardial infarction. Am J Cardiol 81:719–724

    PubMed  CAS  Google Scholar 

  • Reid PR, Taylor DR, Kelly DT, Weisfeldt ML, Humphries JO, Ross RS et al. (1974) Myocardial-infarct extension detected by precordial ST-segment mapping. N Engl J Med 290:123–128

    PubMed  CAS  Google Scholar 

  • Reimer KA (1982) Overview of potential mechanisms. In: Wagner GS (ed) Myocardial infarction: Measurement and intervention. Martinus Nijhoff, The Hague, pp 387–395

    Google Scholar 

  • Reimer KA, Ideker RE (1987) Myocardial ischemia and infarction: Anatomic and biochemical substrates for ischémie cell death and ventricular arrhythmias. Human Pathol 18:462–475

    CAS  Google Scholar 

  • Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomen of ischémic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56: 786-794

    Google Scholar 

  • Reinhardt PH, Ward CA, Giles WR, Kubes P (1997) Emigrated rat neutrophils adhere to cardiac myocytes via a4 integrin. Circ Res 81:196–201

    PubMed  CAS  Google Scholar 

  • Renkin J, deBruyne B, Benit E, Joris JM, Carlier M, Col J (1991) Cardiac tamponade early after thrombolysis for acute myocardial infarction: a rare but not reported hemorrhagic complication. JACC 17:280–285

    PubMed  CAS  Google Scholar 

  • Ricciutti MA (1972) Lysosomes and myocardial cellular injury. Am J Cardiol 30:498–502

    PubMed  CAS  Google Scholar 

  • Richard V, Murry CE, Reimer KA (1995) Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation 92:1891–1901

    PubMed  CAS  Google Scholar 

  • Richardson SG, Allen DC, Morton P, Murtagh JG, Scott ME, O’Keeffe DB (1989) Pathological changes after intravenous streptokinase treatment in eight patients with acute myocardial infarction. Br Heart J 61:390–395

    PubMed  CAS  Google Scholar 

  • Roberts CS, Schoen FJ, Kloner RA (1983) Effect of coronary reperfusion on myocardial hemorrhage and infarct healing. Am J Cardiol 52:610–614

    PubMed  CAS  Google Scholar 

  • Roberts CS, MacLean D, Maroko P, Kloner RA (1985) Relation of early mononudear and polymorphonuclear cell infiltration to late scar thickness after experimentally induced myocardial infarction in the rat. Bas Res Cardiol 80:202–209

    CAS  Google Scholar 

  • Roberts JT, Loube SD (1947) Congenital single coronary artery in man. Report of nine new cases, one having thrombosis with right ventricular and atrial (auricular) infarction. Am Heart J 34:188–197

    PubMed  CAS  Google Scholar 

  • Roberts WC, Gardin JM (1978) Location of myocardial infarcts: a confusion of terms and definitions. Am J Cardiol 42:868–872

    PubMed  CAS  Google Scholar 

  • Roberts WC, Kaufman RJ (1987) Calcification of healed myocardial infarcts. Am J Cardiol 60:28–32

    PubMed  CAS  Google Scholar 

  • Roberts WC, Potkin BN, Solus DE, Reddy SG (1990) Mode of death, frequency of healed and acute myocardial infarction, number of major epicardial coronary arteries severely narrowed by atherosclerotic plaque, and heart weight in fatal atherosclerotic coronary artery disease: analysis of 889 patients studied at necropsy. JACC 15:196–203

    PubMed  CAS  Google Scholar 

  • Rochitte CE, Lima JAC, Bluemke DA, Reeder SB, McVeigh ER, Furuta T et al. (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  • Romppanen T, Seppä A, Roilas H (1983) Ischémie heart disease and heart weight. Cardiology 70:206–212

    PubMed  CAS  Google Scholar 

  • Rossi L (1978) Histopathology of cardiac arrhythmias. Casa Editrice Ambrosiana, Milano

    Google Scholar 

  • Rossi L (1980) Occurence and significance of coagulative myocytolysis in the specialized conduction system: clinicopathologic observations. Am J Cardiol 45:757–761

    PubMed  CAS  Google Scholar 

  • Rubin SA, Fishbein MC, Swan HJC (1983) Compensatory hypertrophy in the heart after myocardial infarction in the rat. JACC 1:1435–1441

    PubMed  CAS  Google Scholar 

  • Rubin SA, Fishbein MC, Swan HJC (1986) Effect of age on hypertrophy of the rat heart following infarction. Bas Res Cardiol 81:602–610

    CAS  Google Scholar 

  • Ruchat PM, Schneider J (1987) Der Myokardabszess-eine seltene Komplikation des Myokardinfarktes. Autopsiestudie und Literaturübersicht. Schweiz Med Wochensch 117:651–655

    CAS  Google Scholar 

  • Rudel T (1999) Caspase inhibitors in prevention of apoptosis. Herz 24:236–241

    PubMed  CAS  Google Scholar 

  • Rumyantsev PP (1973) Post-injury DNA synthesis, mitosis and ultrastructural reorganisation of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforschg 139:431–450

    CAS  Google Scholar 

  • Rumyantsev PP (1974) Ultrastructural reorganization, DNA synthesis and mitotic division of myocytes in atria of rats with left ventricle infarction. An electron microscopic and autoradiographic study. Virchows Arch Abt B Zellpathol 15:357–378

    CAS  Google Scholar 

  • Sage MD, Gavin JB (1985) The development and progression of myocyte injury at the margins of experimental myocardial infarcts. Pathology 17:617–622

    PubMed  CAS  Google Scholar 

  • Sage MD, Jennings RB (1988) Cytoskeletal injury and subsarcolemmal bleb formation in dog heart during in vitro total ischemia. Am J Pathol 133:327–337

    PubMed  CAS  Google Scholar 

  • Sakurai I (1977) Pathology of acute ischémie myocardium. Special references to (I) evaluation of morphological methods for detection of early myocardial infarcts, and (II) lipid metabolism in infarcted myocardium. Acta Pathol Jap 27:587–603

    CAS  Google Scholar 

  • Sanchis J, Insa L, Bodi V, Egea S, Monmeneu JV, Chorro FJ et al. (1997) Role of infarction artery status in left ventricular remodeling after acute myocardial infarction. Int J Cardiol 59: 189–195

    PubMed  CAS  Google Scholar 

  • Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323

    PubMed  CAS  Google Scholar 

  • Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24:189–195

    PubMed  CAS  Google Scholar 

  • Sashida H, Uchida K, Abiko Y (1984) Changes in cardiac ultrastructure and myofibrillar proteins during ischemia in dogs, with special reference to changes in Z lines. J Mol Cell Cardiol 16: 1161–1172

    PubMed  CAS  Google Scholar 

  • Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A (1983) Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 15:261–275

    PubMed  CAS  Google Scholar 

  • Savranoglu N, Boucek J, Casten GG (1959) The extent of reversibilty of myocardial ischemia in dogs. Am Heart J 58:726–731

    PubMed  CAS  Google Scholar 

  • Scanu P, Lamy E, Commeau P, Grollier G, Charbonneau P (1986) Myocardial dissection in right ventricular infarction: two-dimensional echocardiographic recognition and pathologic study. Am Heart J 111:422–425

    PubMed  CAS  Google Scholar 

  • Schachenmayr W, Haferkamp O (1972) Der hämorrhagische Herzinfarkt. Dtsch Med Wochenschr 97:1172–1174, 1183

    PubMed  CAS  Google Scholar 

  • Schäfer H, Hailer B, Wehr M (1998) Komplikativer Verlauf eines akuten Myokardinfarktes mit ausgedehnter intrakardialer Thrombosierung. Herz/Kreislauf 30:433–436

    Google Scholar 

  • Schaper J (1986) Ultrastructural changes of the myocardium in regional ischaemia and infarction. Eur Heart J 7(Suppl B): 3–9

    PubMed  Google Scholar 

  • Schaper J, Alpers P, Gottwik M, Schaper W (1985) Ultrastructural characteristics of regional ischaemia and infarction in the canine heart. Eur Heart J 6(Suppl E): 21–31

    Google Scholar 

  • Schaper W (1990) Der aktuelle Stand der Herzinfarktforschung. Z Kardiol 79:811–818

    PubMed  CAS  Google Scholar 

  • Schaper W, Winkler B (1998) Of mice and men-the future of cardiovascular research in the molecular era. Cardiovasc Res 39:3–7

    PubMed  CAS  Google Scholar 

  • Scheinowitz M, Abromov D, Eldar M (1997) The role of insulin-like and basic fibroblast growth factors on ischémie and infarcted myocardium: a mini review. Int J Cardiol 59:1–5 Schimert G, Schimmler W, Schwalb H, Ebel J (i960) Die Coronarerkrankungen. In: Handbuch der inneren Medizin, 4. Aufl, Bd 9/3. Springer Berlin, S 653 ff

    PubMed  CAS  Google Scholar 

  • Schmiedl A, Bach F, Fehrenbach H, Schnabel PA, Richter J (1995) Cellular distribution patterns of lanthanum and morphometry of rat hearts exposed to different degrees of ischémic stress. Anat Rec 243:496–508

    PubMed  CAS  Google Scholar 

  • Schnabel PA, Gebhard MM, Richter J, Schmiedl A, Bretschneider HJ (1988) Feinstruktur subendokardialer Purkinje-Fasern während und nach Ischämie: Einfluß unterschiedlicher kardioplegischer Lösungen. Z Herz Thor Gefäßchir 2:54–61

    Google Scholar 

  • Schnabel PA, Richter J, Schmiedl A, Bach F, Bartels U, Ramsauer B (1991a) Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg 39:174–182

    PubMed  CAS  Google Scholar 

  • Schnabel PA, Richter J, Schmiedl A, Ramsauer B, Bartels U, Gebhard MM et al. (1991b) The ultrastructural effects of global ischaemia on Purkinje fibres compared with working myocardium: a qualitative and morphometric investigation on the canine heart. Virchows Arch A Pathol Anat 418:17–25

    CAS  Google Scholar 

  • Schofield PM, Rahman AN, Ellis ME, Dunbar EM, Bray CL, Brooks N (1986) Infection of cardiac mural thrombus associated with left ventricular aneurysm. Eur Heart J 7:1077–1082

    PubMed  CAS  Google Scholar 

  • Schumann H, Heinrich H, Bartling B, Darmer D, Holtz J (1999) Apoptosis in the overloaded myocardium: potential stimuli and modifying signals. Bas Res Cardiol, in press

    Google Scholar 

  • Schütz A, Breuer M, Kemkes BM (1997) Antimyosin antibodies in cardiac rejection. Ann Thorac Surg 63:578–581

    PubMed  Google Scholar 

  • Schuster EH, Bulkley BH (1979) Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation 60:1532–1538

    PubMed  CAS  Google Scholar 

  • Schuster EH, Griffith LS, Bulkley BH (1981) Preponderance of acute proximal left anterior descending coronary arterial lesions in fatal myocardial infarction: a clinicopathologic study. Am J Cardiol 47:1189–1196

    PubMed  CAS  Google Scholar 

  • Schwarz ER, Patterson M, Kloner RA (1998) Kardiomyozytentransplantation-eine Frischzellenkultur zur Gewebsreparatur in infarzierten Herzen? Z Kardiol 87:1–7

    PubMed  CAS  Google Scholar 

  • Scorsin M, Marotte F, Sabri A, de Dref O, Demirag M, Samuel JL et al. (1996) Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94(Suppl II): II-337-II-340

    Google Scholar 

  • Senior R, Weston J, Bhattacharya S, Crawley JCW, Liu XZ, Lahiri A (1991) Specific binding of 99mTC-antimyosin to necrotic human myocardium: Clinicopathologic correlations. Am Heart J 122:857–859

    PubMed  CAS  Google Scholar 

  • Senior R, Bhattacharya S, Manspeaker P, Liu XJ, Leppo JA, Lahiri A (1993) 99mTc-antimyosin antibody imaging for the detection of acute myocardial infarction in human beings. Am Heart J 126:536–542

    PubMed  CAS  Google Scholar 

  • Sepulchre MA, Fechner G (1992) Zum Nachweis ischämischer Herzmuskelschäden. Beitr Gerichtl Med 50:161–167

    PubMed  CAS  Google Scholar 

  • Shah AM (1995) Decreased myocardial contractility after damage to endocardial endothelium is caused mainly by loss of endothelin production. Cardiovasc Res 30:644–645

    PubMed  CAS  Google Scholar 

  • Shahar A, Hod H, Barabash GM, Kaplinsky E, Motro M (1994) Disappearance of a syndrome: Dressler’s syndrome in the era of thrombolysis. Cardiology 85:255–258

    PubMed  CAS  Google Scholar 

  • Shekhonin BV, Guriev SB, Irgashev SB, Kotelianski VE (1990) Immunofluorescent identification of fibronectin and fibrinogen/fibrin in experimental myocardial infarction. J Mol Cell Cardiol 22:533–541

    PubMed  CAS  Google Scholar 

  • Shen AC, Jennings RB (1972a) Kinetics of calcium accumulation in acute myocardial ischémic injury. Am J Pathol 67:441–452

    PubMed  CAS  Google Scholar 

  • Shen AC, Jennings RB (1972b) Myocardial calcium and magnesium in acute ischémie injury. Am J Pathol 67:417–440

    PubMed  CAS  Google Scholar 

  • Shin G, Sugiyama M, Shoji T, Kagiyama A, Sato H, Ogura R (1989) Detection of mitochondrial membrane damages in myocardial ischemia with ESR spin labeling technique. J Mol Cell Cardiol 21:1029–1036

    PubMed  CAS  Google Scholar 

  • Shirani J, Roberts WC (1993) Subepicardial myocardial lesions. Am Heart J 125:1346–1352

    PubMed  CAS  Google Scholar 

  • Shires DB (1968) Rupture of the right ventricle. JAMA 203:888–889

    PubMed  CAS  Google Scholar 

  • Shishido T, Beppu S, Matsuda H, Yutani C, Miyatake K (1997) Extension of hemorrhage after reperfusion of occluded coronary artery: contrast echocardiographic assessment in dogs. JACC 30:585–591

    PubMed  CAS  Google Scholar 

  • Shperling ID (1978) The relaxation of sarcomeres in ischémie injury of myocardium. Virchows Arch A Pathol Anat Histol 380:149–154

    PubMed  CAS  Google Scholar 

  • Siegel RJ, Fishbein MC (1982) Evaluation of fluorescence microscopy for the identification of necrotic myocardium. Hum Pathol 13:1091–1094

    PubMed  CAS  Google Scholar 

  • Simmonds M (1908) Über den Nachweis von Verkalkungen am Herzen durch das Röntgenverfahren. Fortschr Röntgenstr 12:371–374

    Google Scholar 

  • Sjöstrand FS, Young HH, Beyersdorf F, Buckberg GD (1989) Assessment of mitochondrial damage in ischemia. Reply. J Thorac Cardiovasc Surg 5:796–797

    Google Scholar 

  • Smith BA, Hamlin RL, Bartels RL, Evans RG, Kirby TE, MacVicar MG et al. (1992) Myocardial infarction size and scar dimensions: the influence of activity. Heart Lung 21:440–447

    PubMed  CAS  Google Scholar 

  • Smith CW, Entman ML, Lane CL, Beaudet AL, Ty TI, Youker K et al. (1991) Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule-1. J Clin Invest 88:1216–1223

    PubMed  CAS  Google Scholar 

  • Smits JFM, Passier RCJJ, Nelissen-Vrancken HJMG, Cleutjens JPM, Kuizinga MC, Daemen MJAP (1995) Does ACE inhibition limit structural changes in the heart following myocardial infarction? Eur Heart J 16(Suppl N): 46–51

    PubMed  CAS  Google Scholar 

  • Söderström N (1948) Myocardial infarction and mural thrombosis in atria of the heart. Acta Med Scand Suppl 217

    Google Scholar 

  • Solomon SD, Pfeffer MA (1997) The decreasing incidence of left ventricular remodeling following myocardial infarction. Basic Res Cardiol 92:61–65

    PubMed  CAS  Google Scholar 

  • Sommers HM, Jennings RB (1964) Experimental acute myocardial infarction. Histologie and histochemical studies of early myocardial infarcts induced by temporary or permanent occlusion of a coronary artery. Lab Investigation 13:1491–1503

    CAS  Google Scholar 

  • Somolinos M, Violan S, Sanz R, Marrero P (1987) Early pericarditis after acute myocardial infarction: a clinical echocardiographic study. Crit Care Med 15:648–651

    PubMed  CAS  Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101

    PubMed  CAS  Google Scholar 

  • Soonpaa MH, Daud AI, Koh GY, Klug MG, Kim KK, Wang H et al. (1995) Potential approaches for myocardial regeneration. Ann NY Acad Sci 752:446–454

    PubMed  CAS  Google Scholar 

  • Spigel J, Key C (1988) Thrombosis and infarction of the left atrial appendage in an infant: a case report. Am J Cardiovasc Pathol 2:87–90

    PubMed  CAS  Google Scholar 

  • Spinale FG, Carabello BA, Schulte BA, Crawford FA jr (1990) Wavefront myocyte injury and relationship to function in right ventricular ischemia. Am J Physiol 258:H292–H304

    PubMed  CAS  Google Scholar 

  • Staemmler M (1955) Die Kreislauforgane. In: Staemler M (Hrsg) Lehrbuch der speziellen pathologischen Anatomie, 11. u. 12. Aufl, Bd I/1. de Gruyter, Berlin, S 93 ff

    Google Scholar 

  • Starr I, Jeffers WA, Meade RH jr (1943) The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J 26:291–301

    Google Scholar 

  • Steenbergen C, Jennings RB (1984) Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J Mol Cell Cardiol 16:605–621

    PubMed  CAS  Google Scholar 

  • Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischémic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57:864–875

    PubMed  CAS  Google Scholar 

  • Steenbergen C, Hill ML, Jennings RB (1987) Cytoskeletal damage during myocardial ischemia: Changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circulat Res 60:478–486

    PubMed  CAS  Google Scholar 

  • Steinman RM, Kaplan G, Witmer MD, Cohn ZA (1979) Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J Exper Med 149:1–16

    CAS  Google Scholar 

  • Sternberg M (1910) Pericarditis epistenocardica. Wien Klin Wochenschr 60:14–23

    Google Scholar 

  • Stevenson WG, Linssen GCM, Havenith MG, Brugada P, Wellens HJJ (1989) The spectrum of death after myocardial infarction: a necropsy study. Am Heart J 118:1182–1188

    PubMed  CAS  Google Scholar 

  • Stewart CF, Turner KB (1938) A note on pericardial involvement in coronary thrombosis. Am Heart J 15:232–234

    Google Scholar 

  • Strasser RH, Marquetant R, Kübier W (1990) Adrenergic receptors and sensitization of adenylyl cyclase in acute myocardial ischemia. Circulation 82(Suppl II): II-23-II-29

    Google Scholar 

  • Sunni S, Geer JC, Kent SP (1984) Staining in normal and ischémic human myocardium. A study of myoglobin, IgG, glycogen, and diastase-PAS. Arch Pathol Lab Med 108:649–653

    PubMed  CAS  Google Scholar 

  • Suzuki H, Wildhirt SM, Dudek RR, Narayan KS, Bailey AH, Bing RJ (1996) Induction of apoptosis in myocardial infarction and its possible relationship to nitric oxide synthase in macrophages. Tissue Cell 28:89–97

    PubMed  CAS  Google Scholar 

  • Syrjälä H, Surcel HM, Honen J (1991) Low CD4/CD8 lymphocyte ratio in acute myocardial infarction. Clin Exp Immunol 83:326–328

    PubMed  Google Scholar 

  • Tai YT, Yu YL, Lau CP, Fong PC (1993) Myocardial infarction complicating postsplenectomy thrombocytosis, with early left ventricular mural thrombus formation and cerebral embolism — a case report. Angiology 44:73–77

    PubMed  CAS  Google Scholar 

  • Taillefer R, Boucher L, Lambert R, Grégoire J, Phaneuf DC, Sikorsa H (1995) Technetium-99m antimyosin antibody (3—48) myocardial imaging: human bio distribution, safety and clinical results in detection of acute myocardial infarction. Eur J Nucl Med 22:453–464

    PubMed  CAS  Google Scholar 

  • Takahashi S, Barry AC, Factor SM (1990) Collagen degradation in ischaemic rat hearts. Biochem J 265:233–241

    PubMed  CAS  Google Scholar 

  • Takano H, Endo T, Saito T, Hayakawa H (1992) Extensive calcification in infarcted myocardium: diagnostic value of ultrafast computed tomography. Cardiology 81:258–261

    PubMed  CAS  Google Scholar 

  • Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A et al. (1998) Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res 82:1130–1138

    PubMed  CAS  Google Scholar 

  • Tarn SKC, Gu W, Mahdavi V, Nadal-Ginard B (1995) Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann NY Acad Sci 752:72–79

    Google Scholar 

  • Tamura T, Toyoki T, Ishikawa T, Ogawa T, Ishikawa Y, Odanaka J et al. (1992) Hemorrhagic myocardial infarction after reperfusion detected by X-ray CT. Experimental and clinical study. Japn Circul J 56:207–216

    CAS  Google Scholar 

  • Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T et al. (1994) Hypoxia induces apoptosis with enhanced expression of fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 75:426–433

    PubMed  CAS  Google Scholar 

  • Tanno F, Akiyama K, Geshi E, Yanagishita T, Konno N, Katagiri T (1992) Impairment of sarcolemmal permeability in the acute ischémie myocardium-a study with ionic lanthanum probe method. Jpn Circ J 56:911–920

    PubMed  CAS  Google Scholar 

  • Tashiro H, Shimokawa H, Yamamoto K, Nagano M, Momohara M, Muramatu KH et al. (1995) Monocyte-related cytokines in acute myocardial infarction. Am Heart J 130:446–452

    PubMed  CAS  Google Scholar 

  • Tatooles CJ, Randall WC (1961) Local ventricular bulging after acute coronary occlusion. Am J Physiol 201:451–456

    PubMed  CAS  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA et al. (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med 4:929–933

    PubMed  CAS  Google Scholar 

  • Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361

    Google Scholar 

  • Thomsen H, Held H (1995) Immunohistochemical detection of C5b-9(m) in myocardium: an aid in distinguishing infarction-induced ischémic heart muscle necrosis from other forms of lethal myocardial injury. Forens Sci Intern 71:87–95

    CAS  Google Scholar 

  • Thomsen H, Schulz A, Bhakdi S (1990) Immunhistochemische C5b-9-Komplement-Komplex-Darstellung in Frühstadien der Herzmuskelnekrosen am Paraffinschnitt. Z Rechtsmed 103: 199–206

    PubMed  CAS  Google Scholar 

  • Titus JL, Edwards JE (1989) Calcification in myocardial infarcts. Hum Pathol 20:721–722

    PubMed  CAS  Google Scholar 

  • Tofler GH, Muller JE, Stone PH, Willich SN, Davis VG, Poole WK et al. (1989) Am Heart J 117:86–92

    PubMed  CAS  Google Scholar 

  • Tomanek RJ, Grimes JC, Diana JN (1981) Relationship between the magnitude of myocardial ischemia and ultrastructural alterations. Exp Mol Pathol 35:65–83

    PubMed  CAS  Google Scholar 

  • Tooler JC, Silverman ME (1975) Pericarditis of acute myocardial infarction. Chest 67:647–653

    Google Scholar 

  • Topol EJ, Herskowitz A, Hutchins GM (1986) Massive hemorrhagic myocardial infarction after coronary thrombolysis. Am J Med 81:339–343

    PubMed  CAS  Google Scholar 

  • Uhlenbruck P (1964) Warnsymptome und falscher Alarm beim Herzinfarkt. Verh Dtsch Ges Kreislaufforschg 30:169–185

    CAS  Google Scholar 

  • Ulrich MMW, Janssen AMH, Daemen MJAP, Rappaport L, Samuel JL, Contard F et al. (1997) Increased expression of fibronectin isoforms after myocardial infarction in rats. J Mol Cell Cardiol 29:2533–2543

    PubMed  CAS  Google Scholar 

  • Umemoto K, Fukunami M, Ohmori M, Kumagai K, Sakai A, Yamada T et al. (1992) Dynamic process between the clotting and the lytic activities on intracardiac thrombi. Its relationship with systemic embolization. Jpn Circ J 56:793–800

    PubMed  CAS  Google Scholar 

  • Uusimaa P, Risteli J, Niemelä M, Lumme J, Ikäheimo M, Jounela A et al. (1997) Collagen scar formation after acute myocardial infarction. Relationships to infarct sice, left ventricular function, and coronary artery patency. Circulation 96:2565–2572

    PubMed  CAS  Google Scholar 

  • Vaitkus PT, Barnathan ES (1993) Embolie potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. JACC 22:1004–1009

    PubMed  CAS  Google Scholar 

  • Väkevä A, Laurila P, Meri S (1993) Regulation of complement membrane attack complex formation in myocardial infarction. Am J Pathol 143:65–75

    PubMed  Google Scholar 

  • Väkevä A, Morgan BP, Tikkanen I, Helin K, Laurila P, Meri S (1994) Time course of complement activation and inhibitor expression after ischémie injury of rat myocardium. Am J Pathol 144: 1357–1368

    PubMed  Google Scholar 

  • Vaughan DE, Pfeffer MA (1994) Post-myocardial infarction ventricular remodeling: animal and human studies. Cardiovasc Drugs Ther 8:453–460

    PubMed  CAS  Google Scholar 

  • Veinot JP, Gattinger DA, Fliss H (1997) Early apoptosis in human myocardial infarcts. Hum Pathol 28:485–492

    PubMed  CAS  Google Scholar 

  • Ventura T, Colantonio D, Leocata P, Casale R, Coletti G, Calvasi G et al. (1991) Isolated atrial myocardial infarction: pathological and clinical features in 10 cases. Cardiologia 36:345–350

    PubMed  CAS  Google Scholar 

  • Verani MS, Tortoledo FE, Batty JB, Raizner AE (1985) Effect of coronary artery recanalization on right ventricular function in patients with acute myocardial infarction: JACC 5:1029–1035

    PubMed  CAS  Google Scholar 

  • Vesterby A, Steen M (1984) Isolated right ventricular myocardial infarction. A case report. Acta Med Scand 216:233–235

    PubMed  CAS  Google Scholar 

  • Visser CA, Kan G, Meltzer RS, Dunning AJ, Roelandt J (1985) Embolie potential of left ventricular thrombus after myocardial infarction: a two-dimensional echocardiographic study of 119 patients. JACC 5:1276–1280

    PubMed  CAS  Google Scholar 

  • Vollmar F, Güthert H, Brandt M, Meerbach W (1971) Zur Kenntnis der Koronarsklerose und ihrer Folgen. (Statistische Untersuchungen an einem auslesefreien Obduktionsgut). II. Mitteilung: Der Myokardinfarkt. Inn Med 26:451–458

    CAS  Google Scholar 

  • Vracko R, Thorning D (1991) Contractile cells in rat myocardial scar tissue. Lab Invest 65: 214–227

    PubMed  CAS  Google Scholar 

  • Vracko R, Thorning D, Frederickson RG (1989) Connective tissue cells in healing rat myocardium. A study of cell reactions in rhythmically contracting environment. Am J Pathol 134:993–1006

    PubMed  CAS  Google Scholar 

  • Vracko R, Thorning D, Frederickson RG (1990) Spatial arrangements of microfibrils in myocardial scars: application of antibody to fibrillin. J Mol Cell Cardiol 22:749–757

    PubMed  CAS  Google Scholar 

  • Wade WG (1959) The pathogenesis of infarction of the right ventricle. Br Heart J 21:545–554

    PubMed  CAS  Google Scholar 

  • Waller BF, Rohr TM, McLaughlin T, Grider L, Taliercio C, Fetters J (1995) Intracardiac thrombi: frequency, location, etiology, and complications: A morphologic review-part II. Clin Cardiol 18:530–534

    PubMed  CAS  Google Scholar 

  • Waller BF, Rothbaum DA, Pinkerton CA, Cowley MJ, Linnemeier TJ, Orr C et al. (1987) Status of the myocardium and infarct-related coronary artery in 19 necropsy patients with acute recanalization using pharmacologic (Streptokinase, r-tissue plasminogen activator), mechanical (percutaneous transluminal coronary angioplasty) or combined types of reperfusion therapy. JACC9:785–801

    Google Scholar 

  • Wang CH, Bland EF, White PD (1948) A note on coronary occlusion and myocardial infarction found post mortem at the Massachusetts General Hospital during the twenty year period from 1926 to 1945 inclusive. Ann Intern Med 29:601–606

    PubMed  CAS  Google Scholar 

  • Ward BJ, Donnelly JL (1993) Hypoxia induced disruption of the cardiac endothelial glycocalyx: implications for capillary permeability. Cardiovasc Res 27:384–389

    PubMed  CAS  Google Scholar 

  • Wartman WB, Hellerstein HK (1948) The incidence of heart disease in 2,000 consecutive autopsies. Ann Intern Med 28:41–65

    PubMed  CAS  Google Scholar 

  • Waters BL (1990) Clinical and pathologic factors contributing to acute papillary muscle ischemia. Arch Pathol Lab Med 114:601–604

    PubMed  CAS  Google Scholar 

  • Weber KT, Sun Y, Katwa LC (1996) Wound healing following myocardial infarction. Clin Cardiol 19:447–455

    PubMed  CAS  Google Scholar 

  • Weber KT, Sun Y, Katwa LC, Cleutjens JPM (1997) Tissue repair and angiotensin II generated at sites of healing. Bas Res Cardiol 92:75–78

    CAS  Google Scholar 

  • Weihrauch D, Arras M, Zimmermann R, Schaper J (1995) Importance of monocytes/macrophages and fibroblasts for healing of micronecroses in porcine myocardium. Mol Cell Biochem 147:13–19

    PubMed  CAS  Google Scholar 

  • Weinshel AJ, Isner JM, Salem DN, Konstam MA (1983) The coronary anatomy of right ventricular myocardial infarction: relationship between the site of right coronary artery occlusion and origin of the right ventricular free wall branches. Circulation 68: 111–351

    Google Scholar 

  • Weisman HF, Healy B (1987) Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic concepts. Progr Cardiovasc Dis 30:73–110

    CAS  Google Scholar 

  • Weisman HF, Bush DE, Mannisi JA, Bulkley BH (1985) Global cardiac remodeling after acute myocardial infarction: a study in the rat model. JACC 5:1355–1362

    PubMed  CAS  Google Scholar 

  • Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy B (1988) Cellular mechanisms of myocardial infarct expansion. Circulation 78:186–201

    PubMed  CAS  Google Scholar 

  • Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    PubMed  CAS  Google Scholar 

  • Whalen DA, Hamilton DG, Ganote CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74:381–397

    PubMed  CAS  Google Scholar 

  • Whittaker P (1997) Collagen and ventricular remodeling after acute myocardial infarction: concepts and hypotheses. Bas Res Cardiol 92:79–81

    CAS  Google Scholar 

  • Whittaker P, Boughner DR, Kloner RA (1989) Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol 134:879–893

    PubMed  CAS  Google Scholar 

  • Whittaker P, Boughner DR, Kloner RA (1991) Role of collagen in acute myocardial infarct expansion. Circulation 84:2123–2134

    PubMed  CAS  Google Scholar 

  • Wickline SA, Verdonk ED, Wong AK, Shepard RK, Miller JG (1992) Structural remodeling of human myocardial tissue after infarction. Circulation 85:259–268

    PubMed  CAS  Google Scholar 

  • Wiggers H, Klebe T, Heickendorff L, Host NB, Danielsen CC, Baandrup U et al. (1997) Ischemia and reperfusion of the porcine myocardium: effect on collagen. J Mol Cell Cardiol 29:289–299

    PubMed  CAS  Google Scholar 

  • Wildhirt SM, Dudek RR, Suzuki H, Bing RJ (1995) Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 50:253–261

    PubMed  CAS  Google Scholar 

  • Willems IEMG, Arends JW, Daemen MJAP (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325

    PubMed  CAS  Google Scholar 

  • Willems IEMG, Havenith MG, de Mey JGR, Daemen MJAP (1994) The α-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875

    PubMed  CAS  Google Scholar 

  • Willer H (1926) Zur Entstehung der Fragmentatio myocardii. Virchows Arch Pathol Anat 261: 586–599

    Google Scholar 

  • Willerson JT, Scales F, Mukherjee A, Platt M, Templeton GH, Fink GS et al. (1977) Abnormal myocardial fluid retention as an early manifestation of ischémie injury. Am J Pathol 87:159–188

    PubMed  CAS  Google Scholar 

  • Wollert KC, Drexler H (1997) The Kallikrein-kinin system in post-myocardial infarction cardiac remodeling. Am J Cardiol 80(3A): 158A–161A

    PubMed  CAS  Google Scholar 

  • Wollert KC, Studer R, Doerfer K, Schieffer E, Holubarsch C, Just H et al. (1997) Differential effects of kinins on cardiomyocyte hypertrophy and interstitial collagen matrix in the surviving myocardium after myocardial infarction in the rat. Circulation 95:1910–1917

    PubMed  CAS  Google Scholar 

  • Wunderlich M (1963) Nimmt der Myokardinfarkt wirklich zu? Dtsch Ges-Wesen 18:796–800

    Google Scholar 

  • Yellon DM, Hearse DJ, Crome R, Wyse RKH (1983) Temporal and spatial characteristics of evolving cell injury during regional myocardial ischemia in the dog: the “border zone“ controversy. JACC 2:661–670

    PubMed  CAS  Google Scholar 

  • Yoon PD, Kao RL, Magovern GJ (1995) Myocardial regeneration. Transplanting satellite cells into damaged myocardium. Tex Heart Inst J 22:119–125

    PubMed  CAS  Google Scholar 

  • Yoshiyama M, Takeuchi K, Omura T, Kim S, Yamaghishi H, Toda I et al. (1999) Effects of candesartan and cilazapril on rats with myocardial infarction assessed by echocardiography. Hypertension 33:961–968

    PubMed  CAS  Google Scholar 

  • Zagher D, Weiss AT, Anner H, Waksman R (1990) Systemic embolization following thrombolytic therapy for acute myocardial infarction. Chest 97:754–756

    Google Scholar 

  • Zak R (1974) Development and proliferative capacity of cardiac muscle cells. Circ Res 34/35(Suppl II): II-17-II-26

    Google Scholar 

  • Zhang JM, Riddick L (1996) Cytoskeleton immunohistochemical study of early ischémic myocardium. Forens Sci Internat 80:229–238

    CAS  Google Scholar 

  • Zhang J, Yu ZX, Fujita S, Yamaguchi ML, Ferrans VJ (1993) Interstitial dendritic cells of the rat heart. Quantitative and ultrastructural changes in experimental myocardial infarction. Circulation 87:909–920

    PubMed  CAS  Google Scholar 

  • Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned“) but viable myocardium. JACC 10:1322–1334

    PubMed  CAS  Google Scholar 

G. Histologie und Differentialdiagnose verschiedener Nekroseformen im Myokard

  • Adomian GE, Laks MM, Billingham ME (1978) The incidence and significance of contraction bands in endomyocardial biopsies from normal human hearts. Am Heart J 95:348–351

    PubMed  CAS  Google Scholar 

  • Armiger LC, Smeeton WMJ (1986) Contraction-band necrosis: patterns of distribution in the myocardium and their diagnostic usefulness in sudden cardiac death. Pathology 18:289–295

    PubMed  CAS  Google Scholar 

  • Armiger LC, Wheeler EE, Geraghty DE, Herdson PB (1977) An experimental evaluation of staining techniques for the detection of early ischaemic injury to the myocardium. Pathology (Sydney) 9:161–171

    CAS  Google Scholar 

  • Arnold G (1987) Die myofibrilläre Degeneration des Myokards. Phänomenologie, Vorkommen und Pathogenese. Med Habilitationsschrift, Universität Köln

    Google Scholar 

  • Arnold G (1988) Myokardschädigung und Katecholamine. Schriftenreihe Giulini Pharma, Band 3, Pharmazeutische Verlagsgesellschaft, Basel

    Google Scholar 

  • Arnold G (1995) Makroskopische und mikroskopische Herzpräparation bei ischämischen Herzkrankheiten. Pathologe 16:168–180

    PubMed  CAS  Google Scholar 

  • Arnold G, Kaiser C, Mletzko RU, Fischer R (1982) Die Luxol-Fast-Blue-Färbung am Myokard-Untersuchung äußerer Einflüsse auf das Färbeverhalten. Verh Dtsch Ges Pathol 66:611

    Google Scholar 

  • Arnold G, Kaiser C, Fischer R (1985) Myofibrillar degeneration-A common type of myocardial lesion and its selective identification by a modified Luxol Fast Blue stain. Pathol Res Pract 180:405–415

    PubMed  CAS  Google Scholar 

  • Arnold G, Bargfrede J, Höpp HW (1990) Sind Koronarspasmen morphologisch faßbar? Verh Dtsch Ges Pathol 74:455

    Google Scholar 

  • Arnold G, Bargfrede J, Keppler K (1993) Die räumliche und zeitliche Entwicklung der myofibrillären Degeneration in der Frühphase des Herzinfarktes. Verh Dtsch Ges Pathol 77:346

    Google Scholar 

  • Arnold G, Bargfrede J, Keppler K (1996) Die Bedeutung der Infarktrandzone für den Nachweis territorialer Kurzzeitischämien und die Infarktgrößenreduktion. Verh Dtsch Ges Pathol 80:364

    Google Scholar 

  • Atkinson JB (1994) Pathobiology of sudden death: Coronary causes. Cardiovasc Pathol 3:105–115

    Google Scholar 

  • Baroldi G (1988) Anatomy and quantification of myocardial cell death. Med Achiev Exp Pathol 13:87–113

    CAS  Google Scholar 

  • Baroldi G (1975a) Different types of myocardial necrosis in coronary heart disease: A pathophysiologic review of their functional significance. Am Heart J 89:742–752

    PubMed  CAS  Google Scholar 

  • Baroldi G (1975b) Different morphological types of myocardial cell death in man. In: Fleckenstein A, Rona G (eds) Recent advances in studies on cardiac structure and metabolism, vol 6, University Park Press, Baltimore, pp 383–

    Google Scholar 

  • Baroldi G, Falzi G, Mariani F (1979) Sudden coronary death. A postmortem study in 208 selected cases compared to 97 “control subjects“. Am Heart J 98:20–31

    PubMed  CAS  Google Scholar 

  • Bolick DR, Hackel DB, Reimer KA, Ideker RE (1986) Quantitative analysis of myocardial infarct structure in patients with ventricular tachycardia. Circulation 74:1266–1279

    PubMed  CAS  Google Scholar 

  • Bouchardy B, Majno G (1974) Histopathology of early myocardial infarcts. Am J Pathol 74:301–330

    PubMed  CAS  Google Scholar 

  • Büchner F (1932) Die Rolle des Herzmuskels bei der Angina pectoris. Beitr Pathol Anat 89:644–667

    Google Scholar 

  • Büchner F (1933) Das morphologische Substrat der Angina pectoris im Tierexperiment. Beitr Pathol Anat 92:311–328

    Google Scholar 

  • Bulkley BH, Ridolfi RL, Salyer WR, Hutchins GM (1976) Myocardial lesions of progressive systemic sclerosis. A cause of cardiac dysfunction. Circulation 53:483–490

    PubMed  CAS  Google Scholar 

  • Chappel CI, Rona G, Balazs T, Gaudry R (1959) Comparison of cardiotoxic actions of certain sympathomimetic amines. Canad J Biochem Physiol 37:35–42

    PubMed  CAS  Google Scholar 

  • David H, Hecht A, Uerlings J (1968) Noradrenalin-bedingte Feinstrukturveränderungen des Herzmuskels der Ratte. Beitr Pathol Anat 137:1–18

    PubMed  CAS  Google Scholar 

  • Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE (1982) Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139

    PubMed  CAS  Google Scholar 

  • Dürck H (1908) Untersuchungen über die pathologische Anatomie der Beriberi. Beitr Pathol Anat Suppl 8

    Google Scholar 

  • Edwalds GM, Said JW, Block MI, Herscher LL, Siegel RJ, Fishbein MC (1984) Myocytolysis (vacuolar degeneration) of myocardium: Immunohistochemical evidence of viability. Hum Pathol 15: 753–756

    PubMed  CAS  Google Scholar 

  • Factor SM, Cho S (1985) Smooth muscle contraction bands in the media of coronary arteries: A postmortem marker of antemortem coronary spasm? J Am Coll Cardiol 6:1329–1337

    PubMed  CAS  Google Scholar 

  • Fenoglio JJ jr, Pham TD, Harken AH, Horowitz LN, Josephson ME, Wit AL (1983) Recurrent sustained ventricular tachycardia: Structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation 68:518–533

    PubMed  Google Scholar 

  • Ferrans VJ, Buja M, Maron BJ (1975) Myofibrillar abnormalities following cardiac muscle cell injury. In: Fleckenstein A, Rona G (eds) Recent advances in studies on cardiac structure and metabolism, vol 6. Urban & Schwarzenberg, München, pp 367–382

    Google Scholar 

  • Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73:843–849

    PubMed  CAS  Google Scholar 

  • Fishbein MC, Kulber D, Stand M, Edwalds G (1986) Distribution of fibrinogen and albumin in normal, ischaemic and necrotic myocardium during the evolution of myocardial infarction: An immunohistochemical study. Cardiovasc Res 20:36–41

    PubMed  CAS  Google Scholar 

  • Fleckenstein A, Janke J, Döring HJ, Leder O (1971) Die intrazelluläre Überladung mit Kalzium als entscheidender Kausalfaktor bei der Entstehung nicht-koronarogener Myokard-Nekrosen. Verh Dtsch Ges Kreislaufforsch 37:345–353

    PubMed  CAS  Google Scholar 

  • Fleckenstein A, Janke J, Döring HJ, Leder O (1975) Key role of Ca in the production of non coronarogenic myocardial necrosis. In: Fleckenstein A, Rona G (eds) Recent advances in studies on cardiac structure and metabolism, vol 6. Urban & Schwarzenberg, München, pp 21–32

    Google Scholar 

  • French JE (1952) A histological study of the heart lesions in potassium-deficient rats. Arch Pathol 53:485–496

    CAS  Google Scholar 

  • Frenzel H (1984) Der Myokardinfarkt-Morphologie und Entwicklung. Wien Med Wochenschr 134:517–524

    PubMed  CAS  Google Scholar 

  • Fujiwara H, Ashraf M, Sato S, Millard RW (1982) Transmural cellular damage and blood flow distribution in early ischemia in pig hearts. Circ Res 51:683–693

    PubMed  CAS  Google Scholar 

  • Ganote CE, Seabra-Gomes R, Nayler WG, Jennings RB (1975) Irreversible myocardial injury in anoxic perfused rat hearts. Am J Pathol 80:419–450

    PubMed  CAS  Google Scholar 

  • Ganote C, Van der Heide RS (1987) Cytoskeletal lesions in anoxic myocardial injury. Am J Pathol 129:327–344

    PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Gonzales MA, Barrabés JA, Ruiz-Meana M, Solares J, Lidon R-M et al. (1997) Prevention of ischémic rigor contracture during coronary occlusion by inhibition of Na+-H+ exchange. Cardiovasc Res 35:80–89

    PubMed  CAS  Google Scholar 

  • Ge K, Xue A, Bai J, Wang S (1983) Keshan disease: An endemic cardiomyopathy in China. Virchows Arch 401:1–15

    CAS  Google Scholar 

  • Greenhoot JH, Reichenbach DD (1969) Cardiac injury and subarachnoid hemorrhage. J Neurosurg 30:521–531

    PubMed  CAS  Google Scholar 

  • Gregg PA, Robinson MJ (1993) Histopathology of the heart in tetanus. Cardiovasc Pathol 2:71–76

    Google Scholar 

  • Grundmann E (1950/51) Histologische Untersuchungen über die Wirkungen experimentellen Sauerstoffmangels auf das Katzenherz. Beitr Pathol Anat 111:36–76

    PubMed  CAS  Google Scholar 

  • Grundner-Culemann A (1952) Experimentelle und morphologische Untersuchungen über Veränderungen des Herzmuskels von Ratten bei Kalium-Mangelernährung. Arch Kreisl Forsch 18:185–210

    CAS  Google Scholar 

  • Hagler HK, Ba LS, Buja LM (1979) Effect of different methods of tissue preparation on mitochondrial inclusions of ischémic and infarcted canine myocardium. Transmission and analytic electron microscopic study. Lab Invest 40:529–544

    PubMed  CAS  Google Scholar 

  • Hausamen TU, Poche R (1965) Elektronenmikroskopische Untersuchungen über die Wirkung von Alupent® auf die Ultrastruktur des Herzmuskels der Ratte. Virchows Arch Pathol Anat 339:225–233

    CAS  Google Scholar 

  • Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10:641–668

    PubMed  CAS  Google Scholar 

  • Heggtveit HA, Herman L, Mishra RK (1964) Cardiac necrosis and calcification in experimental magnesium deficiency. Am J Pathol 45:757–782

    PubMed  CAS  Google Scholar 

  • Herdson PB, Sommers HM, Jennings RB (1965) A comparative study of the fine structure of normal and ischémic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am J Pathol 46:367–386

    PubMed  CAS  Google Scholar 

  • Herzog G (1920) Zur Pathologie der Leuchtgasvergiftung mit makro-und mikroskopischen Demonstrationen. Münch Med Wochenschr 67:558–559

    Google Scholar 

  • Hoffstein S, Gennaro DE, Fox AC, Hirsch J, Streuli F, Weissmann G (1975) Colloidal lanthanum as a marker for impaired plasma membrane permeability in ischémie dog myocardium. Am J Pathol 79:207–218

    PubMed  CAS  Google Scholar 

  • Hort W (1965) Ventrikeldilatation und Muskelfaserdehnung als früheste morphologische Befunde beim Herzinfarkt. Virchows Arch Pathol Anat 339:72–82

    CAS  Google Scholar 

  • Hort W (1968) Mikroskopische Beobachtungen an menschlichen Infarktherzen. Virchows Arch Pathol Anat 345:61–70

    CAS  Google Scholar 

  • Hutchins GM (1982) Time course of infaret and healing. In: Wagner GS (ed) Myocardial infarction: measurement and intervention. Nijhoff Publishers, Den Haag, pp 3–20

    Google Scholar 

  • Jennings RB, Hawkins HK (1980) Ultrastructural changes of acute myocardial ischemia. In: Wildenthal K (ed) Degradative processes in heart and skeletal muscle. Elsevier/North-Holland Biomédical Press, pp 295–346

    Google Scholar 

  • Jennings RB, Reimer KA (1981) Lethal myocardial ischémie injury. Am J Pathol 102:241–255

    PubMed  CAS  Google Scholar 

  • Jennings RB, Reimer KA (1989) Pathobiology of acute myocardial ischemia. Hosp Pract 15: 89–107

    Google Scholar 

  • Jennings RB, Reimer KA (1994) Acute myocardial ischemia: Effects of reperfusion with arterial blood. Artific Cells Blood Subs Immob Biotech 22:253–278

    CAS  Google Scholar 

  • Jennings RB, Reimer KA, Jones RN, Peyton RB (1983) High energy phosphates, anaerobic glycolysis and irreversibility in ischemia. Adv Exp Med Biol 161:403–419

    PubMed  CAS  Google Scholar 

  • Jennings RB, Steenbergen C, Reimer KA (1995) Myocardial ischemia and reperfusion. In: Schoen FJ, Gimbrone MA (eds) Cardiovascular pathology. Clinicopathologic correlations and pathogenetic mechanisms, Williams & Wilkins, Baltimore, pp 47–80

    Google Scholar 

  • Jönsson L, Johansson G (1974) Cardiac muscle cell damage induced by restaint stress. Virchows Arch B Cell Pathol 17:1–12

    PubMed  Google Scholar 

  • Karch SB, Billingham ME (1984) Morphologic effects of defibrillation: A preliminary report. Crit Care Med 12:920–921

    PubMed  CAS  Google Scholar 

  • Kent SP (1967) Diffusion of plasma proteins into cells: A manifestation of cell injury in human myocardial ischemia. Am J Pathol 50:623–637

    PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Whalen D, Jennings RB (1974a) Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74: 399–422

    PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974b) The “no reflow“ phenomenon after temporary occlusion in the dog. J Clin Invest 54:1496–1508

    PubMed  CAS  Google Scholar 

  • Korb G, Totovic V (1967) Elektronenmikroskopische Untersuchungen über Frühveränderungen im Zentrum und in der Peripherie experimenteller Herzinfarkte. Virchows Arch Pathol Anat 342:85–96

    CAS  Google Scholar 

  • Langer GA (1971) The intrinsic control of myocardial contraction-ionic factors. N Engl J Med 285: 1065–1071

    PubMed  CAS  Google Scholar 

  • Langer GA, Frank JS, Philipson KD (1982) Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmic reticulum and mitochondria of the myocardium. Pharmacol Ther 16:331–376

    PubMed  CAS  Google Scholar 

  • Lee JA (1995) The pathology of cardiac ischaemia: Cellular and molecular aspects. J Pathol 175:167–174

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1976) Biochemistry, 2. edn. Worth Publishers, New York

    Google Scholar 

  • Li G, Wang F, Kang D, Li C (1985) Keshan Disease: An endemic cardiomyopathy in China. Hum Pathol 16:602–609

    PubMed  CAS  Google Scholar 

  • Linzbach AJ (1947) Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchows Arch 314:534–594

    PubMed  CAS  Google Scholar 

  • Lodge-Patch I (1951) The ageing of cardiac infarcts, and its influence on cardiac rupture. Br Heart J 13:37–42

    PubMed  CAS  Google Scholar 

  • Luft UC (1937) Irreversible Organveränderungen durch Hypoxämie im Unterdruck. Beitr Pathol Anat 98:323–334

    Google Scholar 

  • Mallory GK, White PD, Salcedo-Salgar J (1939) The speed of healing of myocardial infarction. Am Heart J 18:647–671

    Google Scholar 

  • Martin AM, Hackel DB (1963) The myocardium of the dog in hemorrhagic shock. A histochemical study. Lab Invest 12:77–91

    CAS  Google Scholar 

  • Martin AM, Hackel DB, Kurtz SM (1964) The ultrastructure of zonal lesions of the myocardium in hemorrhagic shock. Am J Pathol 44:127–140

    PubMed  Google Scholar 

  • Martin HG, Loevenhart AS, Bunting CH (1918) The morphological changes in the tissues of the rabbit as a result of reduced oxidation. J Exper Med (Am) 27:399–412

    CAS  Google Scholar 

  • Matsuda M, Fujiwara H, Onodera T, Tanaka M, Wu DJ, Fujiwara T, Hamashima Y, Kawai C (1987) Quantitative analysis of infarct size, contraction band necrosis and coagulation necrosis in human autopsied hearts with acute myocardial infarction after treatment with selective intracoronary thrombolysis. Circulation 76:981–989

    PubMed  CAS  Google Scholar 

  • Meessen H (1939) Experimentelle Untersuchungen zum Kollapsproblem. Beitr Pathol Anat 102: 191–267

    Google Scholar 

  • Melville KJ, Blum B, Shister HE, Silver MD (1963) Cardiac ischémic changes and arrhythmias induced by hypothalamic stimulation. Am J Cardiol 12:781–791

    PubMed  CAS  Google Scholar 

  • Moravec J, Hatt PY (1969) Nécrose myocardique expérimentale provoquée par Pisopropylnoradrénaline. Etude au microscope électronique. Path Biol 17:585–595

    CAS  Google Scholar 

  • Müller A (1942) Histologische und experimentelle Untersuchungen über traumatische Myokardveränderungen. Beitr Pathol Anat Allg Pathol 107:300–330

    Google Scholar 

  • Müller E, Rotter W (1942) Über histologische Veränderungen beim akuten Höhentod. Beitr Pathol Anat 107:156–172

    Google Scholar 

  • Nayler WG (1981) The role of Ca2+ in the ischémic myocardium. Am J Pathol 102:262–270

    PubMed  CAS  Google Scholar 

  • Opitz E (1935) Herzmuskelveränderungen durch Störung der Sauerstoffzufuhr. Z Kreislaufforsch 27:227–237

    Google Scholar 

  • Pichotka J (1942) Tierexperimentelle Untersuchungen zur pathologischen Histologie des akuten Höhentodes. Beitr Pathol Anat 107:117–155

    CAS  Google Scholar 

  • Piper HM (1989) Energy deficiency, calcium overload or oxidative stress: Possible causes of irreversible ischémie myocardial injury. Klin Wochenschr 67:465–476

    PubMed  CAS  Google Scholar 

  • Piper HM, Noll T, Siegmund B (1994) Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28:1–15

    PubMed  CAS  Google Scholar 

  • Piper HM, Siegmund B, Ladilov YV, Schlüter KD (1996) Myocardial protection during reperfusion. Thorac Cardiovasc Surg 44:15–19

    PubMed  CAS  Google Scholar 

  • Pirolo JS, Hutchins GM, Moore GW (1985) Myocyte vacuolization in infarct border zone is reversible. Am J Pathol 121:444–450

    PubMed  CAS  Google Scholar 

  • Poche R, Ohm HG (1963) Lichtmikroskopische histochemische und elektronenmikroskopische Untersuchungen des Herzmuskels vom Menschen nach induziertem Herzstillstand. Arch Kreisl Forsch 41:86–135

    CAS  Google Scholar 

  • Raute-Kreinsen U, Stier H, Lehmann W, Kachel W (1980) Dopamin-induzierte sekundäre Kardiomyopathie. Virchows Arch A Pathol Anat Histol 388:77–85

    PubMed  CAS  Google Scholar 

  • Reichenbach DD, Benditt EP (1966) Myofibrillar degeneration. A new category of myocardial cellular reaction to injury. Am J Pathol 48:32a

    Google Scholar 

  • Reichenbach DD, Benditt EP (1968) Myofibrillar degeneration. A response of the myocardial cell to injury. Arch Pathol 85:189–199

    PubMed  CAS  Google Scholar 

  • Reichenbach DD, Benditt EP (1969) Myofibrillar degeneration. A common form of cardiac muscle injury. Ann NY Acad Sci 156:164–176

    PubMed  CAS  Google Scholar 

  • Reichenbach DD, Benditt EP (1970) Catecholamines and cardiomyopathy: The pathogenesis and potential importance of myofibrillar degeneration. Hum Pathol 1:125–150

    Google Scholar 

  • Reichenbach DD, Moss NS, Meyer E (1977) Pathology of the heart in sudden cardiac death. Am J Cardiol 39:865–872

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB (1979) The “wavefront phenomenon“ of myocardial ischémic cell death. II. Transmural progression of necrosis within the framework of ischémie bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  • Reimer KA, Jennings RB (1991) Myocardial ischemia, hypoxia, and infarction. In: Fozzard HA, Haber JE, Jennings RB, Katz AM, Morgan HE (eds). The heart and cardiovascular system, 2nd edn. Raven Press, New York, pp 1875–1974

    Google Scholar 

  • Rona G, Chappel CI, Balazs T, Gaudry R (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AM A Arch Pathol 67:443–455

    CAS  Google Scholar 

  • Rona G, Boutet M, Hüttner I, Peters H (1973) Pathogenesis of isoproterenol-induced myocardial alterations: Functional and morphological correlates. In: Dhalla NS (ed) Recent advances in studies on cardiac structure and metabolism, vol 3. University Park Press, Baltimore, pp 507–525

    Google Scholar 

  • Rona G, Boutet M, Hüttner I (1975) Membrane permeability alterations as manifestation of early cardiac muscle cell injury. In: Fleckenstein A, Rona G (eds) Recent advances in studies on cardiac structure and metabolism, vol 6. University Park Press, Baltimore, pp 439–451

    Google Scholar 

  • Rona G, Boutet M, Hüttner I (1983) Reperfusion injury. A possible link between catecholamineinduced and ischémie myocardial alterations. Adv Myocardiol 4:427–439

    PubMed  CAS  Google Scholar 

  • Rose AG (1974) Catecholamine-induced myocardial damage associated with phaeochromocytomas and tetanus. S Afr Med J 48:1285–1289

    PubMed  CAS  Google Scholar 

  • Saram M (1957) Über die azelluläre Entstehung von Narben bei Durchblutungsstörungen im Herzmuskel. Beitr Pathol Anat 118:275–291

    PubMed  CAS  Google Scholar 

  • Schlack W, Uebing A, Schäfer M, Bier F, Schäfer S, Piper HM, Thämer V (1994) Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart. Pflügers Arch 428:134–141

    PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Reiner L (1955) Focal myocytolysis of the heart. Am J Pathol 31:443–459

    PubMed  CAS  Google Scholar 

  • Selye H (1961) The pluricausal cardiopathies. C Thomas, Springfield

    Google Scholar 

  • Shen AC, Jennings RB (1972) Myocardial calcium and magnesium in acute ischémie injury. Am J Pathol 67:417–440

    PubMed  CAS  Google Scholar 

  • Shperling ID (1978) The relaxation of sarcomeres in ischémie injury of myocardium. Virchows Arch A Pathol Anat Histol 380:149–154

    PubMed  CAS  Google Scholar 

  • Smith AJ (1904/05) On the histological behavior of the cardiac muscle in two examples of organization of myocardial infarct. Univ Pennsylvania M Bull 17:227–234

    Google Scholar 

  • Sommers HM, Jennings RB (1964) Experimental acute myocardial infarction. Histologie and histochemical studies of early myocardial infarcts induced by temporary or permanent occlusion of a coronary artery. Lab Invest 13:1491–1503

    PubMed  CAS  Google Scholar 

  • Steenbergen CJ, Hill ML, Jennings RB (1987a) Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia and in canine heart. Circ Res 69:478–486

    Google Scholar 

  • Steenbergen CJ, Murphy E, Levy L, London RE (1987b) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707

    PubMed  CAS  Google Scholar 

  • Szakacs JE, Cannon A (1958) 1-Norepinephrine myocarditis. Am J Clin Pathol 30:425–434

    PubMed  CAS  Google Scholar 

  • Tazelaar HD, Karch SB, Stephens BG, Billingham ME (1987) Cocaine and the heart. Hum Pathol 18:195–199

    PubMed  CAS  Google Scholar 

  • Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS (1985) Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol 17:317–338

    PubMed  CAS  Google Scholar 

  • Van Vleet JF, Ferrans VJ, Ruth GR (1977) Ultrastructural alterations in nutritional cardiomyopathy of selenium-vitamine E deficient swine. I. Fiber lesions. Lab Invest 37:188–200

    PubMed  Google Scholar 

  • Veith G (1940) Experimentelle Untersuchungen zur Wirkung von Adrenalin auf den Herzmuskel. Arch Kreislaufforsch 6:335–360

    CAS  Google Scholar 

  • Waller BF (1988) The pathology of acute myocardial infarction: definition, location, pathogenesis, effects of reperfusion, complications and sequelae. Cardiol Clin 6:1–28

    PubMed  CAS  Google Scholar 

  • Weigert C (1880) Über die pathologischen Gerinnungsvorgänge. Virchows Arch Pathol Anat 79: 87–123

    Google Scholar 

  • Weiss S, Wilkins RW (1937) The nature of the cardiovascular disturbances in nutritional deficiency states (Beriberi). Ann Intern Med 11:104–148

    CAS  Google Scholar 

  • Willer H (1926) Zur Entstehung der Fragmentatio myocardii. Virchows Arch Pathol Anat 261: 586–599

    Google Scholar 

  • Wolf PL, Levin-MB (1960) Shöshin beriberi. N Engl J Med 262:1302–1306

    Google Scholar 

  • Young NA, Mondestin MA, Bowman RL (1994) Ischémie changes in fetal myocardium. An autopsy series. Arch Pathol Lab Med 118:289–292

    PubMed  CAS  Google Scholar 

  • Zimmermann ANE, Hülsmann WC (1966) Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature 211:646–647

    Google Scholar 

H. Weitere Komplikationen des Herzinfarktes

  • Abrams DL, Edelist A, Luria MH, Miller AJ (1963) Ventricular aneurysm. A reappraisal based on a study of sixty-five consecutive autopsied cases. Circulation 27:164–169

    PubMed  CAS  Google Scholar 

  • Allaire E, Hasenstab D, Kenagy RD, Starcher B, Clowes MM, Clowes AW (1998) Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation 98:249–255

    PubMed  CAS  Google Scholar 

  • Alonso-Orcajo N, Izquierdo-Garcia F, Simarro E (1994) Atrial rupture and sudden death following atrial infarction. Int J Cardiol 46:82–84

    PubMed  CAS  Google Scholar 

  • Andersen HR, Falk E (1987) Isolated right ventricular aneurysm following right ventricular infarction. Cardiology 74:479–482

    PubMed  CAS  Google Scholar 

  • Atkinson JB, Robinowitz M, McAllister HA, Virmani R (1985) Association of eosinophils with cardiac rupture. Hum Pathol 16:562–568

    PubMed  CAS  Google Scholar 

  • Awan NA, Ikeda R, Olson H, Hata J, deMaria AN, Vera Z et al. (1976) Intraventricular free wall dissection causing acute interventricular communication with intact septum in myocardial infarction. Chest 69:782–785

    PubMed  CAS  Google Scholar 

  • Baladi NA, Bashour TT, Yap AG, Yakel DL, Pong T, Podolin R et al. (1996) Papillary muscle rupture after successful coronary artery bypass procedures: report of three cases treated by prompt reoperation. Am Heart J 132:1272–1275

    PubMed  CAS  Google Scholar 

  • Barbour DJ, Roberts WC (1986) Rupture of a left ventricular papillary muscle during acute myocardial infarction: analysis of 22 necropsy patients. JACC 8:558–565

    PubMed  CAS  Google Scholar 

  • Bartunek J, Vanderheyden M, Bruyne B de (1995) Dynamic left ventricular outflow tract obstruction after anterior myocardial infarction. A potential mechanism of myocardial rupture. Eur Heart J 16:1439–1442

    PubMed  CAS  Google Scholar 

  • Batts KP, Ackermann DM, Edwards WD (1990) Postinfarction rupture of the left ventricular free wall: clinicopathologic correlates in 100 consecutive autopsie cases. Hum Pathol 21:530–535

    PubMed  CAS  Google Scholar 

  • Becker RC, Charlesworth A, Wilcox RG, Hampton J, Skene A, Gore JM et al. (1995) Cardiac rupture associated with thrombolytic therapy: impact of time to treatment in the late assessment of thrombolytic efficacy (LATE) study. JACC 25:1063–1068

    PubMed  CAS  Google Scholar 

  • Becker RC, Gore JM, Lambrew C, Weaver WD, Rubison RM, French WJ et al. (1996) A composite view of cardiac rupture in the United States national registry of myocardial infarction. JACC 27:1321–1326

    PubMed  CAS  Google Scholar 

  • Becker RC, Hochman JS, Cannon CP, Spencer FA, Ball SP, Rizzo MJ et al. (1999) Fatal cardiac rupture among patients treated with thrombolytic agents and adjunctive thrombin antagonists. Observations from the thrombolysis and thrombin inhibition in myocardial infarction 9 study. JACC 33:479–487

    PubMed  Google Scholar 

  • Beranek JT (1995) Preventive treatment of postinfarction heart rupture. Cardiovasc Drug Ther 9:169–170

    CAS  Google Scholar 

  • Berrisford RG, Page RD, Fabri BM (1993) Left ventricular free wall rupture after coronary artery surgery. Eur J Cardiothorac Surg 7:499–500

    PubMed  CAS  Google Scholar 

  • Blinc A, Noc M, Pohar B, Cernic N, Horvat M (1996) Subacute rupture of the left ventricular free wall after acute myocardial infarction. Three cases of long-term survival without emergency surgical repair. Chest 109:565–567

    PubMed  CAS  Google Scholar 

  • Brown EJ, Kloner RA, Schoen FJ, Hammerman H, Hale S, Braunwald E (1983) Scar thinning due to Ibuprofen administration after experimental myocardial infarction. Am J Cardiol 51: 877–883

    PubMed  CAS  Google Scholar 

  • Büchner F (1960) Spezielle Pathologic 3. Aufl. Urban & Schwarzenberg, Berlin, S 33

    Google Scholar 

  • Buehler DL, Stinson EB, Oyer PE, Shumway NE (1979) Surgical treatment of aneurysms of the inferior left ventricular wall. J Thorac Cardiovasc Surg 78:74–78

    PubMed  CAS  Google Scholar 

  • Bulkley BH, Roberts WC (1974) Steroid therapy during acute myocardial infarction. A cause of delayed healing and of ventricular aneurysm. Am J Med 56:244–250

    PubMed  CAS  Google Scholar 

  • Cabin HS, Roberts WC (1980a) True left ventricular aneurysm and healed myocardial infarction. Clinical and necropsy observations including quantification of degree of coronary arterial narrowing. Am J Cardiol 46:754–763

    PubMed  CAS  Google Scholar 

  • Cabin HS, Roberts WC (1980b) Left ventricular aneurysm, intraaneurysmal thrombus and systemic embolus in coronary heart disease. Chest 77:586–590

    PubMed  CAS  Google Scholar 

  • Carrel T, Metzger D, Jenni R, Turina M (1995) Früh-und Spätresultate der chirurgischen Behandlung von linksventrikulären Aneurysmen: Bericht über 105 Patienten. Schweiz Med Wochenschr 125:833–840

    PubMed  CAS  Google Scholar 

  • Cederqvist L, Söderström J (1964) Papillary muscle rupture in myocardial infarction. A study based upon an autopsy material. Acta Med Scand 176:287–292

    PubMed  CAS  Google Scholar 

  • Chen JS, Hwang CL, Lee DY, Chen YT (1995) Regression of left ventricular aneurysm after delayed percutaneous transluminal coronary angioplasty (PTCA) in patients with acute myocardial infarction. Int J Cardiol 48:39–47

    PubMed  Google Scholar 

  • Cheriex EC, Swart H de, Dijkman LW, Havenith MG, Maessen JG, Engelen DJM et al. (1995) Myocardial rupture after myocardial infarction is related to the perfusion status of the infarct-related coronary artery. Am Heart J 129:644–650

    PubMed  CAS  Google Scholar 

  • Chida K, Ohkawa SI, Nagashima K, Imai T, Kuboki K, Maeda S et al. (1995) An autopsy case of incomplete left atrial rupture following left atrial infarction associated with left ventricular myocardial infarction. Jpn Circ J 59:299–302

    PubMed  CAS  Google Scholar 

  • Christensen DJ, Ford M, Reading J, Castle CH (1977) Effect of hypertension on myocardial rupture after acute myocardial infarction. Chest 72:618–622

    PubMed  CAS  Google Scholar 

  • Coltharp WH, Hoff SJ, Stoney WS, Alford WC, Burrus GR, Glassford DM et al. (1994) Ventricular aneurysmectomy. A 25-year experience. Ann Surg 219:707–714

    PubMed  CAS  Google Scholar 

  • Connelly CM, Vogel WM, Wiegner AW, Osmers EL, Bing OHL, Kloner RA (1985) Effects of reperfusion after coronary artery occlusion on post-infarction scar tissue. Circ Res 57:562–577

    PubMed  CAS  Google Scholar 

  • Cooley DA, Frazier OH, Duncan JM, Reul GJ, Krajcer Z (1992) Intracavitary repair of ventricular aneurysm and regional dyskinesia. Ann Surg 215:417–424

    PubMed  CAS  Google Scholar 

  • Cushing EH, Feil HS, Stanton EJ, Wartman WB (1942) Infarction of the cardiac auricles (atria): clinical, pathological, and experimental studies. Br Heart J 4:17–34

    PubMed  CAS  Google Scholar 

  • Dickens P, Ho J, Wong KY (1995) Sudden death from ruptured septic myocardial infarct in an intravenous drug addict. Forensic Sci Int 75:67–71

    PubMed  CAS  Google Scholar 

  • Dropmann K (1960) Über die Anordnung, die Feinstruktur und die Entstehung von bindegewebigen Fasern in Herzmuskelnarben mit besonderer Berücksichtigung der Bildung elastischer Fasern. Frankf Z Pathol 70:311–323

    PubMed  CAS  Google Scholar 

  • Dubnow MH, Burchell HB, Titus JL (1965) Postinfarction ventricular aneurysm. A clinicomorphologic and electrocardiographic study of 80 cases. Am Heart J 70:753–760

    PubMed  CAS  Google Scholar 

  • Duke M (1993) An historical review of rupture of the heart. Connecticut Med 57:91–96

    CAS  Google Scholar 

  • Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML (1979) Regional cardiac dilatation after acute myocardial infarction. Recognition by two-dimensional echocardiography. N Engl J Med 300:57–62

    PubMed  CAS  Google Scholar 

  • Edwards BS, Edwards WD, Edwards JE (1984) Ventricular septal rupture complicating acute myocardial infarction: identification of simple and complex types in 53 autopsied hearts. Am J Cardiol 54:1201–1205

    PubMed  CAS  Google Scholar 

  • Elefteriades JA, Solomon LW, Mickleborough LL, Cooley D (1995) Left ventricular aneurysmectomy in advanced left ventricular dysfunction. Cardiol Clin 13:59–72

    PubMed  CAS  Google Scholar 

  • Factor SM, Robinson TF, Dominitz R, Cho S (1987) Alterations of the myocardial skeletal framework in acute myocardial infarction with and without ventricle rupture. A preliminary report. Am J Cardiovasc Pathol 1:91–97

    PubMed  CAS  Google Scholar 

  • Faxon DP, Ryan TJ, Davis KB, McCabe CH, Myers W, Lesperance J et al. (1982) Prognostic significance of angiographically documented left ventricular aneurysm from the coronary artery surgery study (CASS). Am J Cardiol 50:157–164

    PubMed  CAS  Google Scholar 

  • Feneley MP, Chang VP, O’Rourke MF (1983) Myocardial rupture after acute myocardial infarction. Ten year review. Br Heart J 49:550–556

    PubMed  CAS  Google Scholar 

  • Figueras J, Cortadellas J, Soler-Soler J (1998) Comparison of ventricular septal and left ventricular free wall rupture in acute myocardial infarction. Am J Cardiol 81:495–497

    PubMed  CAS  Google Scholar 

  • Forman MB, Collins HW, Kopelman HA, Vaughn WK, Perry JM, Virmani R et al. (1986) Determinants of left ventricular aneurysm formation after anterior myocardial infarction: a clinical and angiographie study. JACC 8:1256–1262

    PubMed  CAS  Google Scholar 

  • Friedman BM, Dunn MI (1995) Postinfarction ventricular aneurysms. Clin Cardiol 18:505–511

    PubMed  CAS  Google Scholar 

  • Galeati DG (1757) zit nach Schlichter et al. (1954)

    Google Scholar 

  • Gorlin R, Klein MD, Sullivan JM (1967) Propective correlative study of ventricular aneurysm. Mechanistic concept and clinical recognition. Am J Med 42:512–531

    PubMed  CAS  Google Scholar 

  • Griffith GC, Hegde B, Oblath RW (1961) Factors in myocardial rupture. An analysis of two hundred and four cases at Los Angeles County Hospital between 1924 and 1959. Am J Cardiol 8:792–798

    PubMed  CAS  Google Scholar 

  • Grossi EA, Chinitz LA, Galloway AC, Delianides J, Schwartz DS, McLoughlin DE et al. (1995) Endoventricular remodeling of left ventricular aneurysm. Functional, clinical, and electrophysiological results. Circulation 92(Suppl II):II-98-II-100

    Google Scholar 

  • Handy JR, Crumbley AJ (1995) Postinfarction cardiac rupture after coronary revascularization. J Cardiovasc Surg 36:555–558

    Google Scholar 

  • Harding SE, Vescovo G, Jones SM, Bennett G, Yacoub M, Poole-Wilson PA (1989) Morphological and functional characteristics of myocytes isolated from human left ventricular aneurysms. J Pathol 159:191–196

    PubMed  CAS  Google Scholar 

  • Harvey W (1649) zit nach Duke (1993)

    Google Scholar 

  • Hirai T, Fujita M, Nakajima H, Asanoi H, Yamanishi K, Ohno A et al. (1989) Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation 79:791–796

    PubMed  CAS  Google Scholar 

  • Hort W (1960) Untersuchungen zur funktionellen Morphologie des Myokards. Klin Wochenschr 38:785–790

    PubMed  CAS  Google Scholar 

  • Hort W (1970) Der Herzbeutel und seine Bedeutung für das Herz. Ergebnisse der Inneren Medizin und Kinderheilkunde, NF 29. Springer, Berlin Heidelberg New York, S 1–50

    Google Scholar 

  • Hort W (1993) Strukturdynamik des Myokard. In: Doerr-Seifert-Uehlinger (Hrsg) Spezielle pathologische Anatomie, Bd 22/I. Springer, Berlin Heidelberg New York Tokyo, S 201–236

    Google Scholar 

  • Hort W, Canalis S da, Just H (1964) Untersuchungen bei chronischem experimentellen Herzinfarkt der Ratte. Arch Kreisl-Forschg 44:288–299

    CAS  Google Scholar 

  • Hort W, Kalbfleisch H, Köhler F, Milzner-Schwarz U, Frenzel H (1973) Kombinierte coronarangiographische, makroskopische und mikroskopische Untersuchungen an menschlichen Herzen. Ver Dtsch Ges Pathol 57:384–385

    CAS  Google Scholar 

  • Hotes C, Hort W (1968) Herzgewichte bei frischen und vernarbten Infarkten, bei Herzruptur und Herzwandaneurysma. Z Kreisl-Forschg 57:1040–1049

    CAS  Google Scholar 

  • Hunter J (1757) zit. nach Schlichter et al. (1954)

    Google Scholar 

  • Hvass U, Chatel D, Frikha I, Pansard Y, Depoix JP, Julliard JM (1995) Left ventricular free wall rupture. Long-term results with a pericardial patch and fibrin glue repair. Eur J Cardiothorac Surg 9:75–76

    PubMed  CAS  Google Scholar 

  • Incalzi RA, Capparella O, Gemma A, Puglielli L, Bonetti MG, Carbonin P (1991) Right ventricular aneurysm: a new prognostic indicator after a first acute myocardial infarction. Cardiology 79: 120–126

    Google Scholar 

  • Ishibashi-Ueda H, Imakita M, Fujita H, Katsuragi M, Yutani C (1992) Cafdiac rupture complicating hemorrhagic infarction after intracoronary thrombolysis. Acta Pathol Jpn 42:504–507

    PubMed  CAS  Google Scholar 

  • Jetter WW, White PD (1944) Rupture of the heart in patients in mental institutions. Ann Intern Med 21:783–802

    Google Scholar 

  • Jindani A, Williams BT (1992) Survival after left ventricular aneurysmectomy with or without coronary artery bypass graft. Coron Artery Dis 3:739–744

    Google Scholar 

  • Kanemoto N, Hirose S, Goto Y, Matsuyama S (1988) Disappearing false aneurysm of the ventricular septum without rupture: a complication of acute inferior myocardial infarction-a case report. Angiology 39:263–271

    PubMed  CAS  Google Scholar 

  • Kawano H, Miyauchi K, Okada R, Daida H, Yokoi H, Miyano H et al. (1994) Histopathological study of cardiac rupture following myocardial infarction with and without thrombolytic therapy. J Cardiol 24:249–255

    PubMed  CAS  Google Scholar 

  • Klein MD, Herman MV, Gorlin R (1967) A hemodynamic study of left ventricular aneurysm. Circulation 35:614–630

    PubMed  CAS  Google Scholar 

  • Kohn RM (1959) Mechanical factors in cardiac rupture. Am J Cardiol 4:279–281

    PubMed  CAS  Google Scholar 

  • Kohn RM, Harris R, Gorham LW (1954) Atrial rupture of the heart. Report of case following atrial infarction and summary of 79 cases collected from the literature. Circulation 10:221–231

    PubMed  CAS  Google Scholar 

  • Körting HC, Abegg F, Mittermayer C (1978) Pseudoaneurysm of the heart complicating myocardial infarction. Pathol Res Pract 163:76–86

    PubMed  Google Scholar 

  • Lancisi (1728) De Aneurysmatibus, zit. nach Leibowitz (1970)

    Google Scholar 

  • Lapeyre AC, Steele PM, Kazmier FJ, Chesebro JH, Vliestra RE, Fuster V (1985) Systemic embolism in chronic left ventricular aneurysm: incidence and the role of anticoagulation. JACC 6:534–538

    PubMed  Google Scholar 

  • Lautsch EV, Lanks KW (1967) Pathogenesis of cardiac rupture. Arch Pathol 84:264–271

    PubMed  CAS  Google Scholar 

  • Leibowitz JO (1970) The history of coronary heart disease. Clowes Sons, London

    Google Scholar 

  • Lemery R, Smith HC, Giuliani ER, Gersh BJ (1992) Prognosis in rupture of the ventricular septum after acute myocardial infarction and role of early surgical intervention. Am J Cardiol 70: 147–151

    PubMed  CAS  Google Scholar 

  • Leone A, Fabiano P, Bertanelli F, Mori L, Bertoncini G (1992) Postinfarction cardiac rupture in the nineties: do we know determinating factors? Singapore Med J 33:282–286

    PubMed  CAS  Google Scholar 

  • Lewis AJ, Burchell HB, Titus JL (1969) Clinical and pathologic features of postinfarction cardiac rupture. Am J Cardiol 23:43–53

    PubMed  CAS  Google Scholar 

  • Li YH, Lai LP, Liau CS, Tsai CC (1993) Acute myocardial infarction and left ventricular aneurysm in a patient with normal coronary arteries. Cardiology 83:280–284

    PubMed  CAS  Google Scholar 

  • Likoff W, Bailey CP (1955) Ventriculoplasty: excision of myocardial aneurysm. Report of a successful case. J Am Med Assoc 158:915–920

    PubMed  CAS  Google Scholar 

  • Lillehei CW, Levi MJ, de Wall RA, Warden HE (1962) Resection of myocardial aneurysms after infarction during temporary cardiopulmonary bypass. Circulation 26:206–217

    PubMed  CAS  Google Scholar 

  • Linzbach AJ (1960) Die pathologische Anatomie der Herzinsuffizienz. In: v Bergmann G, Frey W, Schwiegk H (Hrsg) Handbuch der inneren Medizin, Bd IX/1. Springer, Berlin, S 706–800

    Google Scholar 

  • Lobo FV, King DE, Heggtveit HA (1990) Rupture of both left ventricular papillary muscles following acute myocardial infarction. Can J Cardiol 6:66–70

    PubMed  CAS  Google Scholar 

  • Loisance DY, Lordez JM, Deleuze PH, Dubois-Rande LJ, Lellouche D, Cachera JP (1991) Acute postinfarction septal rupture: long-term results. Ann Thorac Surg 52:474–478

    PubMed  CAS  Google Scholar 

  • London RE, London SB (1965) Rupture of the heart. A critical analysis of 47 consecutive cases. Circulation 31:202–208

    PubMed  CAS  Google Scholar 

  • Lopez-Sendon J, Gonzalez A, Lopez de Sa E, Coma-Canella I, Roldan J, Dominguez F et al. (1992) Diagnosis of subacute ventricular wall rupture after acute myocardial infarction: sensitivity and specificity of clinical, hemodynamic and echocardiographic criteria. JACC 19:1145–1153

    PubMed  CAS  Google Scholar 

  • Mangschau A, Geiran A, Forfang K, Simonsen S, Froysaker T (1989) Left ventricular aneurysm and severe cardiac dysfunction: Heart transplantation or aneurysm surgery? J Heart Transplant 8:486–493

    PubMed  CAS  Google Scholar 

  • Mann JM, Roberts WC (1987) Fatal rupture of both left ventricular free wall and ventricular septum (double rupture) during acute, myocardial infarction: analysis of seven patients studied at necropsy. Am J Cardiol 60:722–724

    PubMed  CAS  Google Scholar 

  • Mann JM, Roberts WC (1988a) Rupture of the left ventricular free wall during acute myocardial infarction. Analysis of 138 necropsy patients and comparison with 50 necropsy patients with acute myocardial infarction without rupture. Am J Cardiol 62:847–859

    PubMed  CAS  Google Scholar 

  • Mann JM, Roberts WC (1988b) Acquired ventricular septal defect during acute myocardial infarction. Analysis of 38 unoperated necropsy patients and comparison with 50 unoperated necropsy patients without rupture. Am J Cardiol 62:8–19

    PubMed  CAS  Google Scholar 

  • Markovitz LJ, Savage EB, Ratcliffe MB, Bavaria JE, Kreiner G, Iozzo RV et al. (1989) Large animal model of left ventricular aneurysm. Ann Thorac Surg 48:838–845

    PubMed  CAS  Google Scholar 

  • Meizlish JL, Berger HJ, Plankey M, Errico D, Levy W, Zaret BL (1984) Functional left ventricular aneurysm formation after acute anterior transmural myocardial infarction. Incidence, natural history, and prognostic implications. N Engl J Med 311:1001–1006

    PubMed  CAS  Google Scholar 

  • Mönckeberg JG (1924) Die Erkrankungen des Myokards und des spezifischen Muskelsystems. In: Henke F, Lubarsch O (Hrsg) Handbuch der speziellen pathologischen Anatomie und Histologie. Springer, Berlin, S 385

    Google Scholar 

  • Mönninghoff W, Themann H, Große-Heitmeyer W, Dittrich H (1987) Die Feinstruktur überlebender Herzmuskelzellen im Ventrikelaneurysma. Herz 12:354–358

    PubMed  Google Scholar 

  • Morgagni GB (1761) De sedibus et causis morborum per anatomen indagatis libri quinque. Epistula 44. Padua, zit nach Leibowitz (1970)

    Google Scholar 

  • Murray G (1947) The pathophysiology of the cause of death from coronary thrombosis. Ann Surg 126:523

    PubMed  CAS  Google Scholar 

  • Nahas C, Jones JW, Lafuente J, Ramchandani M, Beall AC (1996) Right ventricular aneurysm associated with postinfarction ventricular septal defect. Ann Thorac Surg 61:737–738

    PubMed  CAS  Google Scholar 

  • Nakamura F, Minamino T, Higashino Y, Ito H, Fujii K, Fujita T et al. (1992) Cardiac free wall rupture in acute myocardial infarction: ameliorative effect of coronary reperfusion. Clin Cardiol 15: 244–250

    PubMed  CAS  Google Scholar 

  • Nakano T, Konishi T, Takezawa H (1985) Potential prevention of myocardial rupture resulting from acute myocardial infarction. Clin Cardiol 8:199–204

    PubMed  CAS  Google Scholar 

  • Nakata A, Hirota S, Tsuji H, Takazakura E (1996) Interventricular septal dissection in a patient with an old myocardial infarction. Int Med 35:33–35

    CAS  Google Scholar 

  • Nakatsuchi Y, Minamino T, Fujii K, Negoro S (1994) Clinicopathological characterization of cardiac free wall rupture in patients with acute myocardial infarction: difference between early and late phase rupture. Int J Cardiol 47(Suppl): S33–S38

    PubMed  CAS  Google Scholar 

  • Ogihara A, Kobayashi A, Niitsuya M, Kuwao S, Kikawada R (1994) Clinico-pathological study of the role of infarct expansion in patients with cardiac rupture following acute myocardial infarction. Jpn Circ J 58:743–749

    PubMed  CAS  Google Scholar 

  • Olearchyk AS, Lemole GM, Spagna PM (1984) Left ventricular aneurysm. Ten years’ experience in surgical treatment of 244 cases. Improved clinical status, hemodynamics, and long-term longevity. J Thorac Cardiovasc Surg 88:544–553

    PubMed  CAS  Google Scholar 

  • Oliva PB, Hammill SC, Edwards WD (1993) Cardiac rupture, a clinically predictable complication of acute myocardial infarction: report of 70 cases with clinicopathological correlations. JACC 22:720–726

    PubMed  CAS  Google Scholar 

  • Parry G, Goudevenos J, Adams PC, Reid DS (1992) Septal rupture after myocardial infarction: is very early surgery really worthwhile? Eur Heart J 13:373–382

    PubMed  CAS  Google Scholar 

  • Paul VE, Shetty DP, Timmis AD (1990) Myocardial infarction and biventricular free-wall rupture with shunting through a false aneurysm. Int J Cardiol 27:280–282

    PubMed  CAS  Google Scholar 

  • Peel AAF (1948) Dissecting aneurysm of the interventricular septum. Br Heart J 10:239–243

    PubMed  CAS  Google Scholar 

  • Penther P, Gerbaux A, Blanc JJ, Morin JF (1977) Myocardial infarction and rupture of the heart: a macroscopic pathologic study. Am Heart J 93:302–305

    PubMed  CAS  Google Scholar 

  • Petrov K, Karalambev N, Toneva N, Vassilev C (1977) Analyse de 153 cas de rupture du myocarde après Pinfarctus aigu du myocarde. Arch Mal Coeur 70:691–697

    PubMed  CAS  Google Scholar 

  • Pierli C, Lisi G, Mezzacapo B (1991) Subacute left ventricular free wall rupture. Surgical repair prompted by echocardiographic diagnosis. Chest 100:1174–1176

    PubMed  CAS  Google Scholar 

  • Pliam MB, Sternlieb JJ (1993) Intramyocardial dissecting hematoma: an unusual form of subacute cardiac rupture. J Card Surg 8:628–637

    PubMed  CAS  Google Scholar 

  • Pollak H, Diez W, Spiel R, Enenkel W, Mlczoch J (1993) Early diagnosis of subacute free wall rupture complicating acute myocardial infarction. Eur Heart J 14:630–648

    Google Scholar 

  • Pollak H, Nobis H, Mlczoch J (1994) Frequency of left ventricular free wall rupture complicating acute myocardial infarction since the advent of thrombolysis. Am J Cardiol 74:184–186

    PubMed  CAS  Google Scholar 

  • Raudkivi PJ, Smyllie J, Conway N, Ross JK (1989) Rupture of a calcified true left ventricular aneurysm: echocardiographic diagnosis and successful repair. Eur Cardiothorac Surg 3: 81–84

    CAS  Google Scholar 

  • Reif TH, Silver MD (1995) Role of stress concentration in the pathogenesis of cardiac rupture following acute myocardial infarction. Can J Cardiol 11:757–762

    PubMed  CAS  Google Scholar 

  • Reiner JS, Lundergan CF, Tenner MP, Abraham AA, Ross AM (1993) Ventricular free wall and septal rupture (Double rupture): a “pseudocomplication“ during post-infarction laser angioplasty. Cathet Cardiovasc Diagn 30:147–149

    PubMed  CAS  Google Scholar 

  • Richardt G, Kübier W, Schömig A (1990) Myokardruptur nach Herzinfarkt. Dtsch Med Wochenschr 115:1316–1318

    PubMed  CAS  Google Scholar 

  • del Rizzo DF, Goldman BS, Hare G (1995) Autologous pericardial patch without infarctectomy for the treatment of acute cardiac rupture. Can J Cardiol 11:702–704

    PubMed  Google Scholar 

  • Rizzoli G, Bellotto F, Gallucci V, Gemelli M, Brumana T, Mazzucco A et al. (1988) Early and late determinants of survival after surgery of left ventricular aneurysm. Eur J Cardiothorac Surg 2:265–272

    PubMed  CAS  Google Scholar 

  • Roberts WC, Morrow AG (1967) Pseudoaneurysm of the left ventricle. Am J Med 43:639–644

    PubMed  CAS  Google Scholar 

  • Rosenthal JE, Daroca PJ, Cohen LS (1972) Rupture of chronic left ventricular aneurysm after acute coronary thrombosis. Am J Cardiol 30:547–549

    PubMed  CAS  Google Scholar 

  • Sagkan O, Örnek E, Erk K, Kandemir B (1996) A massive calcified left ventricular aneurysm with normal coronary arteries and without myocardial infarction. A case report. Angiology 47:807–813

    PubMed  CAS  Google Scholar 

  • Sakai K, Hosoda S, Shimamoto K (1993) Late rupture of left ventricular true aneurysm after acute myocardial infarction. Clin Cardiol 16:573–575

    PubMed  CAS  Google Scholar 

  • Samani NJ, Mauric ATE, Nair S, Thompson J, Bono DP de (1994) Ventricular aneurysmectomy: indications, operative findings and outcome at a single centre. Quarterl J Med 87:41–48

    CAS  Google Scholar 

  • Sauerbruch F (1931) Erfolgreiche operative Beseitigung eines Aneurysma der rechten Herzkammer. Arch Klin Chir 167:586–588

    Google Scholar 

  • Savage EB, Downing SW, Ratcliffe MB, Fallert M, Gupta KB, Tyson GS et al. (1992) Repair of left ventricular aneurysm. Changes in ventricular mechanics, hemodynamics, and oxygen consumption. J Thorac Cardiovasc Surg 104:752–762

    PubMed  CAS  Google Scholar 

  • Scanu P, Lamy E, Commeau P, Grollier G, Charbonneau P (1986) Myocardial dissection in right ventricular infarction: Two-dimensional echocardiographic recognition and pathologic study. Am Heart J 111:422–425

    PubMed  CAS  Google Scholar 

  • Schlichter J, Hellerstein HK, Katz LN (1954) Aneurysm of the heart: a correlative study of one hundred and two proved cases. Medicine 33:43–86

    PubMed  CAS  Google Scholar 

  • Schoenmackers J (1967) Über die Herzruptur, Arterien-, Venen-und Myokardveränderungen. Arch Kreisl-Forschg 54:1–26

    CAS  Google Scholar 

  • Schoenmackers J (1979) Herzruptur. Verh Dtsch Ges Herz-Kreislaufforschg 45:140–145

    Google Scholar 

  • Schofield PM, Rahman AN, Ellis ME, Dunbar EM, Bray CL, Brooks N (1986) Infection of cardiac mural thrombus associated with left ventricular aneurysm. Eur Heart J 7:1077–1082

    PubMed  CAS  Google Scholar 

  • Schuster EH, Bulkley BH (1979) Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation 60:1532–1538

    PubMed  CAS  Google Scholar 

  • Segesser L v, Bauer E, Laske A, Jenni R, Turina M (1989) Der Ventrikelseptumdefekt nach Myokardinfarkt. Schweiz Med Wochenschr 119:1421–1423

    Google Scholar 

  • Shaffer PB, Bashore TM, Noto AM, Diblasio G, Olsen JO, Schall SF (1987) Right ventricular aneurysm due to ischémic disease. Diagnosis by radionuclide angiography with localization of the site of PVC origin by phase analysis. Clin Nucl Med 12:103–105

    PubMed  CAS  Google Scholar 

  • Shen WF, Tribouilloy C, Mirode A, Dufossé H, Lesbre JP (1992) Left ventricular aneurysm and prognosis in patients with first acute transmural anterior myocardial infarction and isolated left anterior descending artery disease. Eur Heart J 13:39–44

    PubMed  CAS  Google Scholar 

  • Shirani J, Berezowski K, Roberts WC (1994) Out-of-hospital sudden death from left ventricular free wall rupture during acute myocardial infarction as the first and only manifestation of atherosclerotic coronary artery disease. Am J Cardiol 73:88–92

    PubMed  CAS  Google Scholar 

  • Stolf NAG, Erdman S, Santos G, Haddad V, Simoes R (1994) Geometric reconstruction in left ventricular aneurysm. Surgical aspects and early results. J Cardiovasc Surg 35(Suppl 1) 173–180

    Google Scholar 

  • Tebbe U, Kreuzer H (1989) Pros and Cons of surgery of the left ventricular aneurysm-a review. Thorac Cardiovasc Surgeon 37:3–10

    CAS  Google Scholar 

  • Topaz O, Mallon SM, Chahine RA, Sequeira RF, Myerburg RJ (1989) Acute ventricular septal rupture. Angiographie-morphologie features and clinical assessment. Chest 95:292–298

    PubMed  CAS  Google Scholar 

  • Ueda S, Ikeda U, Yamamoto K, Takahashi M, Nishinaga M, Nago N et al. (1996) C-reactive protein as a predictor of cardiac rupture after acute myocardial infarction. Am Heart J 131:857–860

    PubMed  CAS  Google Scholar 

  • Veinot JP, Walley VM, Wolfsohn Al, Chandra L, Russell D, Stinson WA et al. (1995) Postinfarct cardiac free wall rupture: The relationship of rupture site to papillary muscle insertion. Mod Pathol 8:609–613

    PubMed  CAS  Google Scholar 

  • Visser CA, Kan G, Meltzer RS, Koolen JJ, Dunning AJ (1986) Incidence, timing and prognostic value of left ventricular aneurysm formation after myocardial infarction: A prospective, serial echocardiographic study of 158 patients. Am J Cardiol 57:729–732

    PubMed  CAS  Google Scholar 

  • Vlodaver Z, Edwards JE (1977) Rupture of ventricular septum or papillary muscle complicating myocardial infarction. Circulation 55:815–822

    PubMed  CAS  Google Scholar 

  • Vlodaver Z, Coe JT, Edwards JE (1975) True and false left ventricular aneurysms. Propensity for the latter to rupture. Circulation 51:567–572

    PubMed  CAS  Google Scholar 

  • Walker S, Binkley P, Neiger D et al. (1982) Right ventricular aneurysm: clinical and laboratory features. Cathet Cardiovasc Diagn 8:137

    PubMed  CAS  Google Scholar 

  • Wessler S, Zoll PM, Schlesinger MJ (1952) The pathogenesis of spontaneous cardiac rupture. Circulation 6:334–351

    PubMed  CAS  Google Scholar 

  • Zagher D, Milgalter E, Pollak A, Hasin Y, Merin G, Beeri R et al. (1996) Left ventricular free wall rupture as the presenting manifestation of acute myocardial infarction in diabetic patients. Am J Cardiol 78:681–682

    Google Scholar 

J. Klinische, gutachterliche und pathogenetische Gesichtspunkte beim Myokardinfarkt

  • Agati L, Voci P, Hickle P, Vizza DC, Autore C, Fedele F et al. (1998) Tissue-type plasminogen activator therapy versus primary coronary angioplasty: impact on myocardial tissue perfusion and regional function 1 month after uncomplicated myocardial infarction. JACC 31:338–343

    PubMed  CAS  Google Scholar 

  • Ambrose JA (1993) The open artery: beyond myocardial salvage. Am J Cardiol 72:85G–90G

    PubMed  CAS  Google Scholar 

  • Amsterdam EA (1997) Treatment and outcome in silent myocardial ischemia: more pieces of the puzzle. Am J Cardiol 80:1474–1475

    PubMed  CAS  Google Scholar 

  • Antman EM, Grudzien C, Mitchell RN, Sacks DB (1997) Detection of unsuspected myocardial necrosis by rapid bedside assay for cardiac troponin T. Am Heart J 133:596–598

    PubMed  CAS  Google Scholar 

  • Arbustini E, Grasso M, Fasani R, Klersy C, Diegoli M, Porcu E et al. (1995) Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br Heart J 74:584–591

    PubMed  CAS  Google Scholar 

  • Armstrong DL, Wing SB, Tyroler HA (1995) United states mortality from ill-defined causes, 1968–1988: potential effects on heart disease mortality trends. Int J Epidem 24:522–527

    CAS  Google Scholar 

  • Arnold AER, Simoons ML, van de Werf F, de Bono DP, Lubsen J, Tijssen JGP et al. (1992) Recombinant tissue-type plasminogen activator and immediate angioplasty in acute myocardial infarction. One-year follow-up. Circulation 86:111–120

    PubMed  CAS  Google Scholar 

  • Arruda VR, Siquiera LH, Chiaparini LC, Coelho OR, Mansur AP, Ramires A et al. (1998) Prevalence of the prothrombin gene variant 20210 G-A among patients with myocardial infarction. Cardiovasc Res 37:42–45

    PubMed  CAS  Google Scholar 

  • Bachmann F (1995) Fibrinolytic agents. Fibrinolysis 9:9–15

    CAS  Google Scholar 

  • Badger RS, Brown G, Kennedy JW, Mathey D, Gallery CA, Bolson EL et al. (1987) Usefulness of recanalization to luminal diameter of 0.6 millimeter or more with intracoronary streptokinase during acute myocardial infarction in predicting “normal“ perfusion status, continued arterial patency and survival at one year. Am J Cardiol 59:519–522

    PubMed  CAS  Google Scholar 

  • Badimon L, Lassila R, Badimon J, Vallathajosula S, Chesebro JH, Fuster V (1988) Residual thrombus is more thrombogenic than severely damaged vessel wall. Circulation 78(Suppl II): 111–119

    Google Scholar 

  • Badui E, Enciso R (1996) Acute myocardial infarction during pregnancy and puerperium review. Angiology 47:739–756

    PubMed  CAS  Google Scholar 

  • Barbagelata NA, Granger CB, Oqueli E, Suárez LD, Borruel M, Topol EJ et al. (1997) TIMI grade 3 flow and reocclusion after intravenous thrombolytic therapy: a pooled analysis. Am Heart J 133:273–282

    PubMed  CAS  Google Scholar 

  • Barry J, Selwyn AP, Nabel EG, Rocco MB, Mead K, Campbell S et al. (1988) Frequency of ST-segment depression produced by mental stress in stable angina pectoris from coronary artery disease. Am J Cardiol 61:989–993

    PubMed  CAS  Google Scholar 

  • Beck OA, Hochrein H (1975) Klinischer Verlauf und Prognose des akuten Myokardinfarktes beim alten Menschen. Dtsch Med Wochenschr 42:2133–2137

    Google Scholar 

  • Birkhead JS (1997) Thrombolytic treatment for myocardial infarction: an examination of practice in 39 United Kingdom hospitals. Heart 78:28–33

    PubMed  CAS  Google Scholar 

  • Bode C, Runge MS, Smalling RW (1996) The future of thrombolysis in the treatment of acute myocardial infarction. Eur Heart J 17(Suppl E): 55–60

    PubMed  Google Scholar 

  • Borchaid F, Heer U (1988) Diabetische autonome Kardioneuropathie-morphologisches Korrelat am menschlichen Koronarplexus. Endokrinol Stoffw 9:81

    Google Scholar 

  • Bosma H, Peter R, Siegrist J, Marmot M (1998) Two alternative job stress models and the risk of coronary heart disease. Am J Publ Health 88:68–74

    CAS  Google Scholar 

  • Bovill EG, Tracy RP, Knatterud GL, Stone PH, Nasmith J, Gore JM et al. (1997) Hemorrhagic events during therapy with recombinant tissue plasminogen activator, Heparin, and Aspirin for unstable angina (thrombolysis in myocardial ischemia, phase IIIB trial). Am J Cardiol 79:391–396

    PubMed  CAS  Google Scholar 

  • Brand FN, Larson M, Friedman LM, Kannel WB, Castelli WP (1996) Epidemiologie assessment of angina before and after myocardial infarction: the Framingham study. Am Heart J 132:174–178

    PubMed  CAS  Google Scholar 

  • Breslow JL, Dammerman M (1995) Genetic determinants of myocardial infarction. In: Longenecker JB et al. (eds) Nutrition and biotechnology in heart disease and cancer. Plenum Press, New York, pp 65–78

    Google Scholar 

  • Brown BG, Gallery CA, Badger RS, Kennedy JW, Mathey D, Bolson EL et al. (1986) Incomplete lysis of thrombus in the moderate underlying atherosclerotic lesion during intracoronary infusion of streptokinase for acute myocardial infarction: quantitative angiographie observations. Circulation 73:653–661

    PubMed  CAS  Google Scholar 

  • Cesare NB de, Ellis SG, Williamson PR, Deboe SF, Pitt B, Mancini J (1993) Early reocclusion after successful thrombolysis is related to lesion length and roughness. Coron Artery Dis 4:159–166

    PubMed  Google Scholar 

  • Ciruzzi M, Schargrodsky H, Rozlosnik J, Pramparo P, Delmonte H, Rudich V et al. (1997) Frequency of family history of acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 80:122–127

    PubMed  CAS  Google Scholar 

  • Clarkson TB, Kaplan JR, Adams MR, Manuck SB (1987) Psychological influences on the pathogenesis of atherosclerosis among nonhuman primates. Circulation 76(Suppl I): I-29-1-40

    Google Scholar 

  • Cupples LA, Gagnon DR, Wong ND, Ostfeld AM, Kannel WB (1993) Preexisting cardiovascular conditions and long-term prognosis after initial myocardial infarction: the Framingham study. Am Heart J 125:863–872

    PubMed  CAS  Google Scholar 

  • Dack S (1990) Perioperative myocardial ischemia and infarction. Am J Cardiol 66:1377–1378

    PubMed  CAS  Google Scholar 

  • Dantzig JM van, Delemarre BJ, Koster RW, Bot H, Visser CE (1996) Pathogenesis of mitral regurgitation in acute myocardial infarction: importance of changes in left ventricular shape and regional function. Am Heart J 131:865–871

    PubMed  Google Scholar 

  • Dawood MM, Gutpa DK, Southern J, Walia A, Atkinson JB, Eagle KA (1996) Pathology of fatal perioperative myocardial infarction: implications regarding pathophysiology and prevention. Int J Cardiol 57:37–44

    PubMed  CAS  Google Scholar 

  • Eliot RS (1992) Stress and the heart. Mechanisms, measurement, and management. Postgrad Med 92:237–248

    PubMed  CAS  Google Scholar 

  • Emmanuel SC (1989) Trends in coronary heart disease mortality in Singapore. Sing Med 30:17–23

    CAS  Google Scholar 

  • Espinosa R, Badui E, Castano R, Madrid R (1985) Acute posteroinferior wall myocardial infarction secondary to football chest trauma. Chest 88:928–930

    PubMed  CAS  Google Scholar 

  • Fang BR, Li CT (1994) Acute myocardial infarction following blunt chest trauma. Eur Heart J 15: 705–707

    PubMed  CAS  Google Scholar 

  • Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED et al. (1991) Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. JACC 18: 687–697

    PubMed  CAS  Google Scholar 

  • Fath-Ordoubadi F, Huehns TY, Al-Mohammad A, Beatt KJ (1997) Significance of the thrombolysis in myocardial infarction scoring system in assessing infarct-related artery reperfusion and mortality rates after acute myocardial infarction. Am Heart J 134:62–68

    PubMed  CAS  Google Scholar 

  • Feyter PJ de, Roos JP (1977) Traumatic myocardial infarction with subsequent normal coronary arteriogram. Eur J Cardiol 6:25–31

    PubMed  Google Scholar 

  • Figulla HR, Ferrari M (1997) Schock beim Herzinfarkt; Interventionelle Therapie. Z Kardiol 86 (Suppl 2): 178

    Google Scholar 

  • Fitzgerald DJ, Fitzgerald GA (1989) Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator. Proc Natl Acad Sci 86: 7585–7589

    PubMed  CAS  Google Scholar 

  • Franklin BA, Bonzheim K, Gordon S, Timmis GC (1996) Snow shoveling: a trigger for acute myocardial infarction and sudden coronary death. Am J Cardiol 77:855–858

    PubMed  CAS  Google Scholar 

  • Frasure-Smith N, Lespérance F, Talajic M (1995) The impact of negative emotions on prognosis following myocardial infarction: is it more than depression? Health Psychol 14:388–398

    PubMed  CAS  Google Scholar 

  • Fritze E, Müller KM (1995) Herztod und akuter Myokardinfarkt nach psychischen oder physischen Belastungen. Kausalitätsfragen und Versicherungsrecht. Versicherungsmed 47:143–147

    CAS  Google Scholar 

  • Gabbay FH, Krantz DS, Kop WJ, Hedges SM, Klein J, Gottdiener JS et al. (1996) Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. JACC 27:585–592

    PubMed  CAS  Google Scholar 

  • Galvani M, Ottani F, Ferrini D, Ladenson JH, Desto A, Baccos D et al. (1997) Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation 95:2053–2059

    PubMed  CAS  Google Scholar 

  • Gedebou TM, Barr ST, Hunter G, Sinha R, Rappaport W, VillaReal K (1997) Risk factors in patients undergoing major nonvascular abdominal operations that predict perioperative myocardial infarction. Am J Surg 174:755–758

    PubMed  CAS  Google Scholar 

  • Geltman EM, Ehsani AA, Campbell MK, Schechtman K, Roberts R, Sobel BE (1979) The influence of location and extent of myocardial infarction on long-term ventricular dysrhythmia and mortality. Circulation 60:805–814

    PubMed  CAS  Google Scholar 

  • Geraci E, Tognoni G (1994) The open infarct-related artery theory: a critical view. J Cardiovasc Risk 1:301–309

    PubMed  CAS  Google Scholar 

  • Gillum RF (1994) Trends in acute myocardial infarction and coronary heart disease death in the United States. JACC 23:1273–1277

    PubMed  CAS  Google Scholar 

  • Ginz B (1970) Myocardial infarction in pregnancy. J Obstetr Gynaecol Br Commonw 77:610–615

    CAS  Google Scholar 

  • Goder G (1960) Der akute tödliche Myokardinfarkt (Eine Statistik über 31097 Sektionen. Z Kreislaufforschg 49:105–120

    CAS  Google Scholar 

  • Görge G, Haude M, Birgelen C v, Caspari G, Erbel R (1995) Reperfusionstherapie bei akutem Myokardinfarkt. Dtsch Med Wochenschr 120:375–382

    PubMed  Google Scholar 

  • Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B et al. (1977) Multifactorial index of cardiac risk in noncardiac procedures. N Engl J Med 297:845–850

    PubMed  CAS  Google Scholar 

  • Greenberg J, Salinger M, Weschler F, Edelman B, Williams R (1998) Circumflex coronary artery dissection following waterskiing. Chest 113:1138–1140

    PubMed  CAS  Google Scholar 

  • Greenlund KJ, Valdez R, Bao W, Wattigney WA, Srinivasan SR, Berenson GS (1997) Verification of parental history of coronary artery disease and associations with adult offspring risk factors in a community sample: the Bogalusa Heart Study. Am J Med Sci 313:220–227

    PubMed  CAS  Google Scholar 

  • Greenwood D, Packham C, Muir K, Madeley R (1995) How do economic status and social support influence survival after initial recovery from acute myocardial infarction? Soc Sci Med 40:639–647

    PubMed  CAS  Google Scholar 

  • Gulba DC, Bode C, Topp J, Höpp HW, Westhoff-Bleck M, Rafflenbeul W et al. (1990) Die Häufigkeit von Residualthromben nach erfolgreicher Thrombolysetherapie bei akutem Herzinfarkt und ihre Bedeutung für die Rate früher Reokklusionen. Ein Bericht von der multizentrischen Dosisfindungsstudie zur Thrombolysetherapie mit Urokinase-präaktivierter natürlicher Prourokinase (TCL 598) Z Kardiol 79:279–285

    CAS  Google Scholar 

  • Hallermann W (1935) Verletzungen des Herzens und der großen Gefäße durch stumpfe Gewalt. Dtsch Z Gerichtl Med 24:176–187

    Google Scholar 

  • Hamm CW, Ravkilde J, Gerhardt W, Jorgensen P, Peheim E, Ljungendahl L et al. (1992) The prognostic value of serum troponin T in unstable angina. N Engl J Med 327:146–150

    PubMed  CAS  Google Scholar 

  • Hamm CW, Steffen W, Terres W, de Scheerder I, Reimers J, Cumberland D et al. (1997) Intravascular therapeutic ultrasound thrombolysis in acute myocardial infarctions. Am J Cardiol 80:200–204

    PubMed  CAS  Google Scholar 

  • Hankins GDV, Wendel GD, Leveno KJ, Stoneham J (1985) Myocardial infarction during pregnancy: a review. Obstet Gynecol 65:139–146

    PubMed  CAS  Google Scholar 

  • Herlitz J, Karlson BW, Hjalmarson A (1994) Ten year mortality in relation to original size of myocardial infarct: results from the Gothenburg metoprolol study. Br Heart J 71:238–241

    PubMed  CAS  Google Scholar 

  • Herlitz J, Hartford M, Karlson BW, Dellborg M, Källström G, Karlsson T (1998) One-year mortality after acute myocardial infarction prior to and after the implementation of a widespread use of thrombolysis and Aspririn. Experience from the community of Göteborg, Sweden. Cardiology 89:216–221

    PubMed  CAS  Google Scholar 

  • Heymann TD, Culling W (1994) It’s not cricket! Myocardial infarction following non-penetrating blunt chest trauma. Br J Clin Pract 48:338–339

    PubMed  CAS  Google Scholar 

  • Hikita H, Kurita A, Takase B, Nagayoshi H, Uehata A, Nishioka T et al. (1993) Usefulness of plasma beta-endomorphin level, pain threshold and autonomie function in assessing silent myocardial ischemia in patients with and without diabetes mellitus. Am J Cardiol 72:140–143

    PubMed  CAS  Google Scholar 

  • Hillis LD, Lange RA (1992) Time for a prospective, randomized trial of the “open artery hypothesis“ in survivors of acute myocardial infarction. Am J Cardiol 69:1359–1360

    PubMed  CAS  Google Scholar 

  • Hochrein H (1993) Rauchen und stumme Myokardischämie. Dtsch Med Wochenschr 118:1045

    PubMed  CAS  Google Scholar 

  • Hort W, Poliwoda H, daCanalis S, Knigge J (1966) Untersuchungen über den Einfluß von Anticoagulantien und Fibrinolytica auf die Größe von Mikroinfarkten in Rattenherzen. Klin Wochenschr 44:215–218

    PubMed  CAS  Google Scholar 

  • Huber K (1993) Die koronare Reokklusion-ein ungelöstes Problem der Thrombolysetherapie des akuten Herzinfarktes. Inn Med 48:316–323

    CAS  Google Scholar 

  • Hutter AM, DeSanctis RW, Flynn T, Yeatman LA (1981) Nontransmural myocardial infarction: a comparison of hospital and late clinical course of patients with that of matched patients with transmural anterior and transmural inferior myocardial infarction. Am J Cardiol 48:595–602

    PubMed  Google Scholar 

  • Ichihara S, Yamada Y, Fujimura T, Nakashima N, Yokota M (1998) Association of a polymorphism of the endothelial constitutive nitric oxide synthase gene with myocardial infarction in the Japanese population. Am J Cardiol 81:83–86

    PubMed  CAS  Google Scholar 

  • Jiang W, Babyak M, Krantz DS, Waugh RA, Coleman E, Hanson MM et al. (1996) Mental stressinduced myocardial ischemia and cardiac events. JAMA 275:1651–1656

    PubMed  CAS  Google Scholar 

  • Joossens JV, Kesteloot H (1989) The value of ischaemic heart disease vital statistics since 1968. Acta Cardiol 44:389–405

    PubMed  CAS  Google Scholar 

  • Jullien JL (1987) Stress et pathologie cardiaque. Arch Mal Coeur 80:11–18

    PubMed  Google Scholar 

  • Kännel WB (1996) Prevalence, incidence, and mortality of coronary heart disease. In: Fuster V, Ross R, Topol EJ (eds) Atherosclerosis and coronary artery disease. Lippincott Raven Publ, Philadelphia, pp 13–21

    Google Scholar 

  • Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM, Miller EW (1983) Social stress and atherosclerosis in normocholestrolemic monkeys. Science 220:733–735

    PubMed  CAS  Google Scholar 

  • Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G et al. (1991) Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83:902–912

    PubMed  CAS  Google Scholar 

  • Katz H (1922) Über den plötzlichen natürlichen Tod in Schwangerschaft, Geburt und Wochenbett aufgrund von 95 behördlichen Obduktionen. Arch Gynäkol 115:283–312

    Google Scholar 

  • Kissane RW (1952) Traumatic heart disease. Nonpenetrating injuries. Circulation 6:421–425

    PubMed  CAS  Google Scholar 

  • Kloner RA, Leor J, Poole WK, Perritt R (1997) Population-based analysis of the effect of the Northridge earthquake on cardiac death in Los Angeles County, California. JACC 30:1174–1180

    PubMed  CAS  Google Scholar 

  • Kontoyannis DA, Nanas JN, Kontoyannis SA, Kalabalikis AK, Moulopoulos SD (1997) Evolution of late potential parameters in thrombolyzed acute myocardial infarction might predict patency of the infarct-related artery. Am J Cardiol 79:570–574

    PubMed  CAS  Google Scholar 

  • Krauland W, Serieller W (1968) Koronarthrombose und Verletzungen. Berl Med 19:123–138

    Google Scholar 

  • Lamas GA, Flaker GC, Mitchell G, Smith SC, Gersh BJ, Wun CC et al. (1995) Effect of infarct artery patency on prognosis after acute myocardial infarction. Circulation 92:1101–1109

    PubMed  CAS  Google Scholar 

  • Lancisi GM (1707) Des subitaneis mortibus. Rome

    Google Scholar 

  • Lavie CJ, O’Keefe JH, Chesebro JH, Clements IP, Gibbons RJ (1990) Prevention of late ventricular dilatation after acute myocardial infarction by successful thrombolytic reperfusion. Am J Cardiol 66:31–36

    PubMed  CAS  Google Scholar 

  • Leor J, Kloner RA (1996) The Northridge earthquake trigger for acute myocardial infarction. Am J Cardiol 77:1230–1232

    PubMed  CAS  Google Scholar 

  • Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA (1996a) Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94(Suppl II): II-332-II-336

    Google Scholar 

  • Leor J, Poole WK, Kloner RA (1996b) Sudden cardiac death triggered by an earthquake. N Engl J Med 334:413–419

    PubMed  CAS  Google Scholar 

  • Li YH, Teng JK, Tsai WC, Tsai LM, Lin LJ, Chen JH (1997) Elevation of soluble adhesion molecules is associated with the severity of myocardial damage in acute myocardial infarction. Am J Cardiol 80:1218–1221

    PubMed  CAS  Google Scholar 

  • Liebson PR, Klein LW (1997) The non-Q wave myocardial infarction revisited: 10 years later. Progr Cardiovasc Dis 39:399–444

    CAS  Google Scholar 

  • Lindsay HE, Cohn PF (1978) “Silent“ myocardial ischemia during and after exercise testing in patients with coronary artery disease. Am Heart J 95:441–447

    Google Scholar 

  • Löwel H (1996) Sozialmedizin und Epidemiologie: Bedeutung für die Krankheitsbewältigung. Gesundheitswesen 58(Sonderheft 3): 174–179

    PubMed  Google Scholar 

  • Löwel H, Lewis M, Keil U, Hörmann A, Bolte HD, Willich S et al. (1995) Zeitliche Trends von Herzinfarktmorbidität,-mortalität, 28-Tage-Letalität und medizinischer Versorgung. Ergebnisse des Augsburger Herzinfarkt registers von 1985 bis 1992. Z Kardiol 84:596–605

    PubMed  Google Scholar 

  • Maisei AS, Ahnve S, Gilpin E, Henning H, Goldberger AL, Collins D et al. (1985) Prognosis after extension of myocardial infarct: the role of Q wave or non-Q wave infarction. Circulation 71:211–217

    Google Scholar 

  • Mamode N, Cobbe S, Pollock JG (1995) Infarct after surgery. Br Med J 310:1215–1216

    CAS  Google Scholar 

  • Mangano DT (1990) Perioperative cardiac morbidity. Anesthesiology 72:153–184

    PubMed  CAS  Google Scholar 

  • Manuck SB, Kaplan JR, Clarkson TB (1983) Behaviorally induced heart rate reactivity and atherosclerosis in cynomolgus monkeys. Psychosom Med 45:95–108

    PubMed  CAS  Google Scholar 

  • @Marchant B, Umachandran V, Stevenson R, Kopelman PG, Timmis AD (1993) Silent myocardial ischemia: role of subclinical neuropathy in patients with and without diabetes. JACC 22: 1433–1437

    CAS  Google Scholar 

  • Marcum JL, Booth DC, Sapin PM (1996) Acute myocardial infarction caused by blunt chest trauma: Successful treatment by direct coronary angioplasty. Am Heart J 132:1275–1277

    PubMed  CAS  Google Scholar 

  • Marmot MG, Bosma H, Hemingway H, Brunner E, Stansfeld S (1997) Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet 350: 235–239

    PubMed  CAS  Google Scholar 

  • Maseri A (1996) The causes of acute myocardial infarction revisited. Acta Cardiol 51:491–500

    PubMed  CAS  Google Scholar 

  • Maseri A, Créa F, Cianflone D (1992) Myocardial ischemia caused by distal coronary vasoconstriction. Am J Cardiol 70:1602–1605

    PubMed  CAS  Google Scholar 

  • Master AM, Dack S, Jaffe HL (1939) Activities associated with the onset of acute coronary artery occlusion. Am Heart J 18:434–443

    Google Scholar 

  • Masuda T, Akiyama H, Kurosawa T, Ohwada T (1996) Long-term follow-up of coronary artery dissection due to blunt chest trauma with spontaneous healing in a young woman. Intensive Care Med 22:450–452

    PubMed  CAS  Google Scholar 

  • McCallister BD, Christian TF, Gersh BJ, Gibbons RJ (1993) Prognosis of myocardial infarctions involving more than 40% of the left ventricle after acute reperfusion therapy. Circulation 88(Parti): 1470–1475

    PubMed  Google Scholar 

  • Medrano R, Weilbaecher RF, Young JB, Mahmarian JJ, Guidry GW, Lowry RW et al. (1992) Assessment of myocardial viability with technetium-99m-Sestamibi in patients undergoing cardiac transplantation: a scintigraphic-pathologic study. Circulation 86(Suppl I): 1–108

    Google Scholar 

  • Meinertz T, Hamm CW (1998) Rapid testing of cardiac troponins in patients with acute chest pain in the emergency room. Eur Heart J 19:973–974

    PubMed  CAS  Google Scholar 

  • Miller D, Waters DD, Warnica W, Szlachcic J, Kreeft J, Théroux P (1981) Is variant angina the coronary manifestation of a generalized vasospastic disorder? N Engl J Med 304:763–766

    PubMed  CAS  Google Scholar 

  • Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE (1993) Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. N Engl J Med 329:1677–1683

    PubMed  CAS  Google Scholar 

  • Moccetti T, Malacrida R, Pasotti E, Sessa F, Genoni M, Barlera S et al. (1997) Epidemiologic variables and outcome of 1972 young patients with acute myocardial infarction. Data from the GISSI-2 database. Arch Intern Med 157:865–869

    PubMed  CAS  Google Scholar 

  • Mohler ER, Ryan T, Segar DS, Sawada SG, Sonel AF, Perkins L et al. (1998) Clinical utility of troponin T levels and echocardiography in the emergency department. Am Heart J 135:253–260

    PubMed  CAS  Google Scholar 

  • Morrow DA, Rifal N, Antman EM, Weiner DL, McCabe CH, Cannon CP et al. (1998) C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. JACC 31:1460–1465

    PubMed  CAS  Google Scholar 

  • Mueller HS, Roberts R, Teichman SL, Sobel BE (1988) Thrombolytic therapy in acute myocardial infarction. Part I. Med Clin North Am 72:197–226

    PubMed  CAS  Google Scholar 

  • Muller JE, Mittleman MA, Maclure M, Sherwood JB, Tofler GH (1996) Triggering myocardial infarction by sexual activity. Low absolute risk and prevention by regular physical exertion. JAMA 275:1405–1409

    PubMed  CAS  Google Scholar 

  • Narins CR, Zareba W, Moss AJ, Goldstein RE, Hall WJ (1997) Clinical implications of silent versus symptomatic exercise-induced myocardial ischemia in patients with stable coronary disease. JACC 29:756–763

    PubMed  CAS  Google Scholar 

  • Nerbrand C, Svärdsudd K, Hörte LG, Tibblin G (1991) Geographical variation of mortality from cardiovascular diseases. The project “myocardial infarction in mid-Sweden“. Eur Heart J 12:4–9

    PubMed  CAS  Google Scholar 

  • Nihoyannopoulos P, Marsonis A, Joshi J, Athanassopulos G, Oakley CM (1995) Magnitide of myocardial dysfunction is greater in painful than in painless myocardial ischemia: an exercise echocardiographic study. JACC 25:1507–1512

    PubMed  CAS  Google Scholar 

  • O’Connor NJ, Manson JE, O’Connor GT, Buring JE (1995) Psychosocial risk factors and nonfatal myocardial infarction. Circulation 92:1458–1464

    PubMed  Google Scholar 

  • Opie LH (1995) New concepts regarding events that lead to myocardial infarction. Cardiovasc Drugs Ther 9:479–487

    PubMed  Google Scholar 

  • O’Rourke RA (1993) Overview of trends in heart disease. Changing prognosis after myocardial infarction. Ann Epidemiol 3:541–546

    PubMed  Google Scholar 

  • Osier W (1910) The Lumleian Lectures on angina pectoris. Lancet 1:697–702; 839-844

    Google Scholar 

  • Page DL, Caulfield JB, Kastor JA, DeSanctis RW, Sanders CA (1971) Myocardial changes associated with cardiogenic shock. N Engl J Med 285:133–137

    PubMed  CAS  Google Scholar 

  • Papademetriou V, Gottdiener JS, Kop WJ, Howell RH, Krantz DS (1996) Transient coronary occlusion with mental stress. Am Heart J 132:1299–1301

    PubMed  CAS  Google Scholar 

  • Pérez-Castellano N, Garcia EJ, Abeytua M, Soriano J, Serrano JA, Elizaga J et al. (1998) Influence of collateral circulation on inhospital death from anterior acute myocardial infarction. JACC 31:512–518

    PubMed  Google Scholar 

  • Phillips AN, Shaper AG, Pocock SJ, Walker M (1988) Parental death from heart disease and risk of heart attack. Eur Heart J 9:243–251

    PubMed  CAS  Google Scholar 

  • Pohjola-Sintonen S, Rissanen A, Liskola P, Luomanmäki K (1998) Family history as a risc factor of coronary heart disease in patients under 60 years of age. Eur Heart J 19:235–239

    PubMed  CAS  Google Scholar 

  • Pohost GM (1989) “Silent ischemia“: what is it? JACC 14:901–902

    PubMed  CAS  Google Scholar 

  • Poliwoda H (1963) Erste klinische Erfahrungen und experimentelle Ergebnisse mit der fibrinolytischen Therapie beim akuten Myokardinfarkt. Ver Dtsch Ges Inn Med 69:897–900

    Google Scholar 

  • Poliwoda H, Schröder R, Heckner F (1963) Erste Erfahrungen mit der fibrinolytischen Therapie beim akuten Myokardinfarkt. Dtsch Med Wochenschr 88:218–224

    CAS  Google Scholar 

  • Prellwitz W, Hafner G, Rupprecht HJ, Meyer J (1996) Diagnostische und differentialdiagnostische Wertigkeit der Troponine. Med Klin 91:336–342

    CAS  Google Scholar 

  • Rao TLK, Jacobs KH, El-Etr AA (1983) Reinfarction following anesthesia in patients with myocardial infarction. Anesthesiol 59:499–505

    CAS  Google Scholar 

  • Rawles JM (1997) Quantification of the benefit of earlier thrombolytic therapy: Five-year results of the Grampian region early anistreplase trial (GREAT) JACC 30:1181–1186

    PubMed  CAS  Google Scholar 

  • Rentrop KP, Feit F, Blanke H, Stecy P, Schneider R, Rey M et al. (1984) Effects of intracoronary streptokinase and intracoronary nitroglycerin infusion on coronary angiographie patterns and mortality in patients with acute myocardial infarction. N Engl J Med 311:1457–1463

    PubMed  CAS  Google Scholar 

  • Reynen K, Bachmann J, Bachmann K (1993) Linksventrikuläre Dilatation nach Myokardinfarkt. Z Kardiol 82:279–286

    PubMed  CAS  Google Scholar 

  • Roeske WR, Savage RM, O’Rourke R, Bloor CM (1981) Myocardial infarction. How representative are autopsied subjects with this clincial entity? Arch Pathol Lab Med 105:642–646

    CAS  Google Scholar 

  • Rosen SD, Paulescu E, Nihoyannopoulos P, Tousoulis D, Frackowiak RSJ, Frith CD et al. (1996) Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med 124:939–949

    PubMed  CAS  Google Scholar 

  • Rosenkranz S, Deutsch HJ, Erdmann E (1997) 33 jährige Patientin mit postpartalem Myokardinfarkt. Internist 38:602–605

    PubMed  CAS  Google Scholar 

  • Roskamm H, Gohlke H, Stürzenhofecker P, Droste C, Thomas H, Samek L et al. (1983) Der Herzinfarkt im jugendlichen Alter (unter 40 Jahren): Koronarmorphologie, Risikofaktoren, Langzeitprognose der Erkrankung und Progression der Koronargefäßsklerose. Z Kardiol 72:1–11

    PubMed  CAS  Google Scholar 

  • Rudoff J, Strauss R (1992) Thrombus migration following intracoronary tissue plasminogen activator. Cathet Cardiovasc Diagn 26:161–163

    PubMed  CAS  Google Scholar 

  • Rüstige J, Schiele R, Burczyk U, Koch A, Gottwik M, Neuhaus KL et al. (1997) The 60 minutes myocardial infarction project. Treatment and clinical outcome of patients with acute myocardial infarction in Germany. Eur Heart J 18:1438–1446

    PubMed  Google Scholar 

  • Salomaa V, Arstila M, Kaarsalo E, Ketonen M, Kuulasmaa K, Lehto S et al. (1992) Trends on the incidence of and mortality from coronary heart disease in Finland, 1983–1988. Am J Epidem 136:1303–1315

    CAS  Google Scholar 

  • Sane DC, Little WC (1998) Is time running out on streptokinase? JACC 31:780–782

    PubMed  CAS  Google Scholar 

  • Sans S, Kesteloot H, Kromhout D (1997) The burden of cardiovascular diseases mortality in Europe. Task force of the European Society on Cardiology on cardiovascular mortality and morbidity statistics in Europe. Eur Heart J 18:1231–1248

    Google Scholar 

  • Schettler G (1985) Primäre und sekundäre Prävention der koronaren Herzkrankheit. In: Schettler G, Gross R (Hrsg) Arteriosklerose. Grundlagen, Diagnostik, Therapie. Deutscher Ärzteverlag, Köln, S 290–304

    Google Scholar 

  • Schifter T, Zahavi I, Moroz C (1996) Antimitochondrial antibodies after acute myocardial infarction. Cardiology 87:67–70

    PubMed  CAS  Google Scholar 

  • Schröder R, Neuhaus KL, Linderer T, Brüggemann T, Tebbe U Wegscheider K (1989) Impact of late coronary artery reperfusion on left ventricular function one month after acute myocardial infarction (results from the ISAM study). Am J Cardiol 64:878–884

    PubMed  Google Scholar 

  • Schuster H, Wienker TF, Stremmler U, Noll B, Steinmetz A, Luft FC (1995) An angiotensin-converting enzyme gene variant is associated with acute myocardial infarction in women but not in men. Am J Cardiol 76:601–603

    PubMed  CAS  Google Scholar 

  • Schwarz ER, Patterson M, Kloner RA (1998) Kardiomyozytentransplantation-eine „Frischzellenkur“ zur Gewebsreparatur in infarzierten Herzen? Z Kardiol 87:1–7

    PubMed  CAS  Google Scholar 

  • Schwarz F, König B, Tillmanns H, Schuler G, Manthey J, Dietz R et al. (1987) Thrombolyse bei akutem Herzinfarkt. Verbesserte Langzeitprognose nach Balondilatation. Dtsch Med Wochenschr 112:331–334

    PubMed  CAS  Google Scholar 

  • Schweiger MJ, McMahon RP, Terrin ML, Ruocco NA, Porway MN, Wiseman AH et al. (1994) Comparison of patients with < 60 % to > 60 % diameter narrowing of the myocardial infarct-related artery after thrombolysis. Am J Cardiol 74:105–110

    PubMed  CAS  Google Scholar 

  • Scorsin M, Marotte F, Sabri A, le Dref O, Demirag M, Samuel JL et al. (1996) Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94(Suppl II): II-337-II-340

    Google Scholar 

  • Seggewiß H, Strick S, Everlien M (1997) Prognostische Bedeutung der erfolgreichen Rekanalisation des chronisch verschlossenen Infarktgefäßes bei Patienten mit koronarer Eingefäßerkrankung. In: Berghöfer G, Nunberger D (Hrsg) Die prognostische Indikation zur PTCA. Symposion Berlin Mai 1996. Fühl u. Hornung, Berlin, S 54–63

    Google Scholar 

  • Séguin JR, Saussine M, Ferrière M, Léger J, Léger J, Larue C et al. (1989) Myosin: a highly sensitive indicator of myocardial necrosis after cardiac operations. J Thorac Cardiovasc Surg 98:397–401

    PubMed  Google Scholar 

  • Serruys PW, Simoons ML, Suryapranata H, Vermeer F, Wijns W, van den Brand M et al. (1986) Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. JACC 7:729–742

    PubMed  CAS  Google Scholar 

  • Simoons ML, Serruys PW, van den Brand M, Res J, Verheugt FWA, Krauss XH et al. (1986) Early thrombolysis in acute myocardial infarction: limitation of infarct size and improved survival. JACC 7:717–728

    PubMed  CAS  Google Scholar 

  • Singh N, Langer A (1995) Current status of silent myocardial ischemia. Can J Cardiol 11:286–289

    PubMed  CAS  Google Scholar 

  • Solomon A, Gersh B (1998) The open-artery hypothesis. Annu Rev Med 49:63–76

    PubMed  CAS  Google Scholar 

  • Stone DL, Fleming HA (1983) Aneurysm of left ventricle and left coronary artery after non-penetrating chest trauma. Br Heart J 50:495–497

    PubMed  CAS  Google Scholar 

  • Suzuki S, Sakamoto S, Koide M, Fujita H, Sakuramoto H, Kuroda T et al. (1997) Hanshin-Awaji earthquake as a trigger for acute myocardial infarction. Am Heart J 134:974–977

    PubMed  CAS  Google Scholar 

  • Taylor AJ, Farb A, Ferguson M, Virmani R (1997) Myocardial infarction associated with physical exertion in a young man. Circulation 96:3201–3204

    PubMed  CAS  Google Scholar 

  • Taylor GJ, Humphries JO, Pitt B, Griffith LSC, Achuff SC (1981) Complex ventricular arrhythmias after myocardial infarction during convalescence and follow-up: a harbinger of multi-vessel coronary disease, left ventricular dysfunction and sudden death. Johns Hopkins Med J 149:1–5

    PubMed  Google Scholar 

  • Tennant CC, Palmer KJ, Langeluddecke PM, Jones MP, Nelson G (1994) Life event stress and myocardial reinfarction: a prospective study. Eur Heart J 15:472–478

    PubMed  CAS  Google Scholar 

  • Tillett WS, Garner RL (1933) The fibrinolytic activity of hemolytic streptococci. J Exp Med 58: 485–502

    PubMed  CAS  Google Scholar 

  • Topkins MJ, Artusio JF (1964) Myocardial infarction and surgery. A five year study. Anesth Analges 43:716–720

    CAS  Google Scholar 

  • Topol EJ, Califf RM, Vandormeal M, Grines CL, George BS, Sanz ML et al. (1992) A randomized trial of late reperfusion therapy for acute myocardial infarction. Circulation 85:2090–2099

    PubMed  CAS  Google Scholar 

  • Tresserras R, Pardell H (1993) Cardiovascular mortality trends in Spain and Catalonia. Comparisons with Europe. Eur J Clin Nutr 47(Suppl I): S42–S46

    PubMed  Google Scholar 

  • Trzcieniecka-Green A, Steptoe A (1996) The effects of stress management on the quality of life of patients following acute myocardial infarction or coronary bypass surgery. Eur Heart 17: 1663–1670

    CAS  Google Scholar 

  • Veen G, Meyer A, Verheugt FWA, Werter CJPJ, de Swart H, Lie KI et al. (1993) Culprit lesion morphology and stenosis severity in the prediction of reocclusion after coronary thrombolysis: angiographie results of the APRICOT study. JACC 22:1755–1762

    PubMed  CAS  Google Scholar 

  • Visser CA (1997) Infarct-related artery patency and long-term effects on left ventricular remodelling. Cardiology 88(Suppl 1): 26–35

    PubMed  Google Scholar 

  • Vlasuk GP (1998) Novel anticoagulants. Coron Artery Dis 9:61–64

    Google Scholar 

  • Watt AH, Stephens MR (1986) Myocardial infarction after blunt chest trauma incurred during rugby football that later required cardiac transplantation. Br Heart J 55:408–410

    PubMed  CAS  Google Scholar 

  • Weaver WD, Simes J, Betriu A, Grines CL, Zilstra F, Garcia E et al. (1997) Comparison of primary coronary angioplasty and intravenous thrombolytic therapy for acute myocardial infarction. A quantitative review. JAMA 278:2093–2098

    PubMed  CAS  Google Scholar 

  • White HD (1997) Should all occluded infarct-related arteries be opened? Eur Heart J 18:1207–1209

    PubMed  CAS  Google Scholar 

  • Widdershoven JWMG, Gorgels APM, Vermeer F, Dijkman LWN, Verstraaten GMP, Dassen WRM et al. (1997) Changing characteristics and in-hospital outcome in patients admitted with acute myocardial infarction. Observations from 1982 to 1994. Eur Heart J 18:1073–1080

    PubMed  CAS  Google Scholar 

  • Willich SN (1991) Zirkadiane Variation akuter koronarer Herzerkrankungen: Forschungsperspektive und klinische Bedeutung. Z Kardiol 80:479–486

    PubMed  CAS  Google Scholar 

  • Willich SN, Linderer T, Wegschneider K, Schröder R (1989) Zirkadiane Variation in der Inzidenz des Myokardinfarkts. Neue Erkenntnisse über die Mechanismen der akuten koronaren Herzkrankheit. Dtsch Med Wochenschr 114:613–617

    PubMed  CAS  Google Scholar 

  • Willich SN, Lewis M, Arntz HR, Löwel H, Schubert F, Stern R et al. (1994a) Belastungssituation beim akuten Myokardinfarkt: Die Rolle von körperlicher Anstrengung und ungewöhnlichen Lebensereignissen. Z. Kardiol 83:423–430

    CAS  Google Scholar 

  • Willich SN, Löwel H, Lewis M, Hörmann A, Arntz HR, Keil U (1994b) Weekly variation of acute myocardial infarction. Increased monday risk in the working population. Circulation 90:87–93

    PubMed  CAS  Google Scholar 

  • Wilson WW, Gibson RS, Nygaard TW, Craddock GB, Watson DD, Crampton RS et al. (1988) Acute myocardial infarction associated with single vessel coronary artery disease; an analysis of clinical outcome and the prognostic importance of vessel patency and residual ischémie myocardium. JACC 11:223–234

    PubMed  CAS  Google Scholar 

  • Winkelmann BR, Nauck M, Klein B, Russ AP, Böhm BO, Siekmeier R et al. (1996) Deletion polymorphism of the angiotension I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med 125:19–25

    PubMed  CAS  Google Scholar 

  • Wroblewski F, LaDue JS (1952) Myocardial infarction as a postoperative complication of major surgery. JAMA 150:1212–1216

    CAS  Google Scholar 

  • Yao SK, Akhtar S, Scott-Burden T, Ober JC, Golino P, Buja LM et al. (1995) Endogenous and exogenous nitric oxide protect against intracoronary thrombosis and reocclusion after thrombolysis. Circulation 92:1005–1010

    PubMed  CAS  Google Scholar 

  • Zimmermann FH, Cameron A, Fisher LD, NG G (1995) Myocardial infarction in young adults: angiographie characterization, risk factors and prognosis (coronary artery surgery study registry). JACC 26:654–661

    Google Scholar 

K. Plötzlicher Herztod

  • Alvarez L, Escudero C, Figuera D, Castillo-Olivares JL (1992) Late sudden cardiac death in the followup of patients having a heart valve prosthesis. J Thorac Cardiovasc Surg 104:502–510

    PubMed  CAS  Google Scholar 

  • Amr SS, Al Ragheb SYA (1991) Sudden unexpected death due to papillary fibroma of the aortic valve. Report of a case and review of the literature. Am J Forens Med Pathol 12:143–148

    CAS  Google Scholar 

  • Aoki Y, Nata M, Hashiyada M, Sagisaka K (1996) Sudden unexpected death in childhood due to eosinophilic myocarditis. Int J Legal Med 108:221–224

    PubMed  CAS  Google Scholar 

  • Aronow WS, Ahn C (1993) Circadian variation of primary cardiac arrest or sudden cardiac death in patients aged 62 to 100 years (mean 82). Am J Cardiol 71:1455–1456

    PubMed  CAS  Google Scholar 

  • Aschoff L (1917) Die plötzlichen Todesfälle vom Standpunkt der Dienstbeschädigung. In: Adam C (Hrsg) Die militärärztliche Sachverständigentätigkeit auf dem Gebiete des Ersatzwesens und der militärischen Versorgung. Hrsg. vom Zentralkomitee für das ärztliche Fortbildungswesen in Preußen. Teil II. Jena, S 297–344

    Google Scholar 

  • Baroldi G, Falzi G, Mariani F (1979) Sudden coronary death. A postmortem study in 208 selected cases compared to 97 “control“ subjects. Am Heart J 98:20–31

    PubMed  CAS  Google Scholar 

  • Baroldi G, Oliveira SJM, Silver MD (1997) Sudden and unexpected deat in clinically “silent“ Chagas disease. A hypothesis. Int J Cardiol 58:263–268

    PubMed  CAS  Google Scholar 

  • Barron HV, Lesh MD (1996) Autonomic nervous system and sudden cardiac death. JACC 27: 1053–1060

    PubMed  CAS  Google Scholar 

  • Berger S, Dhala A, Frieberg DZ (1999) Sudden cardiac death in infants, children, and adolescents. Pediatr Cardiol 46:221–234

    CAS  Google Scholar 

  • Bohle W, Schaefer HE (1994) Predominant myocardial sarcoidosis. Pathol Res Pract 190:212–217

    PubMed  CAS  Google Scholar 

  • Brigden GS, Hughes LO, Broadhurst P, Raftery EB (1992) Blood pressure changes during the game of squash. Eur Heart J 13:1084–1087

    PubMed  CAS  Google Scholar 

  • Burke AP, Farb A, Virmani R, Goodin J, Smialek JE (1991) Sports-related and non-sports-related sudden cardiac death in young adults. Am Heart J 121:568–575

    PubMed  CAS  Google Scholar 

  • Burke AP, Farb A, Sessums L, Virmani R (1994) Causes of sudden cardiac death in patients with replacement valves: an autopsy study. J Heart Valve Dis 3:10–16

    PubMed  CAS  Google Scholar 

  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336: 1276–1282

    PubMed  CAS  Google Scholar 

  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1998) Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97: 2110–2116

    PubMed  CAS  Google Scholar 

  • Burton DA, Kapur S, Shapiro SR, Leatherbury L, Scott LP III (1986) Fulminant cardiac sarcoidosis in childhood. Am J Cardiol 58:177–178

    PubMed  CAS  Google Scholar 

  • Buxton AE (1986) Sudden cardiac death-1986. Ann Intern Med 104:716–718

    PubMed  CAS  Google Scholar 

  • Chaitman BR, Lespérance J, Saltiel J, Bourassa MG (1976) Clinical, angiographic, and hemodynamic findings in patients with anomalous origin of the coronary arteries. Circulation 53:122–131

    PubMed  CAS  Google Scholar 

  • Chapman I (1965) Morphogenesis of occluding coronary artery thrombosis. Arch Pathol 80: 256–261

    PubMed  CAS  Google Scholar 

  • Ciampricotti R, El Gamal M, Relik T, Taverne R, Panis J, Swart J de et al. (1990) Clinical characteristics and coronary angiographie findings of patients with unstable angina, acute myocardial infarction, and survivors of sudden ischémie death occuring during and after sport. Am Heart J 120:1267–1278

    PubMed  CAS  Google Scholar 

  • Cohle SD, Lie JT (1991) Pathologic changes of the cardiac conduction tissue in sudden unexpected death. Pathol Annu 26:33–57

    PubMed  Google Scholar 

  • Corrado D, Thiene G, Nava A, Rossi L, Pennelli N (1990) Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med 89:588–596

    PubMed  CAS  Google Scholar 

  • Davies MJ, Thomas A (1984) Thrombosis and acute coronary artery lesions in sudden cardiac ischémie death. New Engl J Med 310:1137–1140

    PubMed  CAS  Google Scholar 

  • Davies MJ, Thomas AC (1985) Plaque fissuring-the cause of acute myocardial infarction, sudden ischémie death, and crescendo angina. Br Heart J 53:363–373

    PubMed  CAS  Google Scholar 

  • Davies MJ, Thomas AC, Knapman PA, Hangartner JR (1986) Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischémie cardiac death. Circulation 73:418–427

    PubMed  CAS  Google Scholar 

  • Davies MJ, Bland JM, Hangartner JRW, Angelini A, Thomas AC (1989) Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 10:203–208

    PubMed  CAS  Google Scholar 

  • Davis JH (1978) Can sudden cariac death be murder? J Forens Sci 23:384–387

    CAS  Google Scholar 

  • Denfield SW, Garson A jr (1990) Sudden death in children and young adults. Pediac Clin North Am 37:215–231

    CAS  Google Scholar 

  • Dickerman RD, Schaller F, Prather I, McConathy WJ (1995) Sudden cardiac death in a 20-year-old bodybuilder using anabolic steroids. Cardiology 86:172–173

    PubMed  CAS  Google Scholar 

  • Doerr W (1972) Plötzlicher Herztod. Morphologische Aspekte. Verh Dtsch Ges Inn Med 78:944–969

    PubMed  CAS  Google Scholar 

  • Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A et al. (1991) Sudden unexpected death in persons < 40 years of age. Am J Cardiol 68:1388–1392

    PubMed  CAS  Google Scholar 

  • El Fawal MA, Berg GA, Wheatley DJ, Harland WA (1987) Sudden coronary death in Glasgow: nature and frequency of acute coronary lesions. Br Heart J 57:329–335

    PubMed  CAS  Google Scholar 

  • El-Maraghi N, Genton E (1980) The relevance of platelet and fibrin thromboembolism of the coronary microcirculation, with special reference to sudden cardiac death. Circulation 62:936–944

    PubMed  CAS  Google Scholar 

  • Engel GL (1976) Psychologic factors in instantaneous cardiac death. N Engl J Med 294:664–665

    PubMed  CAS  Google Scholar 

  • Engel GL (1978) Psychologic stress, vasodepressor (vasovagal) syncope, and sudden death. Ann Intern Med 89:403–412

    PubMed  CAS  Google Scholar 

  • Escobedo LG, Zack MM (1996) Comparison of sudden and nonsudden coronary deaths in the United States. Circulation 93:2033–2036

    PubMed  CAS  Google Scholar 

  • Falk E (1985) Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 71:699–708

    PubMed  CAS  Google Scholar 

  • Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R (1995) Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarctions. Circulation 92:1701–1709

    PubMed  CAS  Google Scholar 

  • Farb A, Burke AP, Tang AL, Liang Y, Mannan P, Smialek J et al. (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363

    PubMed  CAS  Google Scholar 

  • Fleming HA (1980) Sarcoid heart disease: a review and an appeal. Thorax 35:641–643

    PubMed  CAS  Google Scholar 

  • Fornes P, Lecomte D, Nicolas G (1994) Mort subite coronaire extrahospitalière; étude autopsique comparative entre des sujets avec et sans antécédents cardiovasculaires. Arch Mal Coeur 87: 319–324

    PubMed  CAS  Google Scholar 

  • Fredman CS, Parsons SR, Aquino TI, Hamilton WP (1994) Sudden death after a stress test in a patient with a large pericardial cyst. Am Heart J 127:946–950

    PubMed  CAS  Google Scholar 

  • Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A et al. (1998) Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol 29:689–695

    PubMed  CAS  Google Scholar 

  • Friedman M, Manwaring JH, Rosenman RH, Donlon G, Ortega P, Grube SM (1973) Instantaneous and sudden deaths. Clinical and pathological differentiation in coronary artery disease. JAMA 225:1319–1328

    PubMed  CAS  Google Scholar 

  • Friedewald VE, Spence DW (1990) Sudden cardiac death associated with exercise: the risk-benefit issue. Am J Cardiol 66:183–188

    PubMed  Google Scholar 

  • Frink RJ (1978) Non-obstructive mural coronary thrombosis in sudden death. Adv Exp Med Biol 82:124–126

    Google Scholar 

  • Frink RJ, Trowbridge JO, Rooney PA (1978) Nonobstructive coronary thrombosis in sudden cardiac death. Am J Cardiol 42:48–51

    PubMed  CAS  Google Scholar 

  • Garfia A, Rodriguez M, Chavarria H, Garrido M (1997) Sudden cardiac death during exercise due to an isolated multiple anomaly of the left coronary artery in a 12-year-old girl: clinicopathologic findings. J Forensic Sci 42:330–334

    PubMed  CAS  Google Scholar 

  • Gilman JK, Naccarelli GV (1992) Sudden cardiac death. Curr Probl Cardiol 17:695–779

    Google Scholar 

  • Gosh P, Fleming HA, Grasham GA, Stovin PGI (1972) Myocardial sarcoidosis. Br Heart J 34:769–773

    Google Scholar 

  • Haan F de, Breithardt G (1997) Das Brugada-Brugada-Syndrom. Ein Beitrag zur Erkennung von Risikopatienten bezüglich eines plötzlichen Herztodes ohne strukturelle Herzerkrankung. Herz 22:287–288

    PubMed  Google Scholar 

  • Haerem JW (1971) Sudden coronary death: the occurence of platelet aggregates in the epicardial arteries of man. Atherosclerosis 14:417–432

    PubMed  CAS  Google Scholar 

  • Haerem JW (1974) Mural platelet microthrombi and major acute lesions of main epicardial arteries in sudden coronary death. Atherosclerosis 19:529–541

    PubMed  CAS  Google Scholar 

  • Hassapoyannes CA, Stuck LM, Hornung CA, Berbin MC, Flowers NC (1991) Effect of left ventricular aneurysm on risk of sudden and nonsudden cardiac death. Am J Cardiol 67:454–459

    PubMed  CAS  Google Scholar 

  • Hausmann R, Hammer S, Betz P (1998) Performance enhancing drugs (doping agents) and sudden death-a case report and review of the literature. Int J Legal Med 111:261–264

    PubMed  CAS  Google Scholar 

  • Heinrich M, Jansen HH (1977) Der plötzliche Tod aus natürlicher Ursache im Erwachsenenalter. Diagnostik 10:404–408

    Google Scholar 

  • Holmes DR, Davis KB, Mock MB, Fisher LD, Gersh BJ, Killip T III et al. (1986) The effect of medical and surgical treatment on subsequent sudden cardiac death in patients with coronary artery disease: a report from the Coronary Artery Surgery Study. Circulation 73:1254–1263

    PubMed  Google Scholar 

  • Hopster DJ, Milroy CM, Burns J, Roberts NB (1996) Necropsy study of the association between sudden cardiac death, cardiac isoenzymes and contraction band necrosis. J Clin Pathol 49:403–406

    PubMed  CAS  Google Scholar 

  • Hort W (1962) Hämorrhagische Infarzierung des Herzens bei angeborenem Herzbeuteldefekt. Zentralbl Pathol 103:392–399

    CAS  Google Scholar 

  • Hort W (1970) Der Herzbeutel und seine Bedeutung für das Herz. Ergebn Inn Med Kinderheilk NF 29:1–50

    CAS  Google Scholar 

  • Hort W, Strunk W, Eckner FAO, Kirschner RH (1989) Pathologisch-anatomische Befunde beim plötzlichen Herztod. Z Kardiol 78:619–632

    PubMed  CAS  Google Scholar 

  • Hurwitz JL, Josephson ME (1992) Sudden cardiac death in patients with chronic coronary heart disease. Circulation 85(Suppl I):I-43-I-49

    Google Scholar 

  • Imamura M, Yokoyama S, Kikuchi K (1997) Coronary fibromuscular dysplasia presenting as sudden infant death. Arch Pathol Lab Med 121:159–161

    PubMed  CAS  Google Scholar 

  • Jackson RT, Beaglehole R, Sharpe N (1983) Sudden death in runners. N Z Med J 96:289–292

    PubMed  CAS  Google Scholar 

  • James TN, Marshall TK (1976a) De subitaneis mortibus. XVII. Multifocal stenoses due to fibromuscular dysplasia of the sinus node artery. Circulation 53:736–742

    PubMed  CAS  Google Scholar 

  • James TN (1976b) De subitaneis mortibus. XIX. On the cause of sudden death in phaeochromocytoma, with special reference to the pulmonary arteries. The cardiac conduction system and the aggregation of platelets. Circulation 54:348–356

    PubMed  CAS  Google Scholar 

  • James TN (1985) Degenerative lesions of a coronary chemoreceptor and nearby neural elements in the heart of victims of sudden death. Trans Am Clin Climatolog Assoc 95:158–174

    Google Scholar 

  • Jeresati RM (1976) Sudden death in the mitral valve prolapse-click syndrome. Am J Cardiol 37: 317–318

    Google Scholar 

  • Kala R, Romo M, Siltanan P, Halonen P (1978) Physical activity and sudden cardiac death. Adv Cardiol 7:215–219

    Google Scholar 

  • Kannel WB, Schatzkin A (1985) Sudden death: lessons from subsets in population studies. JACC 5 (Suppl B):141B–149B

    PubMed  CAS  Google Scholar 

  • Kannel WB, Gagnon DR, Cupples LA (1990) Epidemiology of sudden coronary death: population at risk. Can J Cardiol 6:439–444

    PubMed  CAS  Google Scholar 

  • Kaufmann V, Stocker WG (1995) Mors subita. Der plötzliche Tod am Arbeitsplatz aus der Sicht des Arbeitsmediziners und des Pathologen. Arbeitsmed Sozialmed Umweltmed 30:175–177

    Google Scholar 

  • Kimbiris D, Iskandrain AS, Segal BL, Bemis CE (1978) Anomalous aortic origin of coronary arteries. Circulation 58:606–615

    PubMed  CAS  Google Scholar 

  • Kirschner RH, Eckner FAO, Baron RC (1986) The cardiac pathology of sudden, unexplained noctural death in south-east Asian refugees. JAMA 256:2700–2705

    PubMed  CAS  Google Scholar 

  • Kohl III HW, Powell KE, Gordon NF, Blair SN, Paffenbarger RS jr (1992) Physical activity, physical fitness, and sudden cardiac death. Epidemiol Rev 14:37–58

    PubMed  Google Scholar 

  • Koponen MA, Siegel RJ (1996) Histiocytoid cardiomyopathy and sudden death. Hum Pathol 27:420–423

    PubMed  CAS  Google Scholar 

  • Kragel AH, Reddy SG, Wittes JT, Roberts WC (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four mayor epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80:1747–1756

    PubMed  CAS  Google Scholar 

  • Krauland W (1978) Der plötzliche, natürliche Tod im Straßenverkehr. Z Rechtsmed 81:1–17

    PubMed  CAS  Google Scholar 

  • Kröber SM, Wehner HD, Kaiserling E (1993) Ruptur einer Echinokokkuszyste im Herzseptum als Ursache des plötzlichen Herztods. Pathologe 14:223–226

    PubMed  Google Scholar 

  • Kuck KH (1997) Der plötzliche Herztod: Ein gelöstes Problem? Z Kardiol 86(Suppl 3): 32

    Google Scholar 

  • Kurosawa H, Wagenaar SS, Becker AE (1981) Sudden death in a youth. A case of quadricuspid aortic valve with isolation of origin of left coronary artery. Br Heart J 46:211–215

    PubMed  CAS  Google Scholar 

  • Lancisi GM (1707) De subitaneis mortibus. Buagni, Rom

    Google Scholar 

  • Lavery CE, Mittleman MA, Cohen MC, Muller JE, Verrier RL (1997) Nonuniform nighttime distribution of acute cardiac events. A possible effect of sleep states. Circulation 96:3321–3327

    PubMed  CAS  Google Scholar 

  • Leach IH, Blundell JW, Rowley JM, Turner DR (1995) Acute ischaemic lesions in death due to ischaemic heart disease. An autopsy study of 333 cases of out-of-hospital death. Eur Heart J 16:1181–1185

    PubMed  CAS  Google Scholar 

  • Lecomte D, Fornes P, Nicolas G (1996) Stressful events as a trigger of sudden death: a study of 43 medico-legal autopsy cases. Forens Sci Internat 79:1–10

    CAS  Google Scholar 

  • Liberthson RR (1996) Sudden death from cardiac causes in children and young adults. N Engl J Med 334:1039–1044

    PubMed  CAS  Google Scholar 

  • Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR, Blackbourne BD, Davis JH (1974) Pathophysiologic observations in prehospital ventricular fibrillation and sudden cardiac death. Circulation 49:790–798

    PubMed  CAS  Google Scholar 

  • Lie JT (1975) Histopathology of the conduction system in sudden death from coronary heart disease. Circulation 51:446–452

    PubMed  CAS  Google Scholar 

  • Lipsett J, Byard RW, Carpenter BF, Jimenez CL, Bourne AJ (1991) Anomalous coronary arteries arising from the aorta associated with sudden death in infancy and early childhood. An autopsie series. Arch Pathol Lab Med 115:770–773

    PubMed  CAS  Google Scholar 

  • Loire R, Tabib A (1996) Mort subite cardiaque inattendue. Bilan de 1000 autopsies. Arch Mal Coeur 89:13–18

    PubMed  CAS  Google Scholar 

  • Maio VJM di, Maio DJM di (1993) Incidence of coronary thrombosis in sudden death due to coronary artery disease. Am J Forens Med Pathol 14:273–275

    Google Scholar 

  • Maron BJ, Roberts WC, McAllister HA, Rosing DR, Epstein SE (1980) Sudden death in young athletes. Circulation 62:218–229

    PubMed  CAS  Google Scholar 

  • Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO (1996) Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276: 199–204

    PubMed  CAS  Google Scholar 

  • Maron BJ, Gohman TE, Aeppli D (1998) Prevalence of sudden cardiac death during competitive sports activities in Minnesota high school athletes. JACC 32:1881–1884

    PubMed  CAS  Google Scholar 

  • Martini B, Basso C, Thiene G (1995) Sudden death in mitral valve prolapse with Holter monitoringdocumented ventricular fibrillation: evidence of coexisting arrhythmogenic right ventricular cardiomyopathy. Intern J Cardiol 49:274–278

    CAS  Google Scholar 

  • Maseri A, Severi S, Marzullo P (1982) Role of coronary arterial spasm in sudden ischémic death. Ann NY Acad Sci 382:204–217

    PubMed  CAS  Google Scholar 

  • McGettigan P, Mooney EE, Sinnott M, Sweeney EC, Feely J (1997) Sudden death in Whipple’s disease. Postgrad Med J 73:509–511

    PubMed  CAS  Google Scholar 

  • Mitchell DN, Bois RM du, Oldershaw PJ (1997) Cardiac sarcoidosis. A potentially fatal condition that needs expert assessment. Br Med J 314:320–321

    CAS  Google Scholar 

  • Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA et al. (1997) Sudden death due to troponin T mutations. JACC 29:549–555

    PubMed  CAS  Google Scholar 

  • Morgera T, Sinagra GF, Viel E, Ricci C, Bussani R, Camerini F (1997) The syndrome of right bundle branch block, persistent ST segment elevation and sudden cardiac death. Which is the histological substrate? Eur Heart J 18:1190–1191

    CAS  Google Scholar 

  • Muller JE 1999 Circadian variation and triggering of acute coronary events. Am Heart J 137 S1–S

    Google Scholar 

  • Musshoff F, Daldrup T, Ritsch M (1997) Anabole Steroide auf dem deutschen Schwarzmarkt. Arch Kriminol 199:152–158

    PubMed  CAS  Google Scholar 

  • Myerburg RJ (1977) Sudden cardiac death in persons with normal (or near normal) hearts. Am J Cardiol 79(6A): 3–9

    Google Scholar 

  • Myerburg RJ, Kessler KM, Castellanos A (1992) Sudden cardiac death. Structure, function, and timedependence of risk. Circulation 85(Suppl I): I-2-1-10

    Google Scholar 

  • Nademanee K (1997) Sudden unexplained death syndrome in southeast Asia. Am J Cardiol 79(6A): 10–11

    PubMed  CAS  Google Scholar 

  • Naeve W, Krause J (1977) Über natürliche Todesursachen plötzlich unerwartet Verstorbener. Eine Auswertung von Ergebnissen gerichtsmedizinischer Obduktionen in Hamburg (1936–1974) Lebensvers Med 4:103–110

    Google Scholar 

  • Nelson Piercy C, Rickards AF, Yacoub MH (1990) Aberrant origin of the right coronary artery as a potential cause of sudden death: successful anatomical correction. Br Heart J 64:208–210

    PubMed  CAS  Google Scholar 

  • Ogbuihi S (1989) Zum forensischen Stellenwert von Läsionen des Sinusknotens bei unklaren plötzlichen Todesfällen. Z Rechtsmed 102:315–322

    PubMed  CAS  Google Scholar 

  • Opie LH (1975) Sudden death and sport. Lancet 1:263–266

    PubMed  CAS  Google Scholar 

  • Pachinger OM, Hoven P van den, Judkins MP (1974) Single coronary artery cause of angina pectoris. Eur J Cardiol 2:161–165

    Google Scholar 

  • Paul O, Schatz M (1971) On sudden death. Circulation 43:7–10

    PubMed  CAS  Google Scholar 

  • Penners BM, Krämer M, Grüner O (1986) Plötzlicher Herztod nach psychoemotionaler Belastung. Z Rechtsmed 96:151–157

    PubMed  CAS  Google Scholar 

  • Penning R, Betz P, Werdan K (1991) Zur Häufigkeit eines plötzlichen Herztodes bei Mitralklappenprolaps-Syndrom. Versicher-Med 43:83–88

    CAS  Google Scholar 

  • Perings C, Schoebel FC, Hennersdorf M, Vester EG, Strauer BE (1996) Plötzlicher Herztod junger Menschen. Dtsch Med Wochenschr 121:1169–1175

    PubMed  CAS  Google Scholar 

  • Pommerenke F, Zack F, Teßmann D (1993) Akzessorische Erregungsleitungsbahnen des Herzens als Ursache eines rhythmogenen Herztodes. Pathologe 14:7–10

    PubMed  Google Scholar 

  • Rampp T, Essen R v (1995) 30 Jahre Mitralklappenprolaps-was ist geblieben? Fortschr Med 113: 257–262

    PubMed  CAS  Google Scholar 

  • Ramsaran EK, Sadigh M, Miller D (1996) Sudden cardiac death due to primary coronary sinus thrombosis. South Med J 89:531–533

    PubMed  CAS  Google Scholar 

  • Reuhl J, Schneider M, Sievert H, Lutz FU, Zieger G (1997) Myocardial sarcoidosis as a rare cause of sudden cardiac death. Forens Sci Internat 89:145–153

    CAS  Google Scholar 

  • Ritchie JL, Hammermeister KE, Kennedy JW (1976) Refractory ventricular tachycardia and fibrillation in a patient with the prolapsing mitral leaflet syndrome: successful control with overdrive pacing. Am J Cardiol 37:314–316

    PubMed  CAS  Google Scholar 

  • Roberts WC (1986a) Sudden cardiac death: definitions and causes. Am J Cardiol 57:1410–1413

    PubMed  CAS  Google Scholar 

  • Roberts WC (1986b) Major anomalies of coronary arterial origin seen in adulthood. Am Heart J 111:941–963

    PubMed  CAS  Google Scholar 

  • Roberts WC, Buja LM (1972) The frequency and significance of coronary arterial thrombi and other observations in fatal acute myocardial infarction. Am J Med 52:425–443

    PubMed  CAS  Google Scholar 

  • Roberts WC, Jones AA (1979) Quant itation of coronary arterial narrowing at necropsy in sudden coronary death. Analysis of 31 patients and comparison with 25 control subjects. Am J Cardiol 44:39–45

    PubMed  CAS  Google Scholar 

  • Roberts WC, McAllister HA, Ferrans VJ (1977) Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group I) and review of 78 previously described necropsy patients (group II). Am J Med 63:86–108

    PubMed  CAS  Google Scholar 

  • Roberts WC, Siegel RJ, Zipes NP (1982) Origin of the right coronary artery from the left sinus of Valsalva and its functional consequences: analysis of 10 necropsy patients. Am J Cardiol 49: 863–868

    PubMed  CAS  Google Scholar 

  • Roberts WC, Silver MA, Sapala JC (1986) Intussusception of a coronary artery associated with sudden death in a college football player. Am J Cardiol 57:179–180

    PubMed  CAS  Google Scholar 

  • Roberts WC, Kragel AH, Gertz SD, Roberts CS (1994) Coronary arteries in unstable angina pectoris, acute myocardial infarction, and sudden coronary death. Am Heart J 127:1588–1593

    PubMed  CAS  Google Scholar 

  • Rossi MA (1998) Fibrosis and inflammatory cells in human chronic chagasic myocarditis: scanning electron microscopy and immunhistochemical observations. Int J Cardiol 66:183–194

    PubMed  CAS  Google Scholar 

  • Satoda M, Tatsukawa H, Katoh S (1998) Sudden death due to rupture of coronary aneurysm in a 26-year-old man. Circulation 97:705–706

    PubMed  CAS  Google Scholar 

  • Savage DD, Lavy D, Garrison RJ, Castelli WP, Kligfield P, Devereux RB et al. (1983) Mitral valve prolapse in the general population. 3. Dysrhythmias: the Framingham study. Am Heart J 106:582–586

    PubMed  CAS  Google Scholar 

  • Schmidt P, Haarhoff K, Bonte W (1990) Sudden natural death at the wheel-a particular problem of the elderly? Forens Sci Internat 48:155–162

    CAS  Google Scholar 

  • Schneider J (1981) Der plötzliche Herztod als Folge einer Reizleitungsstörung. II. Teil. Plötzlicher Herztod bei Ausfällen im Reizleitungssystem. Schweiz Med Wochenschr 111:582–591

    PubMed  CAS  Google Scholar 

  • Schwartz PJ, Zaza A, Lecati E, Moss AJ (1991) Stress and sudden death. The case of the long QT syndrome. Circulation 83(Suppl II):II-71-II-80

    Google Scholar 

  • Schwartz PJ, la Rovere MT, Vanoli E (1992) Autonomie nervous system and sudden cardiac death. Experimental basis and clinical observations for post myocardial infarction risk stratification. Circulation 85(Suppl I):I-77-I-91

    Google Scholar 

  • Schwartzkopff B, Zierz S, Frenzel H, Block M, Neuen-Jacob E, Reiners K et al. (1991) Ultrastructural abnormalities of mitochondria and deficiency of myocardial cytochrome c oxidase in a patient with ventricular tachycardia. Virchows Arch A Pathol Anat 419:63–68

    CAS  Google Scholar 

  • Seipel L, Breithardt G (1984) Plötzlicher Herztod. In: Roskamm (Hrsg) Koronarerkrankungen. Springer, Berlin Heidelberg New York Tokyo (Handbuch der inneren Medizin, 5. neubearb. u. erweiterte Aufl., Bd. 9/3, S 835-884)

    Google Scholar 

  • Sharbaugh AH, White RS (1974) Single coronary artery. Analysis of the anatomic variation, clinical importance, and report of five cases. JAMA 230:243–246

    PubMed  CAS  Google Scholar 

  • Shvalev VN, Vikhert AM, Stropus RA, Sosunov AA, Pavlovich ER, Kargina Terentyeva RA et al. (1986) Changes in neural and humoral mechanisms of the heart in sudden death due to myocardial abnormalities. JACC 8:55A–64A

    PubMed  CAS  Google Scholar 

  • Siegel RJ, Dunton SF (1991) Systemic occlusive ateriopathy with sudden death in a 10 year-old boy. Hum Pathol 22:197–200

    PubMed  CAS  Google Scholar 

  • Silver MA (1986) Morphologic substrates of ventricular arrhythmias. Clin Prog Electrophysiol Pacing 4:1–13

    Google Scholar 

  • Siscovick DS, Weiss NS, Fletcher RH, Lasky T (1984) The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med 311:874–877

    PubMed  CAS  Google Scholar 

  • Spain DM, Bradess VA (1970) Sudden death from coronary heart disease. Survival time, frequency of thrombi, and cigarette smoking. Chest 58:107–110

    PubMed  CAS  Google Scholar 

  • Steinberger J, Lucas RV, Edwards JE, Titus JL (1996) Causes of sudden unexpected cardiac death in the first two decades of life. Am J Cardiol 77:992–995

    PubMed  CAS  Google Scholar 

  • Tada H, Aihara N, Ohe T, Yutani C, Hamada S, Miyanuma H et al. (1998) Arrhythmogenic right ventricular cardiomyopathy underlies syndrome of right bundle branch block, ST-segment elevation, and sudden death. Am J Cardiol 81:519–522

    PubMed  CAS  Google Scholar 

  • Tada H, Ohe T, Yutani C, Shimizu W, Kurita T, Aihara N et al. (1996) Sudden death in a patient with apparent idiopathic ventricular tachycardia. Jpn Circ J 60:133–136

    PubMed  CAS  Google Scholar 

  • Taylor AJ, Byers JP, Cheitlin MD, Virmani R (1997) Anomalous right or left coronary artery from the contralateral coronary sinus: “high risk“ abnormalities in the initial coronary artery course and heterogenous clinical outcomes. Am Heart J 133:428–435

    PubMed  CAS  Google Scholar 

  • Thiene G, Pennelli N, Rossi L (1983) Cardiac conduction system abnormalities as a possible cause of sudden death in young athletes. Hum Pathol 14:704–709

    PubMed  CAS  Google Scholar 

  • Thompson PD (1996) The cardiovascular complications of vigorous physical activity. Arch Intern Med 156:2297–2302

    PubMed  CAS  Google Scholar 

  • Thompson PD, Funk EJ, Carleton RA, Sturner WQ (1982) Incidence of death during jogging in Rhode Island from 1975 through 1980. JAMA 247:2535–2538

    PubMed  CAS  Google Scholar 

  • Topaz O, Edwards JE (1985) Pathologic features of sudden death in children, adolescents, and young adults. Chest 87:476–482

    PubMed  CAS  Google Scholar 

  • Vikhert AM (1986) Atherosclerosis of coronary arteries, coronary heart disease and sudden coronary death. Cor Vasa 28:96–104

    PubMed  CAS  Google Scholar 

  • Virmani R, Burke A, Farb A (1998) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. Eur Heart J 19:678–680

    PubMed  CAS  Google Scholar 

  • Vouri I, Mäkäräinen M, Jääskeläinen A (1978) Sudden death and physical activity. Cardiology 63:287–304

    Google Scholar 

  • ai]Vreede Swagemakers JJM de, Gorgels APM, Dubois-Arbouw WI, Ree JW van, Daemen MJAP, Houben LGE et al. (1997) Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. JACC 30:1500–1505

    PubMed  Google Scholar 

  • Waller BF (1987) Sudden death in middle-aged conditioned subjects: coronary atherosclerosis is the culprit. Mayo Clin Proc 62:634–636

    PubMed  CAS  Google Scholar 

  • Warnes CA, Roberts WC (1984) Comparison at necropsy by age group of amount and distribution of narrowing by atherosclerotic plaque in 2995 five mm long segments of 240 major coronary arteries in 60 men aged 31 to 70 years with sudden coronary death. Am Heart J 108:431–435

    PubMed  CAS  Google Scholar 

  • Weber M (1967) Die Säugetiere. Nachdruck. 2. Aufl, Bd II. Asher & Co, Amsterdam, S 492

    Google Scholar 

  • Wenger M, Schneider J (1996) Plötzlicher Herztod bei Riesenzellarteriitis. VASA 25:373–377

    PubMed  CAS  Google Scholar 

  • Wesslén L, Pahlson C, Lindquist O, Hjelm E, Gnarpe J, Larsson E et al. (1996) An increase in sudden unexpected cardiac deaths among young Swedish orienteers during 1979-1992. Eur Heart J 17:902–910

    PubMed  Google Scholar 

  • Weyrich G (1932) Statistische Untersuchungen über den plötzlichen Tod aus natürlicher Ursache beim Erwachsenen. Beitr Gerichtl Med 12:146–237

    Google Scholar 

  • Wilkat U, Hort W (1981) Quantitative Untersuchungen über Stenosierungen von Arteriolen und kleinen intramuralen Arterien in menschlichen Herzen. Z Kardiol 70:721–728

    PubMed  CAS  Google Scholar 

  • Zeija C (1986) Sudden cardiac death in the People’s Republic of China. Cor Vasa 28:90–95

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hort, W., Arnold, G., Frenzel, H. (2000). Durchblutungsstörungen des Myokard. In: Hort, W. (eds) Pathologie des Endokard, der Kranzarterien und des Myokard. Spezielle pathologische Anatomie, vol 22 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56944-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56944-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62944-0

  • Online ISBN: 978-3-642-56944-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics