Skip to main content

Increasing Temperature Capability

  • Chapter
  • 822 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Fundamental requirements in increasing temperature capability include increase in strength at high temperature and increase in environmental resistance. However, the measures adopted to increase strength may be detrimental in terms of environmental resistance. Thus in many cases the overall design requirement cannot be satisfied by a single material. Coatings are commonly required. Depending on the complexity of component duty it may be necessary, in extreme cases, to apply multiple coatings to protect against different environmental factors, for example, corrosion and wear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.I. Mitchell Z. Metallkd. 57, 1966, p. 556

    Google Scholar 

  2. J. Nutting, J.M. Arrowsmith J.I.S.I. London 70, 1961, p. 147

    CAS  Google Scholar 

  3. R.F. Dekker, J.R. Mihalisin Trans.Am.Soc.Mat. 62, 1969, p. 481

    Google Scholar 

  4. F. Turner in G.W. Meetham (ed) “The Development of Gas Turbine Materials”, Appl.Sci.Pub.Barking UK, 1981, p. 177

    Book  Google Scholar 

  5. R.H. Jeal, Metals & Materials 1985, p. 528

    Google Scholar 

  6. G.J.S. Higginbotham, Mat. Sci. Tech. 2, 1986, p. 442

    Article  Google Scholar 

  7. G.M. Acer & G.H. Meier Oxid. Met. 13, 1979, p. 159

    Article  Google Scholar 

  8. N. Birks et al JOM 46(12) 1994, p. 42

    Article  CAS  Google Scholar 

  9. G.C. Wood & F.H. Stott, Mat. Sci. Tech. 3, 1987, p. 519

    CAS  Google Scholar 

  10. T.H. Rhys-Jones, Mat. Sci. Tech., 1988 4, p. 421

    Article  CAS  Google Scholar 

  11. L.H. Wolfe, Materials Performance, April 1978, p. 38

    Google Scholar 

  12. M.H. Lewis et al in “Non-oxide Technical & Engineering Ceramics” ed Hampshire (Elsevier 1986) p. 175

    Google Scholar 

  13. D.P. Hasselman, Bull.Am.Ceram.Soc. 49, 1970, p. 1033

    Google Scholar 

  14. M.H. Lewis & G. Leng-Ward, Metals & Materials, 1991, p. 356

    Google Scholar 

  15. R.A.J. Sambell et al J. Mat. Sci. 7, 1972, p. 676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meetham, G.W., Van de Voorde, M.H. (2000). Increasing Temperature Capability. In: Materials for High Temperature Engineering Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56938-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56938-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63109-2

  • Online ISBN: 978-3-642-56938-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics