Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 151 / 2))

Abstract

Purines can influence motility secretion and absorption in a variety of direct and indirect ways. They can be released from intrinsic enteric nerves, sympathetic nerves, or sensory-motor nerves during axon reflexes, to act directly on smooth muscle purinoceptors mediating relaxation or contraction or on epithelial cell receptors. They can act on prejunctional nerve terminals to modify transmitter release from motor and inhibitory neural control pathways. They can participate in synaptic transmission in myenteric and submucosal ganglia that are involved in control of gastrointestinal motility, mucosal secretion and absorption. They can act on blood vessels or interstitial cells of Cajal thereby indirectly modulating motility patterns. They can act on sensory nerve endings in the gut wall to initiate local and/or central reflex activity that alters gastrointestinal motility and secretory patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP (1996) P1 and P2 receptors in cell growth and differentiation. Drug Dev Res 39:393–406

    Article  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    Article  PubMed  CAS  Google Scholar 

  • Ahlman H, Dahlstrom A (1983) Vagal mechanisms controlling serotonin release from the gastrointestinal tract and pyloric motor function. J Auton Nerv Syst 9:119–140

    Article  PubMed  CAS  Google Scholar 

  • Ahsan MA, Ilundain A, Naftalin RJ, Sandhu BK, Smith PM (1987) Effects of theophylline, choleragen and loperamide on rabbit ileal fluid and electrolyte transport in vitro. Br J Pharmacol 92:743–754

    PubMed  CAS  Google Scholar 

  • Ainz LF, Gil-Rodrigo CE, Gómez R, Malillos M, Requejo D, Gandarias JM (1989) Effects of various physiologic adenine derivatives on the secretion of acid in isolated gastric glands in rabbits. Rev Esp Fisiol 45:281–286

    PubMed  CAS  Google Scholar 

  • Ainz LF, Saigado C, Gandarias JM, Gömez R, Vallejo A, Gil-Rodrigo CE (1993) P1(A2/Ra)-purinoceptors may mediate the stimulatory effect of adenosine and adenosine analogs on acid formation in isolated rabbit parietal cells. Pharmacol Res 27:319–334

    Article  PubMed  CAS  Google Scholar 

  • Akbarali HI, Bieger D, Triggle CR (1986) Tetrodotoxin-sensitive and -insensitive relaxations in the rat oesophageal tunica muscularis mucosae. J Physiol 381:49–63

    PubMed  CAS  Google Scholar 

  • Akkermans LMA, Houghton LA, Brown NJ (1989) Neural and hormonal control of pyloric sphincter function. Scand J Gastroenterol 24:27–31

    Article  Google Scholar 

  • Al Humayyd M, White TD (1985) 5-Hydroxytryptamine releases adenosine 5′-triphosphate from nerve varicosities isolated from the myenteric plexus of guinea-pig ileum. Br J Pharmacol 84:27–34

    PubMed  CAS  Google Scholar 

  • Alfahel E, Korngreen A, Parola AH, Priel Z (1996) Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential. Biophys J 70:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Allescher HD, Tougas G, Vergara P, Lu S, Daniel EE (1992) Nitricoxide as a putative nonadrenergic noncholinergic inhibitory transmitter in the canine pylorus in vivo. Am J Physiol 262:G695–G702

    PubMed  CAS  Google Scholar 

  • Alomar CC, Santos C, Puig-Parellada P (1999) Evidence that inhibitory neurotransmission differs between the proximal and distal segments of guinea-pig taenia caeci. Eur J Pharmacol 369:215–219

    Article  Google Scholar 

  • Altdorfer K, Feher E, Donath T, Feher J (1996) Nitric oxide synthase-containing nerve elements in the pylorus of the cat. Neurosci Lett 212:195–198

    Article  PubMed  CAS  Google Scholar 

  • Alumets J, Schaffalitzky de Muckadell O, Fahrenkrug J, Sundler F, Hakanson R, Uddman R (1979) A rich VIP nerve supply is characteristic of sphincters. Nature 280:155–156

    Article  PubMed  CAS  Google Scholar 

  • Amsallem H, Métioui M, Vanden Abeele A, Elyamani A, Moran A, Dehaye JP (1996) Presence of a metabotropic and an ionotropic purinergic receptor on rat submandibular ductal cells. Am J Physiol 271:C1546–C1555

    PubMed  CAS  Google Scholar 

  • Andrews PLR, Lawes INC (1985) Characteristics of the vagally driven non-adrenergic, non-cholinergic inhibitory innervation of ferret gastric corpus. J Physiol 363:1–20

    PubMed  CAS  Google Scholar 

  • Arkle S, Hanahoe A, Shum CMC (1998) Effects of KN-62, RO-31-8220, Mn2+, Ni2+ and Co2+ on ATP4−-stimulated responses in rat parotid salivary glands in vitro. Br J Pharmacol 125:83P [Abstract]

    Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1990a) Effects of arterial infusions of adenosine 5′-triphosphate (ATP) and vasoactive intestinal polypeptide (VIP) on vagal excitatory motor responses in the rabbit stomach in vivo. J Auton Nerv Syst 30 (Suppl): S15–S18

    Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1990b) Depression by fenoprofen of the “rebound contractions” elicited by vagal stimulation and arterial infusion of ATP in the rabbit stomach in vivo. Exp Physiol 75:415–418

    Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1991) Vagally-induced non-adrenergic, noncholinergic inhibitory motility in the rabbit stomach in vivo. Funct Neurol 6:239–242

    PubMed  CAS  Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1992) The influence of the vagally induced rebound contractions on the non-adrenergic, non-cholinergic (NANC) inhibitory motility of the rabbit stomach and the role of prostaglandins. J Auton Nerv Syst 37:125–135

    Article  PubMed  CAS  Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1994) Modulation of cholinergic transmission by nitric oxide, VIP and ATP in the gastric muscle. Neuroreport 5:905–908

    Article  PubMed  CAS  Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1996) Prostaglandin E2 modulates neurally induced nonadrenergic, noncholinergic gastric relaxations in the rabbit in vivo. Gastroenterology 110:129–138

    Article  PubMed  CAS  Google Scholar 

  • Baer HP, Frew R (1979) Relaxation of guinea-pig fundic strip by adenosine, adenosine triphosphate and electrical stimulation: lack of antagonism by theophylline or ATP treatment. Br J Pharmacol 67:293–299

    PubMed  CAS  Google Scholar 

  • Baidan LV, Zholos AV, Wood JD (1995) Modulation of calcium currents by G-proteins and adenosine receptors in myenteric neurones cultured from adult guinea-pig small intestine. Br J Pharmacol 116:1882–1886

    PubMed  CAS  Google Scholar 

  • Bailey SJ, Hourani SMO (1990) A study of the purinoceptors mediating contraction in the rat colon. Br J Pharmacol 100:753–756

    PubMed  CAS  Google Scholar 

  • Bailey SJ, Hourani SMO (1992) Effects of purines on the longitudinal muscle of the rat colon. Br J Pharmacol 105:885–892

    PubMed  CAS  Google Scholar 

  • Bailey SJ, Hickman D, Hourani SMO (1992) Characterization of the P1-purinoceptors mediating contraction of the rat colon muscularis mucosae. Br J Pharmacol 105:400–404

    PubMed  CAS  Google Scholar 

  • Baird AA, Muir TC (1990) Membrane hyperpolarization, cyclic nucleotide levels and relaxation in the guinea-pig internal anal sphincter. Br J Pharmacol 100:329–335

    PubMed  CAS  Google Scholar 

  • Banks BEC, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282:415–417

    Article  PubMed  CAS  Google Scholar 

  • Barajas-López C (1993) Adenosine reduces the potassium conductance of guinea pig submucosal plexus neurons by activating protein kinase A. Pflugers Arch 424:410–415

    Article  PubMed  Google Scholar 

  • Barajas-López C, Surprenant A, North RA (1991) Adenosine A1 and A2 receptors mediate presynaptic inhibition and postsynaptic excitation in guinea pig submucosal neurons. J Pharmacol Exp Ther 258:490–495

    PubMed  Google Scholar 

  • Barajas-López C, Barrientos M, Espinosa-Luna R (1993) Suramin increases the efficacy of ATP to activate an inward current in myenteric neurons from guinea-pig ileum. Eur J Pharmacol 250:141–145

    Article  PubMed  Google Scholar 

  • Barajas-López C, Espinosa-Luna R, Gerzanich V (1994) ATP closes a potassium and opens a cationic conductance through different receptors in neurons of guinea pig submucous plexus. J Pharmacol Exp Ther 268:1397–1402

    PubMed  Google Scholar 

  • Barajas-López C, Muller MJ, Prieto-Gómez B, Espinosa-Luna R (1995) ATP inhibits the synaptic release of acetylcholine in submucosal neurons. J Pharmacol Exp Ther 274:1238–1245

    PubMed  Google Scholar 

  • Barajas-López C, Huizinga JD, Collins SM, Gerzanich V, Espinosa-Luna R, Peres AL (1996a) P2X-Purinoceptors of myenteric neurones from the guinea-pig ileum and their unusual pharmacological properties. Br J Pharmacol 119:1541–1548

    Google Scholar 

  • Barajas-López C, Peres AL, Espinosa-Luna R (1996b) Cellular mechanisms underlying adenosine actions on cholinergic transmission in enteric neurons. Am J Physiol 271:C264–C275

    Google Scholar 

  • Barajas-López C, Espinosa-Luna R, Zhu Y (1998) Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J Physiol Lond 513:671–683

    Article  PubMed  Google Scholar 

  • Barraco RA (1991) Behavioral actions of adenosine and related substances. In: Phillis JW (ed) Adenosine and adenine nucleotides as regulators of cellular function. CRC Press, Boca Raton, FL, pp 339–366.

    Google Scholar 

  • Barrett KE, Cohn JA, Huott PA, Wasserman SI, Dharmsathaphorn K (1990) Immune-related intestinal chloride secretion. II. Effect of adenosine on T84 cell line. Am J Physiol 258:C902–C912

    PubMed  CAS  Google Scholar 

  • Barthó L, Petho G, Ronai Z (1985) Theophylline-sensitive modulation of noncholinergic excitatory neurotransmission in the guinea-pig ileum. Br J Pharmacol 86:315–317

    PubMed  Google Scholar 

  • Barthó L, Lénárd LJ, Maggi CA (1997) Evidence for the involvement of P2-purinoceptors in the cholinergic contraction of the guinea-pig ileum. Br J Pharmacol 121:1507–1508

    Article  PubMed  Google Scholar 

  • Barthó L, Lénárd LJ, Szigeti R (1998) Nitric oxide and ATP co-mediate the NANC relaxant response in the guinea-pig taenia coli. Naunyn Schmiedeberg’s Arch Pharmacol. 358:496–499

    Article  Google Scholar 

  • Bartlett V, Stewart RR, Nakatsu K (1979) Evidence for two adenine derivative receptors in rat ileum which are not involved in the nonadrenergic, noncholinergic response. Can J Physiol Pharmacol 57:1130–1137

    Article  PubMed  CAS  Google Scholar 

  • Bauer V (1993) NANC transmission in intestines and its pharmacological modulation. Acta Neurobiol Exp Warsz 53:65–77

    PubMed  CAS  Google Scholar 

  • Bauer V, Kuriyama H (1982) The nature of non-cholinergic, non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum. J Physiol 332:375–391

    PubMed  CAS  Google Scholar 

  • Bayguinov O, Sanders KM (1993) Regulation of neural responses in the canine pyloric sphincter by opioids. Br J Pharmacol 108:1024–1030

    PubMed  CAS  Google Scholar 

  • Beck K, Calamai F, Staderini G, Susini T (1988) Gastric motor responses elicited by vagal stimulation and purine compounds in the atropine-treated rabbit. Br J Pharmacol 94:1157–1166

    PubMed  CAS  Google Scholar 

  • Behar J, Guenard V, Walsh JH, Biancani P (1989) VIP and acetylcholine: neurotransmitters in esophageal circular smooth muscle. Am J Physiol 257:G380–G385

    PubMed  CAS  Google Scholar 

  • Bêlai A, Burnstock G (1994) Evidence for coexistence of ATP and nitric oxide in non-adrenergic, non-cholinergic (NANC) inhibitory neurones in the rat ileum, colon and anococcygeus muscle. Cell Tissue Res 278:197–200

    Article  PubMed  Google Scholar 

  • Belai A, Lincoln J, Milner P, Burnstock G (1988) Progressive changes in adrenergic, serotonergic, and peptidergic nerves in proximal colon of streptozotocin-diabetic rats. Gastroenterology 95:1234–1241

    PubMed  CAS  Google Scholar 

  • Belai A, Lefebvre RA, Burnstock G (1991) Motor activity and neurotransmitter release in the gastric fundus of streptozotocin-diabetic rats. Eur J Pharmacol 194:225–234

    Article  PubMed  CAS  Google Scholar 

  • Bennett M, Burnstock G, Holman ME (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol 182:541–558

    PubMed  CAS  Google Scholar 

  • Bertrand CA, Laboisse CL, Hopfer U (1999) Purinergic and cholinergic agonists induce exocytosis from the same granule pool in HT29-Cl.16 emonolayers. Am J Physiol 276:C907–C914

    PubMed  CAS  Google Scholar 

  • Biancani P, Walsh JH, Behar J (1984) Vasoactive intestinal polypeptide: a neurotransmitter for lower esophageal sphincter relaxation. J Clin Invest 73:963–967

    Article  PubMed  CAS  Google Scholar 

  • Biancani P, Walsh J, Behar J (1985) Vasoactive intestinal peptide: a neurotransmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology 89:867–874

    PubMed  CAS  Google Scholar 

  • Binder HJ, Sandle GI (1994) Electrolyte transport in the mammalian colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 2133–2171

    Google Scholar 

  • Bitar KN, Hillemeier C, Biancani P (1990) Differential regulation of smooth muscle contraction in rabbit internal anal sphincter by substance P and bombesin. Life Sci 47:2429–2434

    Article  PubMed  CAS  Google Scholar 

  • Blottiére HM, Loirand G, Pacaud P (1996) Rise in cytosolic Ca2+ concentration induced by P2-purinoceptor activation in isolated myocytes from the rat gastrointestinal tract. Br J Pharmacol 117:775–780

    PubMed  Google Scholar 

  • Blumberg H, Haupt P, Jänig W, Kohler W (1983) Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pflugers Arch 398:33–40

    Article  PubMed  CAS  Google Scholar 

  • Bo X, Alavi A, Xiang Z, Oglesby IB, Ford APDW, Burnstock G (1999) Localization of P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA (1997) Nitric oxide and the non-adrenergic non-cholinergic neurotransmission. Comp Biochem Physiol A Physiol 118:925–937

    Article  PubMed  CAS  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Rampart M, Verbeuren TJ, Herman AG, Van Maercke YM (1990a) Nonadrenergic noncholinergic mechanisms in the ileo-colonic junction. Arch Int Pharmacodyn Ther 303:270–281

    Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, Van Maercke YM (1990b) Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur J Pharmacol 190:239–246

    Article  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Rampart M, Ruytjens IF, Verbeuren TJ, Herman AG, Van Maercke YM (1990c) GABAA receptor-mediated stimulation of non-adrenergic non-cholinergic neurones in the dog ileocolonic junction. Br J Pharmacol 101:460–464

    Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Rampart M, Verbeuren TJ, Herman AG, Van Maercke YM (1990d) Evidence against ATP being the inhibitory transmitter released by nonadrenergic noncholinergic nerves in the canine ileocolonic junction. J Pharmacol Exp Ther 254:659–663

    Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Ruytjens IF, Bult H, De Man JG, Herman AG, Van Maercke YM (1991) Bioassay of nitric oxide released upon stimulation of non-adrenergic non-cholinergic nerves in the canine ileocolonic junction. Br J Pharmacol 103:1085–1091

    PubMed  CAS  Google Scholar 

  • Boeckxstaens GE, De Man JG, Pelckmans PA, Cromheeke KM, Herman AG, Van Maercke YM (1993) Ca2+ dependency of the release of nitric oxide from nonadrenergic non-cholinergic nerves. Br J Pharmacol 110:1329–1334

    PubMed  CAS  Google Scholar 

  • Börjesson L, Nordgren S, Delbro DS (1997) DMPP causes relaxation of rat distal colon by a purinergic and a nitrergic mechanism. Eur J Pharmacol 334:223–231

    Article  PubMed  Google Scholar 

  • Börjesson L, Nordgren S, Delbro DS (1999) K+-induced neurogenic relaxation of rat distal colon. J Pharmacol Exp Ther 291:717–724

    PubMed  Google Scholar 

  • Bornstein JC, Furness JB (1988) Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits. J Auton Nerv Syst 25:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Gonella J (1981) Nervous control of the internal anal sphincter of the cat. J Physiol 310:457–469

    PubMed  CAS  Google Scholar 

  • Bouvier M, Kirschner G, Gonella J (1986) Actions of morphine and enkephalins on the internal anal sphincter of the cat: relevance for the physiological role of opiates. J Auton Nerv Syst 16:219–232

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclooxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Special Report. Br J Pharmacol 126:563–567

    Article  PubMed  CAS  Google Scholar 

  • Bridgewater M, Cunnane TC, Brading AF (1995) Characteristic features of inhibitory junction potentials evoked by single stimuli in the guinea-pig isolated taenia caeci. J Physiol 485:145–155

    PubMed  CAS  Google Scholar 

  • Briejer MR, Veen GJ, Akkermans LM, Lefebvre RA, Schuurkes JA (1995) Cisapride and structural analogs selectively enhance 5-hydroxytryptamine (5-HT)-induced purinergic neurotransmission in the guinea pig proximal colon. J Pharmacol Exp Ther 274:641–648

    PubMed  CAS  Google Scholar 

  • Briggs CA, Cooper JR (1981) A synaptosomal preparation from the guinea pig ileum myenteric plexus. J Neurochem 36:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Brizzi E, Calamai F, Staderini G, Susini T, Viligiardi R (1985) Inhibition by ATP of vagal relaxatory motility in the rabbit stomach in vivo. IRCS Med Sci 13:376–377

    CAS  Google Scholar 

  • Broad RM, McDonald TJ, Brodin E, Cook MA (1992) Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings. Am J Physiol 262:G525–G531

    PubMed  CAS  Google Scholar 

  • Broad RM, McDonald TJ, Cook MA (1993) Adenosine and 5-HT inhibit substance P release from nerve endings in myenteric ganglia by distinct mechanisms. Am J Physiol 264:G454–G461

    PubMed  CAS  Google Scholar 

  • Brock JA, Van Helden DF (1995) Enhanced excitatory junction potentials in mesenteric arteries from spontaneously hypertensive rats. Pflugers Arch - Eur J Physiol 430:901–908

    Article  CAS  Google Scholar 

  • Brown C, Burnstock G (1981) Evidence in support of the P1/P2 purinoceptor hypothesis in the guinea-pig taenia coli. Br J Pharmacol 73:617–624

    PubMed  CAS  Google Scholar 

  • Brownhill VR, Hourani SMO, Kitchen I (1997) Ontogeny of P2-purinoceptors in the longitudinal muscle and muscularis mucosae of the rat isolated duodenum. Br J Pharmacol 122:225–232

    Article  PubMed  CAS  Google Scholar 

  • Bueno L, Fioramonti J, Delvaux M, Frexinos J (1997) Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations. Gastroenterology 112:1714–1743

    Article  PubMed  CAS  Google Scholar 

  • Bulloch JM, McGrath JC (1992) Evidence for increased purinergic contribution in hypertensive blood vessels exhibiting co-transmission. Br J Pharmacol (Suppl) 107:145P

    Google Scholar 

  • Bulloch JM, Starke K (1989) Presynaptic α2-autoinhibition in a vascular neuroeffector junction where ATP and noradrenaline act as co-transmitters. Br J Pharmacol 99:279–284

    Google Scholar 

  • Bültmann R, von Kügelgen I, Starke K (1991) Adrenergic and purinergic cotransmis-sion in nicotine-evoked vasoconstriction in rabbit ileocolic arteries. Naunyn Schmiedebergs Arch Pharmacol 344:174–182

    Article  PubMed  Google Scholar 

  • Bültmann R, Dudeck O, Starke K (1996) Evaluation of P2-purinoceptor antagonists at two relaxation-mediating P2-purinoceptors in guinea-pig taenia coli. Naunyn Schmiedebergs Arch Pharmacol 353:445–451

    PubMed  Google Scholar 

  • Burleigh DE (1983) Non-cholinergic, non-adrenergic inhibitory neurons in human internal anal sphincter muscle. J Pharm Pharmacol 35:258–260

    Article  PubMed  CAS  Google Scholar 

  • Burleigh DE, D’Mello A, Parks AG (1979) Responses of isolated human internal anal sphincter to drugs and electrical field stimulation. Gastroenterology 77:484–490

    PubMed  CAS  Google Scholar 

  • Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21:247–324

    PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergicreceptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a mul-tidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1988) Local purinergic regulation of blood pressure. (The First John T Shepherd Lecture). In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle, peptides, autonomic nerves, and endothelium. Raven Press, New York, pp 1–14

    Google Scholar 

  • Burnstock G (1990) Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens 8 (Suppl 7): S95–S106

    CAS  Google Scholar 

  • Burnstock G (1992) Neuromuscular transmission and neuromodulation in the gastrointestinal tract. In: Heading RC, Wood JD (eds) Gastrointestinal dysmotility: focus on cisapride. Proceedings of the 2nd International Cisapride Investigators Meeting, Nice, 3–4 December 1990. Raven Press, New York, pp 41–60

    Google Scholar 

  • Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39:204–242

    Article  CAS  Google Scholar 

  • Burnstock G (1997) Commentary on paper by G Burnstock, G Campbell, D. Satchell and A. Smythe (1970) entitled “Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut”. In: Birmingham AT, Brown DA (eds) Landmarks in pharmacology. Br J Pharmacol (Golden Jubilee 1946–1996), pp 334–357

    Google Scholar 

  • Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechano-sensory transduction. J Anat 194:335–342

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Hoyle CHV (1985) Actions of adenine dinucleotides in the guinea-pig taenia coli: NAD acts indirectly on P2-purinoceptors; NADP acts like a P2-purinoceptor agonist. Br J Pharmacol 84:825–831

    PubMed  CAS  Google Scholar 

  • Burnstock G, Ralevic V (1994) New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br J Plast Surg 47:527–543

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Warland JJI (1987) P2-purinoceptors of two subtypes in the rabbit mesenteric artery: reactive blue 2 selectively inhibits responses mediated via the P2Y- but not the P2X-purinoceptor. Br J Pharmacol 90:383–391

    PubMed  CAS  Google Scholar 

  • Burnstock G, Wong H (1978) Comparison of the effects of ultraviolet light and purinergic nerve stimulation on the guinea-pig taenia coli. Br J Pharmacol 62:293–302

    PubMed  CAS  Google Scholar 

  • Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6:526–532

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1963) Inhibition of the smooth muscle of the taenia coli. Nature 200:581–582

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1964) Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol 3:163–166

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol 182:504–526

    PubMed  CAS  Google Scholar 

  • Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    PubMed  CAS  Google Scholar 

  • Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exoge-nously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242

    PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Paddle B, Staszewska-Barczak J (1975) Evidence that prostaglandin is responsible for the “rebound contraction” following stimulation of non-adrenergic, non-cholinergic (“purinergic”) inhibitory nerves. Eur J Pharmacol 31:360–362

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Kasakov L, Wong HK (1978) Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur J Pharmacol 49:145–149

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Cusack NJ, Hills JM, Mackenzie I, Meghji P (1983) Studies on the stereoselectivity of the P2-purinoceptor. Br J Pharmacol 79:907–913

    PubMed  CAS  Google Scholar 

  • Burnstock G, Cusack NJ, Meldrum LA (1984) Effects of phosphorothioate analogues of ATP, ADP and AMP on guinea-pig taenia coli and urinary bladder. Br J Pharmacol 82:369–374

    PubMed  CAS  Google Scholar 

  • Burnstock G, Fischer B, Hoyle CHV, Maillard M, Ziganshin AU, Brizzolara AL, von Isakovics A, Boyer JL, Harden TK, Jacobson KA (1994) Structure activity relationships for derivatives of adenosine 5′-triphosphate as agonists at P2 purinocep-tors: heterogeneity within P2X and P2Y subtypes. Drug Dev Res 31:206–219

    Article  Google Scholar 

  • Bybee DE, Brown FC, Georges LP, Castell DO, McGuigan JE (1979) Somatostatin effects on lower esophageal sphincter function. Am J Physiol 237:E77–E81

    PubMed  CAS  Google Scholar 

  • Bywater RAR, Taylor GS (1982) Electrophysiological studies on the colon of the piebald-lethal mouse. Proc Aust Physiol Pharmacol Soc 13:250P [Abstract]

    Google Scholar 

  • Cai W, Gu J, Huang W, McGregor GP, Ghatei MA, Bloom SR, Polak JM (1983) Peptide immunoreactive nerves and cells of the guinea-pig gall bladder and biliary pathways. Gut 24:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Capogrossi MC, Francendese A, DiGirolamo M (1979) Suppression of food intake by adenosine and inosine. Am J Clin Nutr 32:1762–1768

    PubMed  CAS  Google Scholar 

  • Castell DO (1975) The lower esophageal sphincter. Physiologic and clinical aspects. Ann Intern Med 83:390–401

    PubMed  CAS  Google Scholar 

  • Cataldi de Flombaum MA, Stoppani AO (1992) High-affinity calcium-stimulated, magnesium-dependent adenosine triphosphatase in Trypanosoma cruzi. Comp Biochem Physiol B 103:933–937

    Article  PubMed  CAS  Google Scholar 

  • Cervero F (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74:95–138

    Article  PubMed  CAS  Google Scholar 

  • Chakder S, Rattan S (1992) Neurally mediated relaxation of opossum internal anal sphincter: influence of superoxide anion generator and the scavenger. J Pharmacol Exp Ther 260:1113–1118

    PubMed  CAS  Google Scholar 

  • Chakder S, Rattan S (1993) Release of nitric oxide by activation of nonadrenergic noncholinergic neurons of internal anal sphincter. Am J Physiol 264:G7–G12

    PubMed  CAS  Google Scholar 

  • Chakder S, Rathi S, Ma XL, Rattan S (1996) Heme oxygenase inhibitor zinc protoporphyrin IX causes an activation of nitric oxide synthase in the rabbit internal anal sphincter. J Pharmacol Exp Ther 277:1376–1382

    PubMed  CAS  Google Scholar 

  • Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 245:R117–R134

    PubMed  CAS  Google Scholar 

  • Chaudry IH (1991) Use of ATP following shock and ischemia. Ann NYAcad Sci 603:130–141

    Article  Google Scholar 

  • Chaudry IH, Clemens MG, Baue AE (1986) The role of ATP-magnesium in ischemia and shock. Magnesium 5:211–220

    PubMed  CAS  Google Scholar 

  • Chen C-C, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  PubMed  CAS  Google Scholar 

  • Christofi FL, Cook MA (1986) Affinity of various purine nucleosides for adenosine receptors on purified myenteric varicosities compared to their efficacy as presynaptic inhibitors of acetylcholine release. J Pharmacol Exp Ther 237:305–311

    PubMed  CAS  Google Scholar 

  • Christofi FL, Cook MA (1987) Possible heterogeneity of adenosine receptors present on myenteric nerve endings. J Pharmacol Exp Ther 243:302–309

    PubMed  CAS  Google Scholar 

  • Christofi FL, Cook MA (1997) Purinergic modulation of gastrointestinal function. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 261–282

    Google Scholar 

  • Christofi FL, Wood JD (1993a) Presynaptic inhibition by adenosine A1 receptors on guinea pig small intestinal myenteric neurons. Gastroenterology 104:1420–1429

    Google Scholar 

  • Christofi FL, Wood JD (1993b) Endogenously released adenosine acts at A1 receptors to suppress slow excitatory transmission (slow EPSP) and enhance slow inhibitory transmission (slow IPSP) in the myenteric plexus of guinea-pig small intestine. Gastroenterology 104:A490 [Abstract]

    Google Scholar 

  • Christofi FL, Wood JD (1994) Electrophysiological subtypes of inhibitory P1 purinoceptors on myenteric neurones of guinea-pig small bowel. Br J Pharmacol 113:703–710

    PubMed  CAS  Google Scholar 

  • Christofi FL, McDonald TJ, Cook MA (1990) Adenosine receptors are coupled negatively to release of tachykinin(s) from enteric nerve endings. J Pharmacol Exp Ther 253:290–295

    PubMed  CAS  Google Scholar 

  • Christofi FL, Tack J, Wood JD (1992) Suppression of nicotinic synaptic transmission by adenosine in myenteric ganglia of the guinea-pig gastric antrum. Eur J Pharmacol 216:17–22

    Article  PubMed  CAS  Google Scholar 

  • Christofi FL, Baidan LV, Fertel RH, Wood JD (1994) Adenosine A2 receptor-mediated excitation of a subset of AH/type 2 neurons and elevation of cAMP levels in myenteric ganglia of guinea-pig ileum. Neurogastroenterol Motility 6:67–78

    Article  Google Scholar 

  • Christofi FL, Guan Z, Lucas JH, Rosenberg Schaffer LJ, Stokes BT (1996) Responsiveness to ATP with an increase in intracellular free Ca2+ is not a distinctive feature of calbindin-D28 immunoreactive neurons in myenteric ganglia. Brain Res 725:241–246

    PubMed  CAS  Google Scholar 

  • Christofi FL, Guan Z, Wood JD, Baidan LV, Stokes BT (1997) Purinergic Ca2+ signaling in myenteric neurons via P2 purinoceptors. Am J Physiol 272:G463–G473

    PubMed  CAS  Google Scholar 

  • Clark SR, Costa M, Tonini M, Brookes SJ (1996) Purinergic transmission is involved in a descending excitatory reflex in the guinea-pig small intestine. Proc Aust Neurosci Soc 7:176

    Google Scholar 

  • Cocks T, Burnstock G (1979) Effects of neuronal polypeptides on intestinal smooth muscle; a comparison with non-adrenergic, non-cholinergic nerve stimulation and ATP. Eur J Pharmacol 54:251–259

    Article  PubMed  CAS  Google Scholar 

  • Collier HO, Tucker JF (1983) Novel form of drug-dependence - on adenosine in guinea pig ileum. Nature 302:618–621

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Parmentier M, Boeynaems JM (1996) Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 222:303–308

    Article  PubMed  CAS  Google Scholar 

  • Cook DI, Young JA (1989) Fluid and electrolyte secretion by salivary glands. In: Forte JG (ed) Handbook of physiology, the gastrointestinal system, salivary, pancreatic, gastric and hepatobiliary secretion, section 6, vol III. American Physiological Society, Bethesda, Md, pp 1–23

    Google Scholar 

  • Costa M, Furness JB (1973) The origins of the adrenergic fibres which innervate the internal anal sphincter, the rectum, and other tissues of the pelvic region in the guinea-pig. Z Anat Entw Gesch 140:129–142

    Article  CAS  Google Scholar 

  • Costa M, Furness JB, Gibbins IL (1986a) Chemical coding of enteric neurones. In: Hökfelt T, Fuxe K, Pernow B (eds) Coexistence of neuronal messengers: a new principle in chemical transmission. Elsevier, Amsterdam, pp 217–239

    Google Scholar 

  • Costa M, Furness JB, Humphreys CM (1986b) Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol 332:79–88

    Article  Google Scholar 

  • Coupar JM (1999) Characterization and tissue location of the neural adenosine receptor in the rat ileum. Br J Pharmacol 126:1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Coutinho CMLM, Pons AH, Araujo-Jorge TC, Persechini PM, Coutinho-Silva R (1998) Enhancement of P2Z-associated cell permeabilization during acute phase of Chagas’ disease. Drug Dev Res 43:38 [Abstract]

    Google Scholar 

  • Crema A, Frigo GM, Lecchini S, Manzo L, Onori L, Tonini M (1983) Purine receptors in the guinea-pig internal anal sphincter. Br J Pharmacol 78:599–603

    PubMed  CAS  Google Scholar 

  • Crist JR, He XD, Goyal RK (1992) Both ATP and the peptide VIP are inhibitory neurotransmitters in guinea-pig ileum circular muscle. J Physiol 447:119–131

    PubMed  CAS  Google Scholar 

  • Crossley AW, Gillespie JS (1983) The effect of an inhibitory factor from the bovine retractor penis on the gastro-intestinal tract and gallbladder of the guinea-pig. Br J Pharmacol 78:213–220

    PubMed  CAS  Google Scholar 

  • Crowe R, Burnstock G (1981a) Perinatal development of quinacrine-positive neurons in the rabbit gastrointestinal tract. J Auton Nerv Syst 4:217–230

    Article  Google Scholar 

  • Crowe R, Burnstock G (1981b) Comparative studies of quinacrine-positive neurones in the myenteric plexus of stomach and intestine of guinea-pig, rabbit and rat. Cell Tissue Res 221:93–107

    Article  Google Scholar 

  • Currò D, Preziosi P (1998) Non-cholinergic non-adrenergic relaxation of the rat stomach. Gen Pharmacol 31:697–703

    Article  PubMed  Google Scholar 

  • Cusack NJ, Planker M (1979) Relaxation of isolated taenia coli of guinea-pig by enan-tiomers of 2-azido analogues of adenosine and adenine nucleotides. Br J Pharmacol 67:153–158

    PubMed  CAS  Google Scholar 

  • Cusack NJ, Hourani SM, Loizou GD, Welford LA (1987) Pharmacological effects of isopolar phosphonate analogues of ATP on P2-purinoceptors in guinea-pig taenia coli and urinary bladder. Br J Pharmacol 90:791–795

    PubMed  CAS  Google Scholar 

  • Cuthbert AW, Hickman ME (1985) Indirect effects of adenosine triphosphate on chloride secretion in mammalian colon. J Membr Biol 86:157–166

    Article  PubMed  CAS  Google Scholar 

  • Da Prada M, Richards JG, Lorez HP (1978) Blood platelets and biogenic monoamines: biochemical, pharmacological and morphological studies. In: de Gaetano G, Grattini S (eds) Platelets: a multidisciplinary approach. Raven Press, New York, pp 331–353

    Google Scholar 

  • Dahl JL, Bloom DD, Epstein ML, Fox DA, Bass P (1987) Effect of chemical ablation of myenteric neurons on neurotransmitter levels in the rat jejunum. Gastroenterology 92:338–344

    PubMed  CAS  Google Scholar 

  • Dahlstrand C, Dahlstrom A, Theodorsson E, Rehfeld J, Ahlman H (1990) Is the CCK- 8 induced relaxation of the feline sphincter of Oddi mediated by VIP neurons? J Auton Nerv Syst 31:75–84

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207

    Article  PubMed  CAS  Google Scholar 

  • Daniel EE, Helmy-Elkholy A, Jager LP, Kannan MS (1983) Neither apurine nor VIP is the mediator of inhibitory nerves of opossum oesophageal smooth muscle. J Physiol 336:243–260

    PubMed  CAS  Google Scholar 

  • Daniel EE, Jager LP, Jury J, Helmy Elkholy A, Kannan MS, Posey-Daniel V (1984) The mediators and mechanisms causing the non-adrenergic, non-cholinergic nerve responses in opossum esophagus: Role of interstitial cells of Cajal. Biomed Res 5:67–84

    CAS  Google Scholar 

  • Daniel EE, Jager LP, Jury J (1989) Vasoactive intestinal polypeptide and non-adrenergic, non-cholinergic inhibition in lower oesophageal sphincter of opossum. Br J Pharmacol 96:746–752

    PubMed  CAS  Google Scholar 

  • De Carle DJ, Christensen J (1976) Letter: “Purinergic” neurotransmitters in the esophagus. Ann Intern Med 84:220–221

    PubMed  Google Scholar 

  • De Luca A, Li CG, Rand MJ (1999) Nitrergic and purinergic mechanisms and their interactions for relaxation of the rat internal anal sphincter. J Auton Pharmacol 19:29–37

    Article  PubMed  Google Scholar 

  • Dehaye JP (1993) ATP4- increases the intracellular calcium concentration in rat submandibular glands. Gen Pharmacol 24:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Delbro D, Fändriks L (1982) ATP induces non-cholinergic, non-adrenergic gastric relaxation in vivo. Acta Physiol Scand Suppl 508:67 [Abstract]

    Google Scholar 

  • Delbro D, Fändriks L (1984) Inhibition of vagally induced non-adrenergic, non-cholinergic gastric relaxation by P2-purinoceptor desensitization. Acta Physiol Scand 120:12A [Abstract]

    Google Scholar 

  • Deloof S, Croix D, Tramu G (1988) The role of vasoactive intestinal polypeptide in the inhibition of antral and pyloric electrical activity in rabbits. J Auton Nerv Syst 22:167–173

    Article  PubMed  CAS  Google Scholar 

  • Den Hertog A, Pielkenrood J, Van den Akker J (1985a) Effector mechanisms for α,ß-methylene ATP and ATP derivatives in guinea-pig taenia caeci. Eur J Pharmacol 110:95–101

    Article  Google Scholar 

  • Den Hertog A, Pielkenrood J, Van den Akker J (1985b) Responses evoked by electrical stimulation, adenosine triphosphate, adenosine and 4-aminopyridine in taenia caeci of the guinea-pig. Eur J Pharmacol 109:373–380

    Article  Google Scholar 

  • Den Hertog A, Nelemans A, Van den Akker J (1989a) The inhibitory action of suramin on the P2-purinoceptor response in smooth muscle cells of the guinea-pig taenia caeci. Eur J Pharmacol 166:531–534

    Article  Google Scholar 

  • Den Hertog A, Van den Akker J, Nelemans A (1989b) Suramin and the inhibitory junction potential in taenia caeci of the guinea-pig. Eur J Pharmacol 173:207–209

    Article  Google Scholar 

  • Deshpande NA, McDonald TJ, Cook MA (1999) Endogenous interstitial adenosine in isolated myenteric neural networks varies inversely with prevailing Po2. Am J Physiol 276:G875–G885

    PubMed  CAS  Google Scholar 

  • Dho S, Stewart K, Foskett JK (1992) Purinergic receptor activation of Cl- secretion in T84 cells. Am J Physiol 262:C67–C74

    PubMed  CAS  Google Scholar 

  • Dick GM, Bradley KK, Horowitz B, Hume JR, Sanders KM (1998) Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle. Am J Physiol 275:C940–C950

    PubMed  CAS  Google Scholar 

  • DiMarino AJ Jr (1974) Characteristics of lower esophageal sphincter function in symptomatic diffuse esophageal spasm. Gastroenterology 66:1–6

    PubMed  Google Scholar 

  • Domoto T, Oki M, Kotoh T, Nakamura T (1992) Heterogeneous distribution of peptide-containing nerve fibres within the circular muscle layer of the human pylorus. Clin Auton Res 2:403–407

    Article  PubMed  CAS  Google Scholar 

  • Donoso MV, Steiner M, Huidobro Toro JP (1997) BIBP 3226, suramin and prazosin identify neuropeptide Y, adenosine 5′-triphosphate and noradrenaline as sympathetic cotransmitters in the rat arterial mesenteric bed. J Pharmacol Exp Ther 282:691–698

    PubMed  CAS  Google Scholar 

  • Dowd FJ, Murphy HC, Li L (1996) Metabolism of extracellular ATP by rat parotid cells. Arch Oral Biol 41:855–862

    Article  PubMed  CAS  Google Scholar 

  • Dowdle EB, Maske R (1980) The effects of calcium concentration on the inhibition of cholinergic neurotransmission in the myenteric plexus of guinea-pig ileum by adenine nucleotides. Br J Pharmacol 71:245–252

    PubMed  CAS  Google Scholar 

  • Dowe GH, Kilbinger H, Whittaker VP (1980) Isolation of cholinergic synaptic vesicles from the myenteric plexus of guinea-pig small intestine. J Neurochem 35:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Drakontides AB, Gershon MD (1972) Studies of the interaction of 5-hydroxytrypta-mine and the perivascular innervation of the guinea-pig caecum. Br J Pharmacol 45:417–434

    CAS  Google Scholar 

  • Dudeck O, Bultmann R, Starke K (1995) Two relaxation-mediating P2-purinoceptors in guinea-pig taenia caeci. Naunyn Schmiedebergs Arch Pharmacol 351:107–110

    Article  PubMed  CAS  Google Scholar 

  • Edin R, Lundberg JM, Ahlman H, Dahlstrom A, Fahrenkrug J, Hokfelt T, Kewenter J (1979) On the VIP-ergic innervation of the feline pylorus. Acta Physiol Scand 107:185–187

    Article  PubMed  CAS  Google Scholar 

  • Elsing C, Kassner A, Stremmel W (1996) Sodium, hydrogen antiporter activation by extracellular adenosine triphosphate in biliary epithelial cells. Gastroenterology 111:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Ernster VL (1984) Epidemiologic studies of caffeine and human health. Prog Clin Biol Res 158:377–400

    PubMed  CAS  Google Scholar 

  • Evans RJ, Cunnane TC (1992) Relative contributions of ATP and noradrenaline to the nerve evoked contraction of the rabbit jejunal artery. Dependence on stimulation parameters. Naunyn Schmiedebergs Arch Pharmacol 345:424–430

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Surprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249

    PubMed  CAS  Google Scholar 

  • Feit C, Roche M (1988) Action of adenosine on intestinal motility after experimental mesenteric ischaemia in the dog. Gastroenterol Clin Bioll2:803–809

    PubMed  CAS  Google Scholar 

  • Fernandes JF, Castellani O (1958) Nucleotide and polynucleotide synthesis in Trypanosoma cruzi. I Precursors of purine compounds. Exp Parasitol 7:224–235

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Guo X, Vergara P, Jimenez M (1998) Evidence supporting a role for ATP as non-adrenergic non-cholinergic inhibitory transmitter in the porcine ileum. Life Sci 62:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Ferrero JD, Frischknecht R (1983) Different effector mechanisms for ATP and adenosine hyperpolarization in the guinea-pig taenia coli. Eur J Pharmacol 87:151–154

    Article  PubMed  CAS  Google Scholar 

  • Ferrero JD, Cocks T, Burnstock G (1980) A comparison between ATP and bradykinin as possible mediators of the responses of smooth muscle to non-adrenergic non-cholinergic nerves. Eur J Pharmacol 63:295–302

    Article  PubMed  CAS  Google Scholar 

  • Filinger EJ, Perec CJ, Stefano FJ (1989) Potassium-evoked efflux of [3H]purines from the rat submaxillary gland. Gen Pharmacol 20:285–288

    Article  PubMed  CAS  Google Scholar 

  • Fisher RS, Cohen S (1975) Disorders of the lower esophageal sphincter. Annu Rev Med 26:373–390

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1949) The vasodilator action of adenosine of adenosine triphosphate. Acta Physiol Scand 17:311–317

    Article  PubMed  CAS  Google Scholar 

  • Forsberg C, Sollevi A, Thorn SE, Segerdahl M (1999) Effects of adenosine infusion on gastric emptying in healthy volunteers. Acta Anaesthesiol Scand 43:87–90

    Article  PubMed  CAS  Google Scholar 

  • Forte JG, Lee HC (1977) Gastric adenosine triphosphatases: a review of their possible role in HCl secretion. Gastroenterology 73:921–926

    PubMed  CAS  Google Scholar 

  • Foster HE, Hooper M, Spedding M, Sweetman AJ, Weetman DF (1978) Antagonism of the inhibitory effects of adenosine 5′-triphosphate on the isolated taenia of the guinea-pig caecum: structure-activity relationships within a series of isatogen derivatives. Br J Pharmacol 63:309–314

    PubMed  CAS  Google Scholar 

  • Foster HE, Hooper M, Imam SH, Lovett GS, Nicholson J, Swain CJ, Sweetman AJ, Weetman DF (1983) Increased inhibitory action against adenosine 5′-triphosphate in the isolated taenia of the guinea-pig caecum by substitution in the A-ring of 2-phenylisatogen. Br J Pharmacol 79:273–278

    PubMed  CAS  Google Scholar 

  • Fox DA, Herman JR, Bass P (1986) Differentiation between myenteric plexus and longitudinal muscle of the rat jejunum as the site of action of putative enteric neurotransmitters. Eur J Pharmacol 131:39–47

    Article  PubMed  CAS  Google Scholar 

  • Frasch AC, Cazzulo JJ, Stoppani AO (1978) Solubilization and some properties of the Mg2+-activated adenosine triphosphatase from Trypanosoma cruzi. Comp Biochem Physiol B 61:207–212

    Article  PubMed  CAS  Google Scholar 

  • Frenckner B, Ihre T (1976) Influence of autonomic nerves on the internal anal sphincter in man. Gut 17:306–312

    Article  PubMed  CAS  Google Scholar 

  • Frew R, Lundy PM (1982) Evidence against ATP being the nonadrenergic, noncholinergic inhibitory transmitter in guinea pig stomach. Eur J Pharmacol 81:333–336

    Article  PubMed  CAS  Google Scholar 

  • Frew R, Lundy PM (1986) Arylazido aminopropionyl ATP (ANAPP3): interaction with adenosine receptors in longitudinal smooth muscle of the guinea-pig ileum. Eur J Pharmacol 123:395–400

    Article  PubMed  CAS  Google Scholar 

  • Frigo GM, Del Tacca M, Lecchini S, Crema A (1973) Some observations on the intrinsic nervous mechanism in Hirschsprung’s disease. Gut 14:35–40

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara M, Hong SC, Muramatsu I (1982) Effects of goniopora toxin on non-adrenergic, non-cholinergic response and purine nucleotide release in guinea-pig taenia coli. J Physiol 326:515–526

    PubMed  CAS  Google Scholar 

  • Fukushi Y (1999) Heterologous desensitization of muscarinic receptors by P2Z purinoceptors in rat parotid acinar cells. Eur J Pharmacol 364:55–64

    Article  PubMed  CAS  Google Scholar 

  • Fukushi Y, Ozawa T, Kanno T, Wakui M (1997) Na+-dependent release of intracellular Ca2+ induced by purinoceptors in parotid acinar cells of the rat. Eur J Pharmacol 336:89–97

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1987) Identification of transmitters of functionally defined enteric neurons. In: Handbook of Physiology - the Gastrointestinal System I. American Physiological Society, Bethesda, Md, pp 387–402

    Google Scholar 

  • Furness JB, Costa M, Walsh JH (1981) Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea pig. Gastroenterology 80:1557–1561

    PubMed  CAS  Google Scholar 

  • Furness JB, Young HM, Pompolo S, Bornstein JC, Kunze WA, McConalogue K (1995) Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology 108:554–563

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 54:1–18

    Article  PubMed  CAS  Google Scholar 

  • Gabella G (1984) Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea-pig. J Neurocytol 13:73–84

    Article  PubMed  CAS  Google Scholar 

  • Gabella G (1989) Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology 96:1487–1493

    PubMed  CAS  Google Scholar 

  • Gabella G (1990) On the plasticity of form and structure of enteric ganglia. J Auton Nerv Syst 30:S59–66

    Article  PubMed  Google Scholar 

  • Gaion RM, Dorigo P, Trolese B, Borin E, Adami R, Gambarotto L (1988) Involvement of Pl-purinoreceptors in the relaxing effect of adenosine in rat duodenum. J Auton Pharmacol 8:135–140

    Article  PubMed  CAS  Google Scholar 

  • Gallacher DV (1982) Are there purinergic receptors on parotid acinar cells? Nature 296:83–86

    Article  PubMed  CAS  Google Scholar 

  • Galligan JJ (1996) Electrophysiological studies of 5-hydroxytryptamine receptors on enteric neurons. Behav Brain Res 73:199–201

    Article  PubMed  CAS  Google Scholar 

  • Galligan JJ, Herring A, Harpstead T (1995) Pharmacological characterization of purinoceptor-mediated constriction of submucosal arterioles in guinea pig ileum. J Pharmacol Exp Ther 274:1425–1430

    PubMed  CAS  Google Scholar 

  • Gandarias JM, Ainz LF, Gil-Rodrigo CE, Goiriena JJ, Gómez R, Martinez I (1985) Effect of various adenine derivatives on gastric acid secretion in the isolated rat stomach. Rev Esp Fisiol 41:83–87

    PubMed  CAS  Google Scholar 

  • Gannon BJ, Burnstock G, Noblett HR, Campbell PE (1969) Histochemical diagnosis of Hirschsprung’s disease. Lancet i: 894–895

    Article  Google Scholar 

  • Geiger JD, Glavin GB (1985) Adenosine receptor activation in brain reduces stress-induced ulcer formation. Eur J Pharmacol 115:185–190

    Article  PubMed  CAS  Google Scholar 

  • Gerber JG, Payne NA (1988) Endogenous adenosine modulates gastric acid secretion to histamine in canine parietal cells. J Pharmacol Exp Ther 244:190–194

    PubMed  CAS  Google Scholar 

  • Gerber JG, Fadul S, Payne NA, Nies AS (1984) Adenosine: a modulator of gastric acid secretion in vivo. J Pharmacol Exp Ther 231:109–113

    PubMed  CAS  Google Scholar 

  • Gerber JG, Nies AS, Payne NA (1985) Adenosine receptors on canine parietal cells modulate gastric acid secretion to histamine. J Pharmacol Exp Ther 233:623–627

    PubMed  CAS  Google Scholar 

  • Gershon MD, Wade PR (1994) New developments in the enteric nervous system. Curr Opin Gastroenterol 10:183–192

    Article  Google Scholar 

  • Gheber L, Priel Z (1994) Metachronal activity of cultured mucociliary epithelium under normal and stimulated conditions. Cell Motil Cytoskeleton 28:333–345

    Article  PubMed  CAS  Google Scholar 

  • Gheber L, Priel Z, Aflalo C, Shoshan Barmatz V (1995) Extracellular ATP binding proteins as potential receptors in mucociliary epithelium: characterization using [32P]-3′-O-(4-benzoyl)benzoyl ATP, a photoaffinity label. J Membr Biol 147:83–93

    PubMed  CAS  Google Scholar 

  • Giacobini Robecchi MG, Cannas M, Filogamo G (1985) Increase in the number and volume of myenteric neurons in the adult rat. Int J Dev Neurosci 3:673–675

    Article  Google Scholar 

  • Gibb CA, Singh S, Cook DI, Poronnik P, Conigrave AD (1994) A nucleotide receptor that mobilizes Ca2+ in the mouse submandibular salivary cell line ST885. Br J Pharmacol 111:1135–1139

    PubMed  CAS  Google Scholar 

  • Gil-Rodrigo CE, Galdiz B, Gandarias JM, Gomez R, Ainz LF (1990) Characterization of the effects of adenosine, adenosine 5-triphosphate and related purines on acid secretion in isolated rabbit gastric glands. Pharmacol Res 22:103–113

    Article  PubMed  CAS  Google Scholar 

  • Gil-Rodrigo CE, Bergaretxe I, Carou M, Galdiz B, Saigado C, Ainz LF (1996) Inhibitory action of extracellular adenosine 5′-triphosphate on parietal cells isolated from rabbit gastric mucosa. Gen Physiol Biophys 15:251–264

    PubMed  CAS  Google Scholar 

  • Gintzler AR, Musacchio JM (1975) Interactions of morphine, adenosine, adenosine triphosphate and phosphodiesterase inhibitors on the field-stimulated guinea-pig ileum. J Pharmacol Exp Ther 194:575–582

    PubMed  CAS  Google Scholar 

  • Glasgow I, Mattar K, Krantis A (1998) Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Am J Physiol 275:G889–G896

    PubMed  CAS  Google Scholar 

  • Glavin GB, Westerberg VS, Geiger JD (1987) Modulation of gastric acid secretion by adenosine in conscious rats. Can J Physiol Pharmacol 65:1182–1185

    Article  PubMed  CAS  Google Scholar 

  • Glushakov AV, Melishchuk AI, Skok VI (1996) ATP-induced currents in submucous plexus neurons of the guinea-pig small intestine. Neurophysiology (Moscow) 28:77–85

    Google Scholar 

  • Glushakov AV, Glushakova HY, Skok VI (1998) Two types of P2X-purinoceptors in neurons of the guinea pig ileum submucous plexus. Neurophysiology (Moscow) 30:242–245

    Google Scholar 

  • Goldman H, Rosoff CB (1968) Pathogenesis of acute gastric stress ulcers. Am J Pathol 52:227–244

    PubMed  CAS  Google Scholar 

  • Goyal RK, Rattan S, Said SI (1980) VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature 288:378–380

    Article  PubMed  CAS  Google Scholar 

  • Granger DN, Richardson PD, Kvietys PR, Mortillaro NA (1980) Intestinal blood flow. Gastroenterology 78:837–863

    PubMed  CAS  Google Scholar 

  • Grasl M, Turnheim K (1984) Stimulation of electrolyte secretion in rabbit colon by adenosine. J Physiol 346:93–110

    PubMed  CAS  Google Scholar 

  • Grider JR (1993) Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am J Physiol 264:G334–G340

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol 251:40–45

    Google Scholar 

  • Grider JR, Said SI, Makhlouf GM (1982) VIP and ATP as mediators of non-adrenergic, non-cholinergic gastric relaxation. Gastroenterology 82:1075 [Abstract]

    Google Scholar 

  • Grider JR, Cable MB, Bitar KN, Said SI, Makhlouf GM (1985) Vasoactive intestinal peptide. Relaxant neurotransmitter in tenia coli of the guinea pig. Gastroenterology 89:36–42

    PubMed  CAS  Google Scholar 

  • Gröschel-Stewart U, Bardini M, Robson T, Burnstock G (1999a) Localisation of P2X5 and P2X7 receptors by immunohistochemistry in rat stratified squamous epithelia. Cell Tissue Res 296:599–605

    Article  Google Scholar 

  • Gröschel-Stewart U, Bardini M, Robson T, Burnstock G (1999b) P2X receptors in the rat duodenal villus. Cell Tissue Res 297:111-117

    Article  Google Scholar 

  • Guimaraes CR, Rodrigues LA, Vettore O, Antonio A (1988) The relaxing response of the isolated rat duodenum to nicotine. Gen Pharmacol 19:655–659

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Merlin D, Harvey RD, Laboisse C, Hopfer U (1995) Stimulation of Cl- secretion by extracellular ATP does not depend on increased cytosolic Ca2+ in HT-29.Cl6E. Am J Physiol 269:C1457–C1463

    PubMed  CAS  Google Scholar 

  • Guo XW, Merlin D, Laboisse C, Hopf er U (1997) Purinergic agonists, but not cAMP, stimulate coupled granule fusion and Cl- conductance in HT29-C1.16E. Am J Physiol 273:C804–C809

    PubMed  CAS  Google Scholar 

  • Gür S, Karahan ST (1997) Effects of adenosine 5′-triphosphate, adenosine and acetylcholine in urinary bladder and colon muscles from streptozotocin diabetic rats. Arzneimittelforschung 47:1226–1229

    PubMed  Google Scholar 

  • Gustafsson LE (1984) Adenosine antagonism and related effects of theophylline derivatives in guinea pig ileum longitudinal muscle. Acta Physiol Scand 122:191–198

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson L, Hedqvist P, Fredholm BB, Lundgren G (1978) Inhibition of acetylcholine release in guinea pig ileum by adenosine. Acta Physiol Scand 104:469–478

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson L, Fredholm BB, Hedqvist P (1981) Theophylline interferes with the modulatory role of endogenous adenosine on cholinergic neurotransmission in guinea pig ileum. Acta Physiol Scand 111:269–280

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson LE, Wiklund NP, Lundin J, Hedqvist P (1985) Characterization of pre- and post-junctional adenosine receptors in guinea-pig ileum. Acta Physiol Scand 123:195–203

    Article  PubMed  CAS  Google Scholar 

  • Hammond JR, MacDonald WF, White TD (1988) Evoked secretion of [3H]noradrenaline and ATP from nerve varicosities isolated from the myenteric plexus of the guinea pig ileum. Can J Physiol Pharmacol 66:369–375

    Article  PubMed  CAS  Google Scholar 

  • Hancock DL, Coupar IM (1995) Functional characterization of the adenosine receptor mediating inhibition of peristalsis in the rat jejunum. Br J Pharmacol 115:739–744

    PubMed  CAS  Google Scholar 

  • Hayashi E, Mori M, Yamada S, Kumitomo M (1978) Effects of purine compounds on cholinergic nerves. Specificity of adenosine and related compounds on acetylcholine release in electrically stimulated guinea pig ileum. Eur J Pharmacol 48:297–307

    Article  PubMed  CAS  Google Scholar 

  • Hayashi E, Maeda T, Shinozuka K (1982) Sites of actions of adenosine in intrinsic cholinergic nerves of ileal longitudinal muscle from guinea pig. Eur J Pharmacol 84:99–102

    Article  PubMed  CAS  Google Scholar 

  • Hayashi E, Maeda T, Shinozuka K (1985) Adenosine and dipyridamole: actions and interactions on the contractile response of guinea-pig ileum to high frequency electrical field stimulation. Br J Pharmacol 84:765–771

    PubMed  CAS  Google Scholar 

  • Heazell MA (1975) Is ATP an inhibitory neurotransmitter in the rat stomach? Br J Pharmacol 55:285P–286P [Abstract]

    PubMed  CAS  Google Scholar 

  • Hedlund H, Fändriks L, Delbro D, Fasth S (1986) Effect of α,β-methylene ATP on distal colonic and rectal motility — a possible involvement of P2-purinoceptors in pelvic nerve mediated non-adrenergic, non-cholinergic contraction. Acta Physiol Scand 127:425–432

    Article  PubMed  CAS  Google Scholar 

  • Heinemann A, Shahbazian A, Barthó L, Holzer P (1999) Different receptors mediating the inhibitory action of exogenous ATP and endogenously released purines on guinea-pig intestinal peristalsis. Br J Pharmacol 128:313-320

    Article  PubMed  CAS  Google Scholar 

  • Henry JP, Stephens PM (1980) Caffeine as an intensifier of stress-induced hormonal and pathophysiologic changes in mice. Pharmacol Biochem Behav 13:719–727

    Article  PubMed  CAS  Google Scholar 

  • Hertz AF (1911) The sensibility of the alimentary canal in health and disease. Lancet i:1051–1056

    Google Scholar 

  • Hills JM, Collis CS, Burnstock G (1983) The effects of vasoactive intestinal polypeptide on the electrical activity of guinea-pig intestinal smooth muscle. Eur J Pharmacol 88:371–376

    Article  PubMed  CAS  Google Scholar 

  • Holle GE, Milenov K, Forth W (1991) Adrenergic control of interdigestive and digestive motility via the pyloric region. J Gastroint Motil 3:131–137

    Article  Google Scholar 

  • Holzer P, Barthó L (1996) Sensory neurons in the intestine. In: Geppeti P, Holzer P (eds) Neurogenic inflammation. CRC Press, New York, pp 153–167

    Google Scholar 

  • Holzer P, Livingston EH, Saria A, Guth PH (1991) Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol 260:G363–G370

    PubMed  CAS  Google Scholar 

  • Hooper M, Spedding M, Sweetman AJ, Weetman DF (1974) Proceedings: 2-2′ pyridylisatogen tosylate: an antagonist of the inhibitory effects of ATP on smooth muscle. Br J Pharmacol 50:458P–459P

    PubMed  CAS  Google Scholar 

  • Höpfner M, Lemmer K, Jansen A, Hanski C, Riecken EO, Gavish M, Mann B, Buhr H, Glassmeier G, Scherübl H (1998) Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem Biophys Res Commun 251:811–817

    Article  PubMed  Google Scholar 

  • Höpker V, Saffrey MJ, Burnstock G (1996) Neurite outgrowth of striatal neurons in vitro: involvement of purines in the growth promoting effect of myenteric plexus expiants. Int J Dev Neurosci 14:439–451

    PubMed  Google Scholar 

  • Hourani SMO (1999) Postnatal development of purinoceptors in rat visceral smooth muscle preparations. Gen Pharmacol 32:3–7

    Article  PubMed  CAS  Google Scholar 

  • Hourani SMO, Bailey SJ, Nicholls J, Kitchen I (1991) Direct effects of adenylyl 5′-(β,α-methylene)diphosphonate, a stable ATP analogue, on relaxant P1-purinoceptors in smooth muscle. Br J Pharmacol 104:685–690

    PubMed  CAS  Google Scholar 

  • Hourani SMO, Bailey SJ, Johnson CR, Tennant JP (1998) Effects of adenosine 5′-triphosphate, uridine 5′-triphosphate, adenosine 5′-tetraphosphate and diadeno-sine polyphosphates in guinea-pig taenia caeci and rat colon muscularis mucosae. Naunyn Schmiedebergs Arch Pharmacol 358:464–473

    Article  PubMed  CAS  Google Scholar 

  • Hoyle CHV (1992) Transmission: purines. In: Burnstock G, Hoyle CHV (eds) The autonomic nervous system. Autonomic neuroeffector mechanisms. Harwood Academic Publishers, Chur, Switzerland, pp 367–407

    Google Scholar 

  • Hoyle CHV (1996) Purinergigic cotransmission: parasympathetic and enteric nerves. Semin Neurosci 8:207–215

    Article  CAS  Google Scholar 

  • Hoyle CHV, Burnstock G (1989) Neuromuscular transmission in the gastrointestinal tract. In: Wood JD (ed) Handbook of physiology, sect 6: The gastrointestinal system, vol I: Motility and circulation. American Physiological Society, Bethesda, Md, pp 435–464

    Google Scholar 

  • Hoyle CHV, Vladimirova IA, Burnstock G (1988a) Pre- and postjunctional actions of purine and xanthine compounds in the guinea-pig caecum circular muscle. Br J Pharmacol 95:653–663

    Google Scholar 

  • Hoyle CHV, Reilly WM, Lincoln J, Burnstock G (1988b) Adrenergic, but not cholinergic or purinergic, responses are potentiated in the cecum of diabetic rats. Gastroenterology 94:1357–1367

    Google Scholar 

  • Hoyle CHV, Kamm MA, Burnstock G, Lennard-Jones JE (1990) Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via d-opioid receptors. J Physiol 431:465–478

    PubMed  CAS  Google Scholar 

  • Hubel KA (1984) Electrical stimulus-secretion coupling in rabbit ileal mucosa. J Pharmacol Exp Ther 231:577–582

    PubMed  CAS  Google Scholar 

  • Huizinga JD, Den Hertog A (1979) The effect of enkephalins on the intramural inhibitory non-adrenergic nerve responses of smooth muscle. Eur J Pharmacol 54:389–391

    Article  PubMed  CAS  Google Scholar 

  • Huizinga JD, Den Hertog A (1980) Inhibition of fundic strips from guinea-pig stomach: the effect of theophylline on responses to adenosine, ATP and intramural nerve stimulation. Eur J Pharmacol 63:259–265

    Article  PubMed  CAS  Google Scholar 

  • Huizinga JD, Pielkenrood JM, Den Hertog A (1981) Dual action of high energy adenine nucleotides in comparison with responses evoked by other adenine derivatives and intramural nerve stimulation on smooth muscle. Eur J Pharmacol 74:175–180

    Article  PubMed  CAS  Google Scholar 

  • Hunt WB, Parsons DG, Wahid A, Wilkinson J (1978) Influence of 2-2′-pyridylisatogen tosylate on responses produced by ATP and by neural stimulation on the rat gastric corpus. Br J Pharmacol 63:378P-379P [Abstract]

    PubMed  CAS  Google Scholar 

  • Hurley TW, Shoemaker DD, Ryan MP (1993) Extracellular ATP prevents the release of stored Ca2+ by autonomic agonists in rat submandibular gland acini. Am J Physiol 265:C1472–C1478

    PubMed  CAS  Google Scholar 

  • Hurley TW, Ryan MP, Shoemaker DD (1994) Mobilization of Ca2+ influx, but not of stored Ca, by extracellular ATP in rat submandibular gland acini. Arch Oral Biol 39:205–212

    Article  PubMed  CAS  Google Scholar 

  • Hurley TW, Ryan MP, Moore WC (1996) Regulation of changes in cytosolic Ca2+ and Na+ concentrations in rat submandibular gland acini exposed to carbachol and ATP. J Cell Physiol 168:229–238

    Article  PubMed  CAS  Google Scholar 

  • Idestrup CP, Salter MW (1998) P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipasec/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord. Neuroscience 86:913–923

    Article  PubMed  CAS  Google Scholar 

  • Ikawa H (1981) Study of acetylcholine and muscarinic receptors in Hirschsprung’s disease. Jpn J Pediatr Surg 17:237–247

    Google Scholar 

  • Imaeda K, Suzuki H (1997) Properties of inhibitory transmission in smooth muscle of the guinea pig lower esophageal sphincter. J Auton Nerv Syst 65:132 [Abstract]

    Google Scholar 

  • Imoto A, Inoue R, Tanaka M, Ito Y (1998) Inhibitory NANC neurotransmission in choledocho-duodenal junction of rabbits — a possible role of PACAP. J Auton Nerv Syst 70:189–199

    Article  PubMed  CAS  Google Scholar 

  • Inoue CN, Woo JS, Schwiebert EM, Morita T, Hanaoka K, Guggino SE, Guggino WB (1997) Role of purinergic receptors in chloride secretion in Caco-2 cells. Am J Physiol 272:C1862–C1870

    PubMed  CAS  Google Scholar 

  • Irie K, Furukawa K, Nomoto T, Fujii E, Muraki T (1994) Developmental changes in the response of rat isolated duodenum to nicotine. Eur J Pharmacol 251:75– 81

    Article  PubMed  CAS  Google Scholar 

  • Irvin JL, Irvin EM (1954) The interaction of quinacrine with adenine nucleotides. J Biol Chem 210:45–56

    PubMed  CAS  Google Scholar 

  • Iselin CE, Martin JL, Magistretti PJ, Ferrero JD (1988) Stimulation by nicotine of enteric inhibitory nerves and release of vasoactive intestinal peptide in the taenia of the guinea-pig caecum. Eur J Pharmacol 148:179-186

    Article  PubMed  CAS  Google Scholar 

  • Ishiguchi T, Takahashi T, Owyang C (1999) Nitric oxide and adenosine 5′-triphosphate (ATP) regulate pyloric relaxation in rats. Gastroenterology 116:G4590 [Abstract]

    Google Scholar 

  • Ishii T, Shimo Y (1983) Nerve-mediated non-adrenergic inhibitory responses of guinea-pig taenia caeci: further evidence of depression by morphine. J Pharm Pharmacol 35:828–830

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S (1985) Actions of ATP and α,β-methylene ATP on neuromuscular transmission and smooth muscle membrane of the rabbit and guinea-pig mesenteric arteries. Br J Pharmacol 86:777–787

    PubMed  CAS  Google Scholar 

  • Itoh H, Sakai J, Imoto A, Creed KE (1995) The control of smooth muscle tissues by nonadrenergic, noncholinergic (NANC) nerve fibres in the autonomic nervous system. J Smooth Muse Res 31:67–78

    CAS  Google Scholar 

  • Jager LP (1976) Effects of dipyridamole on the smooth muscle cells of the guinea-pig’s taenia coli. Arch Int Pharmacodyn Ther 221:40–53

    PubMed  CAS  Google Scholar 

  • Jager LP, Sehe vers JA (1980) A comparison of effects evoked in guinea-pig taenia caecum by purine nucleotides and by “purinergic” nerve stimulation. J Physiol 299:75–83

    PubMed  CAS  Google Scholar 

  • Jänig W, Koltzenburg M (1991) Receptive properties of sacral primary afferent neurons supplying the colon. J Neurophysiol 65:1067–1077

    PubMed  Google Scholar 

  • Jenkinson KM, Reid J J (1995) Effect of diabetes on relaxations to non-adrenergic, non-cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. Br J Pharmacol 116:1551–1556

    PubMed  CAS  Google Scholar 

  • Jessen KR, Burnstock G (1982) The enteric nervous system in tissue culture: a new mammalian model for the study of complex nervous networks. In: Kalsner S (ed) Trends in autonomic pharmacology, vol II. Urban and Schwarzenberg, Baltimore/Munich, pp 95–115

    Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    PubMed  CAS  Google Scholar 

  • Jin J-G, Katsoulis S, Schmidt WE, Grider JR (1994) Inhibitory transmission in tenia coli mediated by distinct vasoactive intestinal peptide and apamin-sensitive pituitary adenylate cyclase activating peptide receptors. J Pharmacol Exp Ther 270:433–439

    PubMed  CAS  Google Scholar 

  • Johannesson N, Andersson KE, Joelsson B, Persson CG (1985) Relaxation of lower esophageal sphincter and stimulation of gastric secretion and diuresis by antiasthmatic xanthines. Role of adenosine antagonism. Am Rev Respir Dis 131:26–30

    PubMed  CAS  Google Scholar 

  • Johnson CR, Hourani SM (1994) Contractile effects of uridine 5′-triphosphate in the rat duodenum. Br J Pharmacol 113:1191–1196

    PubMed  CAS  Google Scholar 

  • Johnson CR, Charlton SJ, Hourani SMO (1996) Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol. 117:823–830

    PubMed  CAS  Google Scholar 

  • Johnson RJ, Schemann M, Santer RM, Cowen T (1998) The effects of age on the overall population and on sub-populations of myenteric neurons in the rat small intestine. J Anat 192:479–488

    Article  PubMed  Google Scholar 

  • Jones CJ, Mann GE, Smaje LH (1980) The role of cyclic nucleotides and related compounds in nerve-mediated vasodilatation in the cat submandibular gland. Br J Pharmacol 68:485–497

    PubMed  CAS  Google Scholar 

  • Jorgensen TD, Gromada J, Tritsaris K, Nauntofte B, Dissing S (1995) Activation of P2Z purinoceptors diminishes the muscarinic cholinergic-induced release of inositol 1,4,5-trisphosphate and stored calcium in rat parotid acini. ATP as a co-transmitter in the stimulus-secretion coupling. Biochem J312:457–464

    Google Scholar 

  • Kabré E, Chaïb N, Boussard P, Merino G, Devleeschouwer M, Dehaye JP (1999) Study on the activation of phospholipases A2 by purinergic agonists in rat submandibular ductal cells. Biochim Biophys Acta 1436:616–627

    PubMed  Google Scholar 

  • Kadowaki M, Takeda M, Tokita K, Hanaoka K, Tomoi M (2000) Molecular identification and pharmacological characterization of adenosine receptors in the guinea-pig colon. Br J Pharmacol 129:871–876

    Article  PubMed  CAS  Google Scholar 

  • Kamiji T, Morita K, Katayama Y (1994) ATP regulates synaptic transmission by pre-and postsynaptic mechanisms in guinea-pig myenteric neurons. Neuroscience 59:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kamikawa Y, Shimo Y (1982) Modulating effects of opioids, purine compounds, 5-hydroxytryptamine and prostaglandin E2 on cholinergic neurotransmission in a guinea-pig oesophagus preparation. J Pharm Pharmacol 34:794–797

    Article  CAS  Google Scholar 

  • Kamikawa Y, Serizawa K, Shimo Y (1977) Some possibilities for prostaglandin mediation in the contractile response to ATP of the guinea-pig digestive tract. Eur J Pharmacol 45:199-203

    Article  PubMed  CAS  Google Scholar 

  • Kaminski PM, Proctor KG (1992) Extracellular and intracellular actions of adenosine and related compounds in the reperfused rat intestine. Circ Res 71:720–731

    PubMed  CAS  Google Scholar 

  • Kasakov L, Milenov K (1979) Myoelectrical patterns of “purinergic” gastric relaxation. Abstracts of Symposium on Physiology and Pharmacology of Smooth Muscle, Sofia, Bulgaria, October 9–11, 1979. p 65

    Google Scholar 

  • Kastritsis CH, Salm AK, McCarthy K (1992) Stimulation of the P2Y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization. J Neurochem 58:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Morita K (1989) Adenosine 5′-triphosphate modulates membrane potassium conductance in guinea-pig myenteric neurones. J Physiol 408:373–390

    PubMed  CAS  Google Scholar 

  • Katsuragi T, Furuta K, Harada T, Furukawa T (1985) Cholinergic neuromodulation by ATP, adenosine and its N6- substituted analogues in guinea-pig ileum. Clin Exp Pharmacol Physiol 12:73–78

    Article  PubMed  CAS  Google Scholar 

  • Katsuragi T, Shiakabe K, Ogawa S, Soejima O, Furukawa T (1990) Involvement of dihydropyridine-sensitive Ca2+ channels in adenosine-evoked inhibition of acetylcholine release from guinea pig ileal preparation. J Neurochem 55:363–369

    Article  PubMed  CAS  Google Scholar 

  • Kaufman HS, Shermak MA, May CA, Pitt HA, Lillemoe KD (1993) Nitric oxide inhibits resting sphincter of Oddi activity. Am J Surg 165:74–80

    Article  PubMed  CAS  Google Scholar 

  • Kazic T, Milosavljevic D (1977) Influence of pyridylisatogen tosylate on contractions produced by ATP and by purinergic stimulation in the terminal ileum of the guinea-pig. J Pharm Pharmacol 29:542–545

    Article  PubMed  CAS  Google Scholar 

  • Keef KD, Du C, Ward SM, McGregor B, Sanders KM (1993) Enteric inhibitory neural regulation of human colonic circular muscle: role of nitric oxide. Gastroenterology 105:1009–1016

    PubMed  CAS  Google Scholar 

  • Keef KD, Shuttleworth CW, Xue C, Bayguinov O, Publicover NG, Sanders KM (1994) Relationship between nitric oxide and vasoactive intestinal polypeptide in enteric inhibitory neurotransmission. Neuropharmacology 33:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Kennedy I, Humphrey PP (1994) Evidence for the presence of two types of P2 purinoceptor in the guinea-pig ileal longitudinal smooth muscle preparation. Eur J Pharmacol 261:273–280

    Article  PubMed  CAS  Google Scholar 

  • Keranen U, Vanhatalo S, Kiviluoto T, Kivilaakso E, Soinila S (1995) Co-localization of NADPH diaphorase reactivity and vasoactive intestinal polypeptide in human colon. J Auton Nerv Syst 54:177–183

    Article  PubMed  CAS  Google Scholar 

  • Kerstan D, Leipziger J, Gordjani N, Nitschke R, Greger R (1997) Luminal addition of ATP induces K+ secretion via a P2Y2 receptor in rat distal colonic mucosa. Pflugers Arch 433:R128

    Google Scholar 

  • Kidder GW (1973) Effects of the ATP analog 5′-adenylylmethylene diphospho-nate on acid secretion in frog gastric mucosa. Biochim Biophys Acta 298:732–742

    Article  PubMed  CAS  Google Scholar 

  • Kidder GW (1982) Adenosine kinase from Trypanosoma cruzi. Biochem Biophys Res Commun 107:381–388

    Article  PubMed  CAS  Google Scholar 

  • Kim HD, Bowen JW, James-Kracke MR, Landon LA, Camden JM, Burnett JE, Turner JT (1996) Potentiation of regulatory volume decrease by P2U purinoceptors in HSG-PA cells. Am J Physiol 270:C86–C97

    PubMed  CAS  Google Scholar 

  • Kim Y-C, Camaioni E, Ziganshin AU, Ji X-D, King BF, Wildman SS, Rychkov A, Yoburn J, Kim H, Mohanram A, Harden TK, Boyer JL, Burnstock G, Jacobson, KA (1998) Synthesis and structure-activity relationships of pyridoxal-6-azoaryl-5′-phosphate and phosphonate derivatives as P2 receptor antagonists. Drug Dev Res 45:52–66

    Article  CAS  Google Scholar 

  • Kimball BC, Mulholland MW (1995) Neuroligands evoke calcium signaling in cultured myenteric neurons. Surgery 118:162–169

    Article  PubMed  CAS  Google Scholar 

  • Kimball BC, Mulholland MW (1996) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J Neurochem 66:604–612

    Article  PubMed  CAS  Google Scholar 

  • Kimball BC, Yule DI, Mulholland MW (1996) Extracellular ATP mediates Ca2+ signaling in cultured myenteric neurons via a PLC-dependent mechanism. Am J Physiol 270:G587–G593

    PubMed  CAS  Google Scholar 

  • Kimmich G, Randles J (1980) Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP. Am J Physiol 238:C177-C183

    PubMed  CAS  Google Scholar 

  • King BF, Neary JT, Zhu Q, Wang S, Norenberg MD, Burnstock G (1996) P2 purinoceptors in rat cortical astrocytes: expression, calcium-imaging and signalling studies. Neuroscience 74:1187–1196

    PubMed  CAS  Google Scholar 

  • Kirkup AJ, Booth CE, Chessell IP, Humphrey PPA, Grundy D (1999) Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J Physiol 520:551–563

    Article  PubMed  CAS  Google Scholar 

  • Kishi M, Takeuchi T, Suthamnatpong N, Ishii T, Nishio H, Hata F, Takewaki T (1996) VIP- and PACAP-mediated nonadrenergic, noncholinergic inhibition in longitudinal muscle of rat distal colon: involvement of activation of charybdotoxin- and apamin-sensitive K+ channels. Br J Pharmacol 119:623–630

    PubMed  CAS  Google Scholar 

  • Knudsen MA, Tøttrup A (1992) A possible role of the l-arginine-nitric oxide pathway in the modulation of cholinergic transmission in the guinea-pig taenia coli. Br J Pharmacol 107:837–841

    PubMed  CAS  Google Scholar 

  • Knudsen MA, S vane D, Tøttrup A (1992) Action profiles of nitricoxide, S-nitroso-L-cysteine, SNP, and NANC responses in opossum lower esophageal sphincter. Am J Physiol 262:G840–G846

    PubMed  CAS  Google Scholar 

  • Knudsen MA, Glavind EB, Tøttrup A (1995) Transmitter interactions in rabbit internal anal sphincter. Am J Physiol 269:G232–G239

    PubMed  CAS  Google Scholar 

  • Koh SD, Dick GM, Sanders KM (1997) Small-conductance Ca2+ -dependent K+ channels activated by ATP in murine colonic smooth muscle. Am J Physiol 273:C2010–C2021

    PubMed  CAS  Google Scholar 

  • Kohn PG, Newey H, Smyth DH (1970) The effect of adenosine triphosphate on the transmural potential in rat small intestine. J Physiol 208:203–220

    PubMed  CAS  Google Scholar 

  • Korman LY, Lemp GF, Jackson MJ, Gardner JD (1982) Mechanism of action of ATP on intestinal epithelial cells. Cyclic AMP-mediated stimulation of active ion transport. Biochim Biophys Acta 721:47–54

    Article  PubMed  CAS  Google Scholar 

  • Kortezova N, Mizhorkova Z, Milusheva E, Varga G, Vizi ES, Papasova M (1996) Non-adrenergic non-cholinergic neuron stimulation in the cat lower esophageal sphincter. Eur J Pharmacol 304:109–115

    Article  PubMed  CAS  Google Scholar 

  • Kotecha N (1999) Mechanisms underlying ACh induced modulation of neurogenic and applied ATP constrictions in the submucosal arterioles of the guinea-pig small intestine. Br J Pharmacol 126:1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Kreienberg PB, Darling RC, Shah DM, Vincent PA, Blumenstock FA (1996) ATP-MgCl2 reduces intestinal permeability during mesenteric ischemia. J Surg Res 66:69–74

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurty VS, Kadowitz PJ (1983) Influence of adenosine triphosphate on the isolated perfused mesenteric artery of the rabbit. Can J Physiol Pharmacol 61:1409–1417

    Article  PubMed  CAS  Google Scholar 

  • Kuchii M, Miyahara JT, Shibata S (1973) [3H]-Adenine nucleotide and [3H]-noradrenaline release evoked by electrical field stimulation, perivascular nerve stimulation and nicotine from the taenia of the guinea-pig caecum. Br J Pharmacol 49:258–266

    PubMed  CAS  Google Scholar 

  • Kurihara K, Nakanishi N, Ueha T (1997) A calcium channel in human submandibular duct cell line, HSG cells, not regulated by P2U purinergic receptor-mediated intracellular calcium mobilization. Arch Oral Biol 42:547–557

    Article  PubMed  CAS  Google Scholar 

  • Kwok YN, Mcintosh C, Brown J (1990) Augmentation of release of gastric somato-statin-like immunoreactivity by adenosine, adenosine triphosphate and their analogs. J Pharmacol Exp Ther 255:781–788

    PubMed  CAS  Google Scholar 

  • Lachish M, Alzola E, Chaib N, Métioui M, Grosfils K, Kabré E, Moran A, Marino A, Dehaye JP (1996) Study of nonspecific cation channel coupled to P2Z purinergic receptors using an acid load technique. Am J Physiol 271:0920–C1926

    Google Scholar 

  • Larsson LT (1994) Hirschsprung’s disease — immunohistochemical findings. Histol Histopathol 9:615–629

    PubMed  CAS  Google Scholar 

  • Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 20:49–53

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Schultheis PJ, Yan M, Shull GE, Bookstein C, Chang E, Tse M, Donowitz M, Park K, Muallem S (1998) Membrane-limited expression and regulation of Na+-H+ exchanger isoforms by P2 receptors in the rat submandibular gland duct. J Physiol 513:341–357

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre RA (1986) Study on the possible neurotransmitter of the non-adrenergic non-cholinergic innervation of the rat gastric fundus. Arch Int Pharmacodyn Ther 280:110–136

    PubMed  CAS  Google Scholar 

  • Lefebvre RA, Burnstock G (1990) Effect of adenosine triphosphate and related purines in the rat gastric fundus. Arch Int Pharmacodyn Ther 303:199–215

    PubMed  CAS  Google Scholar 

  • Lefebvre RA, Willems JL (1979) Gastric relaxation by apomorphine and ATP in the conscious dog. J Pharm Pharmacol 31:561–563

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre RA, de Beurme FA, Sas S (1991) Effect of apamin on the responses to VIP, ATP and NANC neurone stimulation in the rat and cat gastric fundus. J Auton Pharmacol 11:73–83

    Article  PubMed  CAS  Google Scholar 

  • Leipziger J, Kerstan D, Nitschke R, Greger R (1997) ATP increases [Ca2+]i and ion secretion via abasolateral P2Y-receptor in rat distal colonic mucosa. Pflugers Arch 434:77–83

    PubMed  CAS  Google Scholar 

  • Lelièvre V, Muller JM, Falcòn J (1998a) Adenosine modulates cell proliferation in human colonic adenocarcinoma. I. Possible involvement of adenosine A1 receptor subtypes in HT29 cells. Eur J Pharmacol 341:289–297

    Article  Google Scholar 

  • Lelièvre V, Muller JM, Falcòn J (1998b) Adenosine modulates cell proliferation in human colonic carcinoma. II. Differential behavior of HT29, DLD-1, Caco-2 and SW403 cell lines. Eur J Pharmacol 341:299–308

    Article  Google Scholar 

  • LePard KJ, Messori E, Galligan JJ (1997) Purinergic fast excitatory postsynaptic potentials in myenteric neurons of guinea pig: distribution and pharmacology. Gastroenterology 113:1522–1534

    Article  PubMed  CAS  Google Scholar 

  • Levin R, Braiman A, Priel Z (1997) Protein kinase C induced calcium influx and sustained enhancement of ciliary beating by extracellular ATP. Cell Calcium 21: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Morley JE (1983) Effect of intraventricular adenosine on food intake in rats. Pharmacol Biochem Behav 19:23–26

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Grace M, Krahn DD, Billington CJ (1989) The adenosine agonist N 6-R-phenylisopropyladenosine (R-PIA) stimulates feeding in rats. Brain Res 477:280–285

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    Article  PubMed  CAS  Google Scholar 

  • Lidberg P, Dahlström A, Lundberg JM, Ahlman H (1983) Different modes of action of substance P in the motor control of the feline stomach and pylorus. Regul Pept 7:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lidberg P, Dahlström A, Ahlman H (1984) Is 5-HT a mediator in the motor control of the feline pylorus? Scand J Gastroenterol 19:321–328

    PubMed  CAS  Google Scholar 

  • Lim SP, Muir TC (1986) Neuroeffector transmission in the guinea-pig internal anal sphincter: an electrical and mechanical study. Eur J Pharmacol 128:17–24

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Hoyle CHV, Burnstock G (1997) Nitric oxide in health and disease. Cambridge University Press, Cambridge

    Google Scholar 

  • Lindh B, Dalsgaard CJ, Elfvin LG, Hokfelt T, Cuello AC (1983) Evidence of substance P immunoreactive neurons in dorsal root ganglia and vagal ganglia projecting to the guinea pig pylorus. Brain Res 269:365–369

    Article  PubMed  CAS  Google Scholar 

  • Lindh B, Hokfelt T, Elfvin LG, Terenius L, Fahrenkrug J, Eide R, Goldstein M (1986) Topography of NPY-, somatostatin-, and VIP-immunoreactive, neuronal subpopulations in the guinea pig celiac-superior mesenteric ganglion and their projection to the pylorus. J Neurosci 6:2371–2383

    PubMed  CAS  Google Scholar 

  • Lohrmann E, Cabantchik ZI, Greger R (1992) Transmitter-induced changes of the membrane voltage of HT29 cells. Pflugers Arch 421:224–229

    Article  PubMed  CAS  Google Scholar 

  • Long RG (1983) Chagas’ disease. In: Bannister R (ed) Autonomic failure: a textbook of clincal disorders of the autonomic nervous system. Oxford University Press, Oxford, New York, Toronto, pp 596–614

    Google Scholar 

  • Loo FD, Palmer DW, Soergel KH, Kalbfleisch JH, Wood CM (1984) Gastric emptying in patients with diabetes mellitus. Gastroenterology 86:485–494

    PubMed  CAS  Google Scholar 

  • Low PA (1996) Diabetic autonomic neuropathy. Semin Neurol 16:143–151

    Article  PubMed  CAS  Google Scholar 

  • Luck MS, Dahl JL, Boyeson MG, Bass P (1993) Neuroplasticity in the smooth muscle of the myenterically and extrinsically denervated rat jejunum. Cell Tissue Res 271:363–374

    Article  PubMed  CAS  Google Scholar 

  • Lundgren O (1983) Vagal control of the motor functions of the lower esophageal sphincter and the stomach. J Auton Nerv Syst 9:185–197

    Article  PubMed  CAS  Google Scholar 

  • Maas AJ, Den Hertog A (1979) The effect of apamin on the smooth muscle cells of the guinea-pig taenia coli. Eur J Pharmacol 58:151–156

    Article  PubMed  CAS  Google Scholar 

  • Maas AJ, Den Hertog A, Ras R, Van den Akker J (1980) The action of apamin on guinea-pig taenia caeci. Eur J Pharmacol 67:265–274

    Article  PubMed  CAS  Google Scholar 

  • Machaly M, Dalziel HH, Sneddon P (1988) Evidence for ATP as a cotransmitter in dog mesenteric artery. Eur J Pharmacol 147:83–91

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie I, Burnstock G (1980) Evidence against vasoactive intestinal polypeptide being the non-adrenergic, non-cholinergic inhibitory transmitter released from nerves supplying the smooth muscle of the guinea-pig taenia coli. Eur J Pharmacol 67:255–264

    Article  PubMed  CAS  Google Scholar 

  • Madara JL (1991) Functional morphology of epithelium of the small intestine. In: Fields H, Frizzell RA, Schultz SG (eds) Handbook of physiology, sect 6: The gastrointestinal system, voliv: Intestinal absorption and secretion. American Physiological Society, Bethesda, Md, pp 83–120

    Google Scholar 

  • Maggi CA, Giuliani S (1993) Multiple inhibitory mechanisms mediate non-adrenergic non-cholinergic relaxation in the circular muscle of the guinea-pig colon. Naunyn Schmiedebergs Arch Pharmacol 347:630–634

    PubMed  CAS  Google Scholar 

  • Maggi CA, Giuliani S (1996) Characterization of the apamin- and L-nitroarginine-resistant NANC inhibitory transmission to the circular muscle of guinea-pig colon. J Auton Pharmacol 16:131–145

    PubMed  CAS  Google Scholar 

  • Maggi CA, Manzini S, Meli A (1984) Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic-noncholinergic neurones. J Auton Pharmacol 4:77–85

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Manzini S, Giuliani S, Santicioli P, Meli A (1986) Extrinsic origin of the capsaicin-sensitive innervation of rat duodenum: possible involvement of calcitonin gene-related peptide (CGRP) in the capsaicin-induced activation of intramural non-adrenergic non-cholinergic neurons. Naunyn Schmiedebergs Arch Pharmacol 334:172–180

    Article  PubMed  CAS  Google Scholar 

  • Maguire MH, Satchell DG (1979) The contribution of adenosine to the inhibitory actions of adenine nucleotides on the guinea-pig taenia coli: studies with phosphate-modified adenine nucleotide analogs and dipyridamole. J Pharmacol Exp Ther 211:626–631

    PubMed  CAS  Google Scholar 

  • Mahmod SM, Huddart H (1993) Purinergic modulation of spontaneous activity and of responses to high potassium and acetylcholine in rat ileal smooth muscle. Comp Biochem Physiol C 106:79–85

    PubMed  CAS  Google Scholar 

  • Manzini S, Maggi CA, Meli A (1985) Further evidence for involvement of adenosine-5′-triphosphate in non-adrenergic non-cholinergic relaxation of the isolated rat duodenum. Eur J Pharmacol 113:399–408

    Article  PubMed  CAS  Google Scholar 

  • Manzini S, Hoyle CHV, Burnstock G (1986) An electrophysiological analysis of the effect of reactive blue 2, a putative P2-purinoceptor antagonist, on inhibitory junction potentials of rat caecum. Eur J Pharmacol 127:197–204

    Article  PubMed  CAS  Google Scholar 

  • Martin MT, Gonalons E, Fernandez E (1998) Contribution of inhibitory neurotransmitters to the CCK induced relaxation of the circular muscle of avian ileum. Life Sci 62:937–946

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cuesta MA, Massuda H, Whittle BJ, Moncada S (1995) Impairment of nitrergic-mediated relaxation of rat isolated duodenum by experimental diabetes. Br J Pharmacol 114:919–924

    PubMed  CAS  Google Scholar 

  • Martins Campos JV, Tafuri WL (1973) Chagas enteropathy. Gut 14:910–919

    Article  Google Scholar 

  • Mashimo H, He XD, Huang PL, Fishman MC, Goyal RK (1996) Neuronal constitutive nitric oxide synthase is involved in murine enteric inhibitory neurotransmission. J Clin Invest 98:8–13

    Article  PubMed  CAS  Google Scholar 

  • Matharu MS, Hollingsworth M (1992) Purinoceptors mediating relaxation and spasm in the rat gastric fundus. Br J Pharmacol 106:395–403

    PubMed  CAS  Google Scholar 

  • Matsuda NM, Lemos MC, Feitosa Junior RL, de Oliveira RB, Ballejo G (1997a) Nonadrenergic-noncholinergic relaxations of isolated circular muscle from South American opossum esophagogastric junction: is nitric oxide the inhibitory mediator? J Auton NervSyst 66:119–125

    Article  Google Scholar 

  • Matsuda NM, Oliveira RB, Ballejo G (1997b) Characterization of nerve-induced relaxation of gastrointestinal sphincteric smooth muscle in a South American opossum (Didelphis albiventris). Braz J Med Biol Res 30:793–799

    Article  Google Scholar 

  • Matsuo K, Katsuragi T, Fujiki S, Sato C, Furukawa T (1997) ATP release and contraction mediated by different P2-receptor subtypes in guinea-pig ileal smooth muscle. Br J Pharmacol 121:1744–1749

    Article  PubMed  CAS  Google Scholar 

  • Matthews JB, Tally KJ, Smith JA, Zeind AJ, Hrnjez BJ (1995) Activation of Cl secretion during chemical hypoxia by endogenous release of adenosine in intestinal epithelial monolayers. J Clin Invest 96:117–125

    Article  PubMed  CAS  Google Scholar 

  • Matusák O, Bauer V (1986) Effect of desensitization induced by adenosine 5′-triphosphate, substance P, bradykinin, serotonin, γ-aminobutyric acid and endogenous noncholinergic-nonadrenergic transmitter in the guinea-pig ileum. Eur J Pharmacol 126:199–209

    Article  PubMed  Google Scholar 

  • Mayer EA, Gebhart GF (1994) Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107:271–293

    PubMed  CAS  Google Scholar 

  • McAlroy HL, Collett A, Ahmed S, Ko WH, Baines DL, Wilson SM (1999) Expression of multiple P2Y receptor subtypes by Caco-2 human colonic adenocarcinoma cells. J Physiol 517:97P [Abstract]

    Google Scholar 

  • McColl KE (1997) Pathophysiology of duodenal ulcer disease. Eur J Gastroenterol Hepatol 9 (Suppl 1):S9–S12

    PubMed  Google Scholar 

  • McConalogue K, Furness JB, Vremec MA, Holst JJ, Tornoe K, Marley PD (1995a) His-tochemical, pharmacological, biochemical and chromatographic evidence that pituitary adenylyl cyclase activating peptide is involved in inhibitory neurotransmission in the taenia of the guinea-pig caecum. J Auton Nerv Syst 50:311–322

    Article  Google Scholar 

  • McConalogue K, Lyster DJ, Furness JB (1995b) Electrophysiological analysis of the actions of pituitary adenylyl cyclase activating peptide in the taenia of the guinea-pig caecum. Naunyn Schmiedebergs Arch Pharmacol 352:538–544

    Article  Google Scholar 

  • McConalogue K, Todorov L, Furness JB, Westfall DP (1996) Direct measurement of the release of ATP and its major metabolites from the nerve fibres of the guinea-pig taenia coli. Clin Exp Pharmacol Physiol 23:807–812

    Article  PubMed  CAS  Google Scholar 

  • McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG (1994) Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology 107:236–243

    PubMed  CAS  Google Scholar 

  • McGregor GP, Bishop AE, Blank MA, Christofides ND, Yiangou Y, Polak JM, Bloom SR (1984) Comparative distribution of vasoactive intestinal polypeptide (VIP), substance P and PHI in the enteric sphincters of the cat. Experientia 40:469–471

    Article  PubMed  CAS  Google Scholar 

  • McKirdy HC (1992) Innervation of internal anal sphincter - in vitro studies. Int J Colorectal Dis 7:43–44

    Article  PubMed  CAS  Google Scholar 

  • McKirdy HC, McKirdy ML, Lewis MJ, Marshall RW (1992) Evidence for involvement of nitric oxide in the non-adrenergic non-cholinergic (NANC) relaxation of human lower oesophageal sphincter muscle strips. Exp Physiol 77:509–511

    PubMed  CAS  Google Scholar 

  • McMillian MK, Soltoff SP, Cantley LQ, Talamo BR (1987) Extracellular ATP elevates intracellular free calcium in rat parotid acinar cells. Biochem Biophys Res Commun 149:523–530

    Article  PubMed  CAS  Google Scholar 

  • McMillian MK, Soltoff SP, Lechleiter JD, Cantley LC, Talamo BR (1988) Extracellular ATP increases free cytosolic calcium in rat parotid acinar cells. Differences from phospholipase C-linked receptor agonists. Biochem J 255:291–300

    PubMed  CAS  Google Scholar 

  • McMillian MK, Soltoff SP, Cantley LC, Rudel R, Talamo BR (1993) Two distinct cytosolic calcium responses to extracellular ATP in rat parotid acinar cells. Br J Pharmacol 108:453–461

    PubMed  CAS  Google Scholar 

  • Mehta AK, Kulkarni SK (1983) Evidence for the presence of P1 and P2-purinoceptors in rat caecum. Arch Int Pharmacodyn Ther 264:187–194

    PubMed  CAS  Google Scholar 

  • Merlin D, Augeron C, Tien X-Y, Guo X, Laboisse CL, Hopfer U (1994) ATP-stimulated electrolyte and mucin secretion in the human intestinal goblet cell line HT29-C1.16E. J Membr Biol 137:137–149

    PubMed  CAS  Google Scholar 

  • Métioui M, Amsallem H, Alzola E, Chaib N, Elyamani A, Moran A, Marino A, Dehaye JP (1996) Low affinity purinergic receptor modulates the response of rat submandibular glands to carbachol and substance P. J Cell Physiol 168:462–475

    Article  PubMed  Google Scholar 

  • Meyer MP, Clarke JDW, Patel K, Townsend-Nicholson A, Burnstock G (1999) Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. Dev Dyn 214:152–158

    Article  PubMed  CAS  Google Scholar 

  • Mihara S (1993) Intracellular recordings from neurones of the submucous plexus. Prog Neurobiol 40:529–572

    Article  PubMed  CAS  Google Scholar 

  • Mihara S, Katayama Y, Nishi S (1985) Slow postsynaptic potentials in neurones of the submucous plexus of guinea pig caecum and their mimickry by noradrenaline and various peptides. Neuroscience 16:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Minker E, Matejka Z (1981) Purinergic reflex activated by cathartics in the rat. Acta Physiol Acad Sei Hung 57:99–107

    CAS  Google Scholar 

  • Minocha A, Galligan JJ (1993) Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon. Eur J Pharmacol 230:187–193

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Raviprakash V (1988) Excitatory P1-purinoceptors on pre- and postganglionic cholinergic nerve terminals in the chick oesophagus. J Pharm Pharmacol 40:441–442

    Article  PubMed  CAS  Google Scholar 

  • Mizhorkova Z, Kortezova N, Bredy Dobreva G, Papasova M (1994) Role of nitric oxide in mediating non-adrenergic non-cholinergic relaxation of the cat ileocecal sphincter. Eur J Pharmacol 265:77–82

    Article  PubMed  CAS  Google Scholar 

  • Mizuno-Kamiya M, Kameyama Y, Yashiro K, Fujita A (1998) ATP-mediated activation of Ca2+-independent phospholipase AA in secretory granular membranes from rat parotid gland. J Biochem Tokyo 123:205–212

    PubMed  CAS  Google Scholar 

  • Moneta NA, McDonald TJ, Cook MA (1997) Endogenous adenosine inhibits evoked substance P release from perifused networks of myenteric ganglia. Am J Physiol 272:G38–G45

    PubMed  CAS  Google Scholar 

  • Moody CJ, Burnstock G (1982) Evidence for the presence of P1-purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur J Pharmacol 77:1–9

    Article  PubMed  CAS  Google Scholar 

  • Moody CJ, Meghji P, Burnstock G (1984) Stimulation of P1-purinoceptors by ATP depends partly on its conversion to AMP and adenosine and partly on direct action. Eur J Pharmacol 97:47–54

    Article  PubMed  CAS  Google Scholar 

  • Moritoki H, Kanbe T, Maruoka M, Ohara M, Ishida Y (1978) Potentiation by dipyridamole of the inhibition of guinea-pig ileum twitch response caused by adenine derivatives. J Pharmacol Exp Ther 204:343–350

    PubMed  CAS  Google Scholar 

  • Mózsik G, Beck Z, Füzesi Z, Kiss J, Nagy L, Palotai Z, Szilágyi A, Tárnok F, Tóth E, Vizi F (1978a) Cellular mechanisms of gastric hypersecretion in pylorus-ligated rats. Acta Physiol Scand Special Suppl 187–198

    Google Scholar 

  • Mózsik G, Kutas J, Nagy L, Tárnok F, Vizi F (1978b) Interrelationships between the cholinergic influences, gastric mucosa Na+-K+-dependent ATPase, ATP, ADP, ions of gastric juice and basal secretion inpatients. Acta Physiol Scand Special Suppl 199–208

    Google Scholar 

  • Mózsik G, Fiegler M, Lórincz P, Nagy L, Tárnok F (1979) The role of the ATP-adenylate cyclase-cAMP system and its pharmacological regulation in the development of gastric hypersecretion and ulceration. Acta Med Acad Sci Hung 36:427–448

    PubMed  Google Scholar 

  • Muller MJ, Baer HP (1980) Apamin, a nonspecific antagonist of smooth muscle relaxants. Naunyn Schmiedebergs Arch Pharmacol 311:105–107

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu I (1986) Evidence for sympathetic, purinergic transmission in the mesenteric artery of the dog. Br J Pharmacol 87:478–480

    PubMed  CAS  Google Scholar 

  • Murr MM, Balsiger BM, Farrugia G, Sarr MG (1999) Role of nitric oxide, vasoactive intestinal polypeptide, and ATP in inhibitory neurotransmission in human jejunum. J Surg Res 84:8–12

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Du C, Ledlow A, Bates JN, Conklin JL (1991) Nitric oxide: Mediator of non-adrenergic noncholinergic responses of opossum esophageal muscle. Am J Physiol 261:G401–G406

    PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (1998) Coexpression of purinergic ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C(PLC)-β1 via Gaq/11 and to PLC-β3 via Gβγi3. J Biol Chem 273:4695–4704

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, McHenry L, Grider JR, Makhlouf GM (1995) Adenosine A1 and A2b receptors coupled to distinct interactive signaling pathways in intestinal muscle cells. J Pharmacol Exp Ther 274:300–306

    PubMed  CAS  Google Scholar 

  • Nagata K, Saito H, Matsuki N (1993) Adenosine induces contractions in suncus ileum. Jpn J Pharmacol 63:415–421

    Article  PubMed  CAS  Google Scholar 

  • Namiot Z, Rutkiewicz J, Stasiewicz J, Baranczuk E, Marcinkiewicz M (1991) Adenosine deaminase activity in the gastric mucosa in patients with gastric ulcer. Effects of ranitidine and sucralfate. Eur J Pharmacol 205:101–103

    Article  PubMed  CAS  Google Scholar 

  • Namiot Z, Marcinkiewicz M, Jaroszewicz W, Stasiewicz J, Gorski J (1993) Mucosal adenosine deaminase activity and gastric ulcer healing. Eur J Pharmacol 243:301–303

    Article  PubMed  CAS  Google Scholar 

  • Nandi J, Ray TK, Sen PC (1981) Studies of gastric Ca2+-stimulated adenosine triphosphatase. I. Characterization and general properties. Biochim Biophys Acta 646:457–464

    Article  PubMed  CAS  Google Scholar 

  • Neary J, Rathbone M, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  PubMed  CAS  Google Scholar 

  • Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450:153–169

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J, Hourani SMO (1997) Characterization of adenosine receptors on rat ileum, ileal longitudinal muscle and muscularis mucosae. Eur J Pharmacol 338:143–150

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J, Brownhill VR, Hourani SMO (1996) Characterization of P1-purinoceptors on rat isolated duodenum longitudinal muscle and muscularis mucosae. Br J Pharmacol 117:170–174

    PubMed  CAS  Google Scholar 

  • Nissan S, Vinograd Y, Hadari A, Merguerian P, Zamir O, Lernau O, Hanani M (1984) Physiological and pharmacological studies of the internal anal sphincter in the rat. J Pediatr Surg 19:12–14

    Article  PubMed  CAS  Google Scholar 

  • Nitahara K, Kittel A, Liang SD, Vizi ES (1995) A1-receptor-mediated effect of adenosine on the release of acetylcholine from the myenteric plexus: role and localization of ecto-ATPase and 5′-nucleotidase. Neuroscience 67:159-168

    Article  PubMed  CAS  Google Scholar 

  • North RA (1982) Electrophysiology of the enteric nervous system. Neuroscience 7:315–325

    Article  PubMed  CAS  Google Scholar 

  • Northway MG, Burks TF (1980) Stimulation of cholinergic nerves in dog intestine by adenine nucleotides. Eur J Pharmacol 65:11–19

    Article  PubMed  CAS  Google Scholar 

  • Nowak TV, Harrington B, Kalbfleisch JH, Amatruda JM (1986) Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology 91:124–132

    PubMed  CAS  Google Scholar 

  • Nurko S, Rattan S (1988) Role of vasoactive intestinal polypeptide in the internal anal sphincter relaxation of the opossum. J Clin Invest 81:1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Ny L, Alm P, Larsson B, Ekstrom P, Andersson KE (1995) Nitric oxide pathway in cat esophagus: localization of nitric oxide synthase and functional effects. Am J Physiol 268:G59–G70

    PubMed  CAS  Google Scholar 

  • O’Kelly T, Brading A, Mortensen N (1993) Nerve mediated relaxation of the human internal anal sphincter: the role of nitric oxide. Gut 34:689–693

    Article  PubMed  Google Scholar 

  • Ohga A, Taneike T (1977) Dissimilarity between the responses to adenosine triphosphate or its related compounds and non-adrenergic inhibitory nerve stimulation in the longitudinal smooth muscle of pig stomach. Br J Pharmacol 60:221–231

    PubMed  CAS  Google Scholar 

  • Ohkawa H (1974) An analysis of the mechanical responses of the isolated ileum to single transmural stimulation and to drugs. Bull Yamaguchi Med School 21:31–45

    CAS  Google Scholar 

  • Ohkawa H (1984) Effects of ATP, its related nucleotides and VIP on the inhibitory potentials in the smooth muscle cells of the guinea-pig duodenum. Tohoku J Exp Med 142:409–422

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Watanabe M (1976) Non-adrenergic inhibition of the electrical activity of the antrum muscle fibers of the guinea-pig stomach. Tohoku J Exp Med 120:11–18

    Article  PubMed  CAS  Google Scholar 

  • Ohno N, Ito KM, Yamamoto Y, Suzuki H (1993) Suramin selectively inhibits the non-adrenergic non-cholinergic inhibitory junction potential in the guinea-pig stomach. Eur J Pharmacol 249:121–123

    Article  PubMed  CAS  Google Scholar 

  • Ohno N, Xue L, Yamamoto Y, Suzuki H (1996) Properties of the inhibitory junction potential in smooth muscle of the guinea-pig gastric fundus. Br J Pharmacol 117:974–978

    PubMed  CAS  Google Scholar 

  • Okamura T, Tanobe Y, Fujioka H, Ayajiki K, Toda N (1998) Mechanism of neurogenic relaxation and modification of the response by enteric substances in isolated dog colon. Eur J Pharmacol 358:245–252

    Article  PubMed  CAS  Google Scholar 

  • Okasora T, Okamoto E (1986) Electrophysiological and pharmacological study on innervation of the aganglionic colon in Hirschsprung’s disease of human and murine model. Z Kinderchir 41:93–96

    PubMed  CAS  Google Scholar 

  • Okwuasaba FK, Hamilton JT, Cook MA (1977) Relaxations of guinea-pig fundic strip by adenosine, adenine nucleotides and electrical stimulation: antagonism by theophylline and desensitization to adenosine and its derivatives. Eur J Pharmacol 46:181–198

    Article  PubMed  CAS  Google Scholar 

  • Okwuasaba FK, Hamilton JT, Cook MA (1978) Evidence for the cell surface locus of presynaptic purine nucleotide receptors in the guinea-pig ileum. J Pharmacol Exp Ther 207:779–786

    CAS  Google Scholar 

  • Olson L, Ålund M, Nordberg K-A (1976) Fluorescence-microscopical demonstration of a population of gastro-intestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res 171:407–423

    Article  PubMed  CAS  Google Scholar 

  • Onaka U, Fujii K, Abe I, Fujishima M (1997) Enhancement by exogenous and locally generated angiotensin II of purinergic neurotransmission via angiotensin type 1 receptor in the guinea-pig isolated mesenteric artery. Br J Pharmacol 122:942–948

    Article  PubMed  CAS  Google Scholar 

  • Ota S, Hiraishi H, Terano A, Mutoh H, Kurachi Y, Shimada T, Ivey KJ, Sugimoto T (1989) Effect of adenosine and adenosine analogs on [14C]aminopyrine accumulation by rabbit parietal cells. Dig Dis Sci 34:1882–1889

    Article  PubMed  CAS  Google Scholar 

  • Ota S, Yoshiura K, Takahashi M, Hata Y, Kohmoto O, Kawabe T, Shimada T, Hiraishi H, Mutoh H, Terano A, Sugimoto T, Omata M (1994) P2 purinergic receptor regulation of mucus glycoprotein secretion by rabbit gastric mucous cells in a primary culture. Gastroenterology 106:1485–1492

    PubMed  CAS  Google Scholar 

  • Otsuguro K-I, Ito S, Ohta T, Nakazato Y (1996) Influence of purines and pyrimidines on circular muscle of the rat proximal stomach. Eur J Pharmacol 317:97–105

    Article  PubMed  CAS  Google Scholar 

  • Otsuguro K-I, Ohta T, Ito S, Nakazato Y (1998) Two types of relaxation-mediating P2 receptors in rat gastric circular muscle. Jpn J Pharmacol 78:209–215

    Article  PubMed  CAS  Google Scholar 

  • Ovadyahu D, Eshel D, Priel Z (1988) Intensification of ciliary motility by extracellular ATP. Biorheology 25:489–501

    PubMed  CAS  Google Scholar 

  • Pacaud P, Feolde E, Frelin C, Loirand G (1996) Characterization of the P2Y-purinoceptor involved in the ATP-induced rise in cytosolic Ca2+ concentration in rat ileal myocytes. Br J Pharmacol 118:2213–2219

    PubMed  CAS  Google Scholar 

  • Pahlin PE, Kewenter J (1976) The vagal control of the ileo-cecal sphincter in the cat. Acta Physiol Scand 96:433–442

    Article  PubMed  CAS  Google Scholar 

  • Palea S, Artibani W, Ostardo E, Trist DG, Pietra C (1993) Evidence for purinergic neurotransmission in human urinary bladder affected by interstitial cystitis. J Urol 150:2007–2012

    PubMed  CAS  Google Scholar 

  • Palmer JM, Wood JD, Zafirov DH (1987) Purinergic inhibition in the small intestinal myenteric plexus of the guinea-pig. J Physiol 387:357–369

    PubMed  CAS  Google Scholar 

  • Paret RS, Kumashiro R, Kodama Y, Matsumoto T (1982) The effect of dipyridamole on experimentally induced stress ulcers. Am Surg 48:594–598

    PubMed  CAS  Google Scholar 

  • Park MK, Garrad RC, Weisman GA, Turner JT (1997) Changes in P2Y1 nucleotide receptor activity during the development of rat salivary glands. Am J Physiol 272:C1388–C1393

    PubMed  CAS  Google Scholar 

  • Parkman HP, Reynolds JC, Ogorek CP, Kicsak KM (1989) Neuropeptide Y augments adrenergic contractions at feline lower esophageal sphincter. Am J Physiol 256:G589–G597

    PubMed  CAS  Google Scholar 

  • Parks AG, Fishlock DJ, Cameron JDH, May H (1969) Preliminary investigation of the pharmacology of the human internal anal sphincter. Gut 10:674–677

    Article  PubMed  CAS  Google Scholar 

  • Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 91:3275–3279

    Article  PubMed  CAS  Google Scholar 

  • Patacchini R, De Giorgio R, Barthó L, Barbara G, Corinaldesi R, Maggi CA (1998) Evidence that tachykinins are the main NANC excitatory neurotransmitters in the guinea-pig common bile duct. Br J Pharmacol 124:1703–1711

    Article  PubMed  CAS  Google Scholar 

  • Paton DM, Olsson RA (1991) Potency of N6 secondary and tertiary alkyladenosine analogues at presynaptic A1 adenosine receptors in guinea-pig ileum. J Auton Pharmacol 11:85–91

    Article  PubMed  CAS  Google Scholar 

  • Paul ML, Miles DL, Cook MA (1982) The influence of glucosidic conformation and charge distribution on activity of adenine nucleosides as presynaptic inhibitors of acetylcholine release. J Pharmacol Exp Ther 222:241–245

    PubMed  CAS  Google Scholar 

  • Pauletzki JG, Sharkey KA, Davison JS, Bomzon A, Shaffer EA (1993) Involvement of L-arginine-nitric oxide pathways in neural relaxation of the sphincter of Oddi. Eur J Pharmacol 232:263–270

    Article  PubMed  CAS  Google Scholar 

  • Peachey JA, Hourani SMO, Kitchen I (1999) Ontogeny of adenosine receptors in the longitudinal muscle and muscularis mucosae of the rat distal colon. Naunyn Schmiedebergs Arch Pharmacol 359:140–146

    Article  PubMed  CAS  Google Scholar 

  • Pelckmans PA, Boeckxstaens GE, Van Maercke YM, Herman AG, Verbeuren TJ (1989) Acetylcholine is an indirect inhibitory transmitter in the canine ileocolonic junction. Eur J Pharmacol 170:235–242

    Article  PubMed  CAS  Google Scholar 

  • Pencheva N (1997) Dependence of gamma-aminobutyric acid modulation of cholinergic transmission on nitric oxide and purines in cat terminal ileum. Eur J Pharmacol 339:193–200

    Article  PubMed  CAS  Google Scholar 

  • Pennanen MF, Bass BL, Dziki AJ, Harmon JW (1994) Adenosine: differential effect on blood flow to subregions of the upper gastrointestinal tract. J Surg Res 56:461–465

    Article  PubMed  CAS  Google Scholar 

  • Percy WH, Miller AJ, Brunz JT (1997) Pharmacologic characteristics of rabbit esophageal muscularis mucosae in vitro. Dig Dis Sci 42:2537–2546

    Article  PubMed  CAS  Google Scholar 

  • Percy WH, Warren JM, Brunz JT (1999) Characteristics of the muscularis mucosae in the acid-secreting region of the rabbit stomach. Am J Physiol 276:G1213–G1220

    PubMed  CAS  Google Scholar 

  • Persson CG (1976) Inhibitory innervation of cat sphincter of Oddi. Br J Pharmacol 58:479–482

    PubMed  CAS  Google Scholar 

  • Pfeifer MA, Jung S, Crain G, Schumer M (1993) Autonomic neuropathy. Diabet Med 10:70S–73S

    Article  PubMed  Google Scholar 

  • Piper AS, Hollingsworth M (1995) The purinoceptors of the guinea-pig isolated taenia caeci. Eur J Pharmacol 280:125–134

    Article  PubMed  CAS  Google Scholar 

  • Pluja L, Fernandez E, Jimenez M (1999) Neural modulation of the cyclic electrical and mechanical activity in the rat colonic circular muscle: putative role of ATP and NO. Br J Pharmacol 126:883–892

    Article  PubMed  CAS  Google Scholar 

  • Postorino A, Serio R, Mule F (1990) On the purinergic system in rat duodenum: existence of P1 and P2 receptors on the smooth muscle. Arch Int Physiol Biochim 98:53–58

    Article  PubMed  CAS  Google Scholar 

  • Prentice DJ, Hourani SMO (1997) Adenosine analogues relax guinea-pig taenia caeci via an adenosine A receptor and a xanthine-resistant site. Eur J Pharmacol 323:103–106

    Article  PubMed  CAS  Google Scholar 

  • Proctor KG (1986) Possible role for adenosine in local regulation of absorptive hyperemia in rat intestine. Circ Res 59:474–481

    PubMed  CAS  Google Scholar 

  • Puurunen J, Huttunen P (1988) Central gastric antisecretory action of adenosine in the rat. Eur J Pharmacol 147:59–66

    Article  PubMed  CAS  Google Scholar 

  • Puurunen J, Aittakumpu R, Tanskanen T (1986) Vagally mediated stimulation of gastric acid secretion by intravenously administered adenosine derivatives in anaesthetized rats. Acta Pharmacol Toxicol Copenh 58:265–271

    Article  PubMed  CAS  Google Scholar 

  • Qian YM, Jones RL (1995) Inhibition of rat colon contractility by prostacyclin (IP-) receptor agonists: involvement of NANC neurotransmission. Br J Pharmacol 115:163–171

    PubMed  CAS  Google Scholar 

  • Rae MG, Muir TC (1996) Neuronal mediators of inhibitory junction potentials and relaxation in the guinea-pig internal anal sphincter. J Physiol 493:517–527

    PubMed  CAS  Google Scholar 

  • Ramme D, Regenold JT, Starke K, Busse R, Illes P (1987) Identification of the neu-roeffector transmitter in jejunal branches of the rabbit mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 336:267–273

    Article  PubMed  CAS  Google Scholar 

  • Rand MJ (1992) Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol 19:147–169

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E (1983) Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J Cell Physiol 114:279–283

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E, Fontaine J (1989) Anticancer activities of adenine nucleotides in mice are mediated through expansion of erythrocyte ATP pools. Proc Natl Acad Sci USA 86:1662–1666

    Article  PubMed  CAS  Google Scholar 

  • Rapaport E, Fishman RF, Gercel C (1983) Growth inhibition of human tumor cells in soft-agar cultures by treatment with low levels of adenosine 5′-triphosphate. Cancer Res 43:4402–4406

    PubMed  CAS  Google Scholar 

  • Rattan S, Chakder S (1993) Inhibitory effect of CO on internal anal sphincter: heme oxygenase inhibitor inhibits NANC relaxation. Am J Physiol 265:G799–G804

    PubMed  CAS  Google Scholar 

  • Rattan S, Goyal RK (1980) Evidence against purinergic inhibitory nerves in the vagal pathway to the opossum lower esophageal sphincter. Gastroenterology 78:898–904

    PubMed  CAS  Google Scholar 

  • Rattan S, Shah R (1988) Influence of purinoceptors’ agonists and antagonists on opossum internal anal sphincter. Am J Physiol 255:G389–G394

    PubMed  CAS  Google Scholar 

  • Rattan S, Thatikunta P (1993) Role of nitric oxide in sympathetic neurotransmission in opossum internal anal sphincter. Gastroenterology 105:827–836

    PubMed  CAS  Google Scholar 

  • Rattan S, Rosenthal GJ, Chakder S (1995) Human recombinant hemoglobin (rHbl.l) inhibits nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of internal anal sphincter. J Pharmacol Exp Ther 272:1211–1216

    PubMed  CAS  Google Scholar 

  • Raybould HE, Gschossman JM, Ennes H, Lembo T, Mayer EA (1999) Involvement of stretch-sensitive calcium flux in mechanical transduction in visceral afférents. J Auton Nerv Syst 75:1–6

    Article  PubMed  CAS  Google Scholar 

  • Reese JH, Cooper JR (1982) Modulation of the release of acetylcholine from ileal synaptosomes by adenosine and adenosine 5′-triphosphate. J Pharmacol Exp Ther 223:612–616

    PubMed  CAS  Google Scholar 

  • Reeves JJ, Coates J, Jarvis JE, Sheehan MJ, Strong P (1993) Characterization of the adenosine receptor mediating contraction in rat colonic muscularis mucosae. Br J Pharmacol 110:1255–1259

    PubMed  CAS  Google Scholar 

  • Reeves JJ, Jarvis JE, Sheehan MJ, Strong P (1995) Further investigations into adenosine A1 receptor-mediated contraction in rat colonic muscularis mucosae and its augmentation by certain alkylxanthine antagonists. Br J Pharmacol 114:999–1004

    PubMed  CAS  Google Scholar 

  • Reiser S, Christiansen PA (1971) Inhibition of amino acid uptake by ATP in isolated intestinal epithelial cells. Biochim Biophys Acta 233:480–484

    Article  PubMed  CAS  Google Scholar 

  • Reymann A, Gniess A (1988) Evidence for adenosine A1 receptor action in rat jejunal mucosa. Eur J Pharmacol 149:155–158

    Article  PubMed  CAS  Google Scholar 

  • Rhee PL, Koh KC, Paik SW, Rhee JW, Xu W, Kim KW, Kang TM. (1996) ATP as an excitatory NANC neurotransmitter in guinea-pig gastric antral circular muscle. Gastroenterology 110:A744 [Abstract]

    Google Scholar 

  • Richards NW, Allbee WE, Gaginella TS, Wallace LJ (1987) Exogenous ATP-stimulated calcium uptake in isolated rat intestinal epithelial cells. Life Sci 40:1665–1672

    Article  PubMed  CAS  Google Scholar 

  • Richards M, van Giersbergen P, Zimmermann A, Lesur B, Hoflack J (1997) Activation of neurotensin receptors and purinoceptors in human colonic adenocarcinoma cells detected with the microphysiometer. Biochem Pharmacol 54:825–832

    Article  PubMed  CAS  Google Scholar 

  • Richardson J (1975) Pharmacologic studies of Hirschsprung’s disease on a murine model. J Pediatr Surg 10:875–884

    Article  PubMed  CAS  Google Scholar 

  • Rikimaru A, Fukushi Y, Suzuki T (1971) Effects of imidazole and phentolamine on the relaxant responses of guinea-pig taenia coli to transmural stimulation and to adenosine triphosphate. Tohoku J Exp Med 105:199–200

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo J, Uttenthal LO, Peinado MA, Esteban FJ, Fernandez AP, Serrano J, Martinez de Velasco J, Santacana M, Bentura ML, Martfnez-Murillo R, Pedrosa JA (1998) Distribution of nitric oxide synthase in the esophagus of the cat and monkey. J Auton Nerv Syst 70:164–179

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Goodrich JT, Gershon MD, Touloukian RJ (1978) Hirschsprung’s disease: absence of serotonergic neurons in the aganglionic colon. J Pediatr Surg 13:608–615

    Article  PubMed  CAS  Google Scholar 

  • Roman RM, Fitz JG (1999) Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology 116:964–979

    Article  PubMed  CAS  Google Scholar 

  • Roman RM, Feranchak AP, Salter KD, Wang Y, Fitz JG (1999) Endogenous ATP release regulates Cl- secretion in cultures of human and rat biliary epithelial cells. Am J Physiol 276:G1391–G1400

    PubMed  CAS  Google Scholar 

  • Rothstein RD, Johnson E, Ouyang A (1989) Substance P: mechanism of action and receptor distribution at the feline ileocecal sphincter region. Am J Physiol 257:G447–G453

    PubMed  CAS  Google Scholar 

  • Rubin MR, Fournet J, Snape WJ Jr, Cohen S (1980) Adrenergic regulation of ileocecal sphincter function in the cat. Gastroenterology 78:15–21

    PubMed  CAS  Google Scholar 

  • Rutherford A, Burnstock G (1978) Neuronal and non-neuronal components in the overflow of labelled adenyl compounds from guinea-pig taenia coli. Eur J Pharmacol 48:195–202

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Wallmark B, Saccomani G, Rabon E, Stewart HB, DiBona DR, Berglindh T (1982) The ATP-dependent component of gastric acid secretion. Current Topics in Membrane and Transport. Academic Press, San Diego, pp 135–159

    Google Scholar 

  • Saegesser F, Roenspies U, Robinson JW (1979) Ischemic diseases of the large intestine. Pathobiol Annu 9:303–337

    PubMed  CAS  Google Scholar 

  • Saffrey MJ, Hassall CJS, Hoyle CHV, Belai A, Moss J, Schmidt HHHW, Förstermann U, Murad F, Burnstock G (1992) Colocalisation of nitric oxide synthase and NADPH-diaphorase activity in cultured myenteric neurones. Neuroreport 3:333–336

    Article  PubMed  CAS  Google Scholar 

  • Said G, Joskowicz M, Barreira A A, Eisen H (1985) Neuropathy associated with experimental Chagas’ disease. Ann Neurol 18:676–683

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Akima M, Matsushita H (1979) Analysis of the contractile responses of the ileal segment of the isolated blood-perfused small intestine of rats to adenosine triphosphate and related compounds. Eur J Pharmacol 58:157–162

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto Y, Morishita H, Imanaga I (1987) The long-lasting contraction induced by transmural stimulation in the longitudinal muscle of the guinea-pig gastric corpus. Jpn J Physiol 37:621–630

    Article  PubMed  CAS  Google Scholar 

  • Sanders KM (1998) G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am J Physiol 275:G1–G7

    PubMed  CAS  Google Scholar 

  • Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholin-ergic neurotransmission. Am J Physiol 262:G379–G392

    PubMed  CAS  Google Scholar 

  • Santer RM, Baker DM (1988) Enteric neuron numbers and sizes in Auerbach’s plexus in the small and large intestine of adult and aged rats. J Auton Nerv Syst 25:59–67

    Article  PubMed  CAS  Google Scholar 

  • Santer RM, Conboy VB (1990) Prenatal under nutrition permanently decreases enteric neuron number and sympathetic innervation of Auerbach’s plexus in the rat. J Anat 168:57–62

    PubMed  CAS  Google Scholar 

  • Sarosi GA, Barnhart DC, Turner DJ, Mulholland MW (1998) Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am J Physiol 275:G550–G555

    PubMed  CAS  Google Scholar 

  • Satchell DG (1981) Nucleotide pyrophosphatase antagonises responses to adenosine 5′-triphosphate and non-adrenergic, non-cholinergic inhibitory nerve stimulation in the guinea-pig isolated taenia coli. Br J Pharmacol 74:319–321

    PubMed  CAS  Google Scholar 

  • Satchell DG, Burnstock G (1971) Quantitative studies of the release of purine compounds following stimulation of non-adrenergic inhibitory nerves in the stomach. Biochem Pharmacol 20:1694–1697

    Article  CAS  Google Scholar 

  • Satchell DG, Burnstock G (1975) Comparison of the inhibitory effects on the guinea-pig taenia coli of adenine nucleotides and adenosine in the presence and absence of dipyridamole. Eur J Pharmacol 32:324–328

    Article  PubMed  CAS  Google Scholar 

  • Satchell DG, Maguire MH (1975) Inhibitory effects of adenine nucleotide analogs on the isolated guinea-pig taenia coli. J Pharmacol Exp Ther 195:540–548

    PubMed  CAS  Google Scholar 

  • Satchell DG, Maguire MH (1982) Evidence for separate receptors for ATP and adenosine in the guinea-pig taenia coli. Eur J Pharmacol 81:669–672

    Article  PubMed  CAS  Google Scholar 

  • Satchell DG, Lynch A, Bourke PM, Burnstock G (1972) Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea-pig taenia coli by dipyridamole and hexobendine. Eur J Pharmacol 19:343–350

    Article  PubMed  CAS  Google Scholar 

  • Satchell D, Burnstock G, Dann P (1973) Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds. Eur J Pharmacol 23:264–269

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Tsujioka Y, Katsuragi T (1999) Cross desensitizations on contractions by P2-agonists of guinea pig ileum. Jpn J Pharmacol 80:311–317

    Article  PubMed  CAS  Google Scholar 

  • Sawmiller DR, Chou CC (1991) Adenosine is a vasodilator in the intestinal mucosa. Am J Physiol 261:G9–15

    PubMed  CAS  Google Scholar 

  • Sawynok J, Jhamandas KH (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides and morphine: antagonism by theophylline. J Pharmacol Exp Ther 197:379–390

    PubMed  CAS  Google Scholar 

  • Scarpignato C, Tramacere R, Zappia L, Del Soldato P (1987) Inhibition of gastric acid secretion by adenosine receptor stimulation in the rat. Pharmacology 34:264–268

    Article  PubMed  CAS  Google Scholar 

  • Schäfer K, Saffrey MJ, Burnstock G (1995) Trophic actions of 2-chloroadenosine and bFGF on cultured myenteric neurones. Neuroreport 6:937–941

    Article  PubMed  Google Scholar 

  • Schepp W, Soli AH, Walsh JH (1990) Dual modulation by adenosine of gastrin release from canine G-cells in primary culture. Am J Physiol 259:G556–G563

    PubMed  CAS  Google Scholar 

  • Schiffman SS, Gill JM, Diaz C (1985) Methylxanthines enhance taste: evidence for modulation of taste by adenosine receptor. Pharmacol Biochem Behav 22:195–203

    Article  PubMed  CAS  Google Scholar 

  • Schlenker T, Romac JM, Sharara AI, Roman RM, Kim SJ, LaRusso N, Liddle RA, Fitz JG (1997) Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes. Am J Physiol 273:G1108–G1117

    PubMed  CAS  Google Scholar 

  • Schloerb PR, Sieracki L, Botwin AJ, Winblad JM, Maguire MH (1981) Intravenous adenosine triphosphate (ATP) in hemorrhagic shock in rats. Am J Physiol 240:R52–R60

    PubMed  CAS  Google Scholar 

  • Schweickhardt C, Sabolic I, Brown D, Burckhardt G (1995) Ecto-adenosine triphosphatase in rat small intestinal brush-border membranes. Am J Physiol 268:G663–G672

    PubMed  CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sollevi A (1994) The influence of adenosine, ketamine, and morphine on experimentally induced ischemic pain in healthy volunteers. Anesth Analg 79:787–791

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sandelin K, Wickman M, Sollevi A (1995) Peroperative adenosine infusion reduces the requirements for isoflurane and postoperative analgesics. Anesth Analg 80:1145–1149

    PubMed  CAS  Google Scholar 

  • Seiemidis S, Satchell DG, Cocks TM (1997) Evidence that NO acts as a redundant NANC inhibitory neurotransmitter in the guinea-pig isolated taenia coli. Br J Pharmacol 121:604–611

    Article  Google Scholar 

  • Sengupta JN, Gebhart GF (1994) Characterisation of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J Neurophysiol 71:2046–2060

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Gebhart GF (1998) The sensory innervation of the colon and its modulation. Curr Opin Gastroenterol 14:15–20

    Article  Google Scholar 

  • Serio R, Mule F, Adamo EB, Postorino A (1990) Evidence against purines being neurotransmitters of non-adrenergic, non-cholinergic nerves in rat duodenum. Eur J Pharmacol 182:487–495

    Article  PubMed  CAS  Google Scholar 

  • Serio R, Mule F, Postorino A (1995) Nonadrenergic, noncholinergic inhibitory junction potentials in rat proximal colon: role of nitric oxide. Can J Physiol Pharmacol 73:79–84

    Article  PubMed  CAS  Google Scholar 

  • Serio M, Mule F, Postorino A, Vetri T, Bonvissuto F (1996) Apamin-sensitive and — insensitive components of inhibitory junction potentials in rat caecum: role of nitric oxide. J Auton Pharmacol 16:183–189

    Article  PubMed  CAS  Google Scholar 

  • Shimo Y, Ishii T (1978) Effects of morphine on non-adrenergic inhibitory responses of the guinea-pig taenia coli. J Pharm Pharmacol 30:596–597

    Article  PubMed  CAS  Google Scholar 

  • Shinozuka K, Maeda T, Hayashi E (1985a) Effects of adenosine on 45Ca uptake and [3H]acetylcholine release in synaptosomal preparation from guinea-pig ileum myenteric plexus. Eur J Pharmacol 113:417–424

    Article  Google Scholar 

  • Shinozuka K, Maeda T, Hayashi E (1985b) Possibilities for adenosine modulation of peristaltic reflex in guinea pig isolated ileum. J Pharmacobiodyn 8:877–884

    Google Scholar 

  • Shuba MF, Vladimirova IA (1980) Effect of apamin on the electrical responses of smooth muscle to adenosine 5′-triphosphate and to non-adrenergic, noncholinergic nerve stimulation. Neuroscience 5:853–859

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth CW, Murphy R, Furness JB (1991) Evidence that nitric oxide participates in non-adrenergic inhibitory transmission to intestinal muscle in the guinea-pig. Neurosci Lett 130:77–80

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth CWR, Sweeney KM, Sanders KM (1999) Evidence that nitric oxide acts as an inhibitory neurotransmitter supplying taenia from guinea-pig caecum. Br J Pharmacol 127:1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Chaudry KI, Chaudry IH (1993) ATP-MgCl2 restores gut absorptive capacity early after trauma-hemorrhagic shock. Am J Physiol 264:R977–R983

    PubMed  CAS  Google Scholar 

  • Sjöblom-Widfeldt N, Gustafsson H, Nilsson H (1990) Transmitter characteristics of small mesenteric arteries from the rat. Acta Physiol Scand 138:203–212

    Article  PubMed  Google Scholar 

  • Sjöqvist A, Fahrenkrug J, Hemlin M, Jodal M, Lundgren O (1985) Effects of intra-arterially infused adenosine triphosphate (ATP) on release of vasoactive intestinal polypeptide (VIP) from the gastrointestinal tract of the cat. Acta Physiol Scand 125:693–698

    Article  PubMed  Google Scholar 

  • Skoglund ML, Vinik AI, Feller MR (1982) Inhibition of acid secretion by adenosine. The Physiologist 25:219

    Google Scholar 

  • Small RC, Weston AH (1979) Theophylline antagonizes some effects of purines in the intestine but not those of intramural inhibitory nerve stimulation. Br J Pharmacol 67:301–308

    PubMed  CAS  Google Scholar 

  • Smith GT, Moran TH, Coyle JT, Kuhar MJ, O’Donahue TL, McHugh PR (1984) Anatomic localization of cholecystokinin receptors to the pyloric sphincter. Am J Physiol 246:R127–R130

    PubMed  CAS  Google Scholar 

  • Smits GJ, Lefebvre RA (1996) ATP and nitric oxide: inhibitory NANC neurotransmitters in the longitudinal muscle-myenteric plexus preparation of the rat ileum. Br J Pharmacol 118:695–703

    PubMed  CAS  Google Scholar 

  • Sneddon JD, Smythe A, Satchell D, Burnstock G (1973) An investigation of the identity of the transmitter substance released by non-adrenergic, non-cholinergic excitatory nerves supplying the small intestine of some lower vertebrates. Comp Gen Pharmacol 4:53–60

    Article  Google Scholar 

  • Soediono P, Burnstock G (1994) Contribution of ATP and nitric oxide to NANC inhibitory transmission in rat pyloric sphincter. Br J Pharmacol 113:681–686

    PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Talamo BR (1989) Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells. Biochem Biophys Res Commun 165:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Lechleiter JD, Cantley LC, Talamo BR (1990) Elevation of [Ca2+]i and the activation of ion channels and fluxes by extracellular ATP and phospholipase C-linked agonists in rat parotid acinar cells. Ann NY Acad Sci 603:76–90

    Article  PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Talamo BR (1992) ATP activates a cation-permeable pathway in rat parotid acinar cells. Am J Physiol 262:C934–C940

    PubMed  CAS  Google Scholar 

  • Soltoff SP, McMillian MK, Talamo BR, Cantley LC (1993) Blockade of ATP binding site of P2 purinoceptors in rat parotid acinar cells by isothiocyanate compounds. Biochem Pharmacol 45:1936–1940

    Article  PubMed  CAS  Google Scholar 

  • Somers GR, Hammet FM, Trute L, Southey MC, Venter DJ (1998) Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest 78:1375–1383

    PubMed  CAS  Google Scholar 

  • Somogyi GT, Vizi ES (1988) Evidence that cholinergic axon terminals are equipped with both muscarinic and adenosine receptors. Brain Res Bull 21:575–579

    Article  PubMed  CAS  Google Scholar 

  • Spallone V, Uccioli L, Menzinger G (1995) Diabetic autonomic neuropathy. Diabetes Metab Rev 11:227–257

    Article  PubMed  CAS  Google Scholar 

  • Spedding M, Weetman DF (1976) Identification of separate receptors for adenosine and adenosine 5′-triphosphate in causing relaxations of the isolated taenia of the guinea-pig caecum. Br J Pharmacol 57:305–310

    PubMed  CAS  Google Scholar 

  • Spedding M, Sweetman AJ, Weetman DF (1975) Antagonism of adenosine 5′-triphosphate-induced relaxation by 2-2′-pyridylisatogen in the taenia of guinea-pig caecum. Br J Pharmacol 53:575–583

    PubMed  CAS  Google Scholar 

  • Spencer NJ, Bywater RA, Holman ME, Taylor GS (1998) Spontaneous and evoked inhibitory junction potentials in the circular muscle layer of mouse colon. J Auton Nerv Syst 69:115–121

    Article  PubMed  CAS  Google Scholar 

  • Spencer NJ, Walsh M, Smith TK (2000) Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. J Physiol 522:321–331

    Article  PubMed  CAS  Google Scholar 

  • Sperlágh B, Vizi ES (1990) Stimulation of presynaptic P1 and P2 receptors at ATP in Auerbach’s plexus. Eur J Pharmacol 183:1680

    Article  Google Scholar 

  • Sperlágh B, Vizi ES (1991) Effect of presynaptic P2 receptor stimulation on transmitter release. J Neurochem 56:1466–1470

    Article  PubMed  Google Scholar 

  • Stone TW (1981) Actions of adenine dinucleotides on the vas deferens, guinea-pig taenia caeci and bladder. Eur J Pharmacol 75:93–102

    Article  PubMed  CAS  Google Scholar 

  • Straub RH, Mayer M, Falk W, Scholmerich J (1999) Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes/macrophages. Gastroenterology 116:G3582 [Abstract]

    Google Scholar 

  • Su C, Bevan JA, Burnstock G (1971) [3H]Adenosine triphosphate: release during stimulation of enteric nerves. Science 173:337–339

    Article  Google Scholar 

  • Surprenant A (1994) Control of the gastrointestinal tract by enteric neurons. Annu Rev Physiol 56:117–140

    Article  PubMed  CAS  Google Scholar 

  • Suthamnatpong N, Hata F, Kanada A, Takeuchi T, Yagasaki O (1993) Mediators of nonadrenergic, noncholinergic inhibition in the proximal, middle and distal regions of rat colon. Br J Pharmacol 108:348–355

    PubMed  CAS  Google Scholar 

  • Szewczak SM, Behar J, Billett G, Hillemeier C, Rhim BY, Biancani P (1990) VIP-induced alterations in cAMP and inositol phosphates in the lower esophageal sphincter. Am J Physiol 259:G239–G244

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nakamura K, Itoh H, Sima AA, Owyang C (1997) Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 113:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Tarn FS, Hillier K (1992) The role of nitric oxide in mediating non-adrenergic noncholinergic relaxation in longitudinal muscle of human taenia coli. Life Sci 51:1277–1284

    Article  Google Scholar 

  • Tanaka J, Murate M, Wang CZ, Seino S, Iwanaga T (1996) Cellular distribution of the P2X4 ATP receptor mRNA in the brain and non-neuronal organs of rats. Arch Histol Cytol 59:485–490

    Article  PubMed  CAS  Google Scholar 

  • Tansey MF, Probst SJ, Martin JS (1975) Evidence of nonvagal neural stimulation of canine gastric acid secretion. Surg Gynecol Obstet 140:861–867

    Google Scholar 

  • Tarasiuk A, Bar Shimon M, Gheber L, Korngreen A, Grossman Y, Priel Z (1995) Extracellular ATP induces hyperpolarization and motility stimulation of ciliary cells. Biophys J 68:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Taylor GS, Bywater RAR (1989) Novel autonomic neurotransmitters and intestinal function. Pharmacol Ther 40:404–438

    Article  Google Scholar 

  • Taylor EM, Parsons ME (1989) Adrenergic and purinergic neurotransmission in arterial resistance vessels of the cat intestinal circulation. Eur J Pharmacol 164:23–33

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, Parsons ME (1991) Effects of α,β-methylene ATP on resistance and capacitance blood vessels of the cat intestinal circulation; a comparison with other vasoconstrictor agents and sympathetic nerve stimulation. Eur J Pharmacol 205:35–41

    Article  PubMed  CAS  Google Scholar 

  • Tenneti L, Gibbons SJ, Talamo BR (1998) Expression and trans-synaptic regulation of P2X4 and P2Z receptors for extracellular ATP in parotid acinar cells. Effects of parasympathetic denervation. J Biol Chem 273:26799–26808

    Article  PubMed  CAS  Google Scholar 

  • Tojyo Y, Tanimura A, Matsui S, Matsumoto Y (1997) Effects of extracellular ATP on cytosolic Ca2+ concentration and secretory responses in rat parotid acinar cells. Arch Oral Biol 42:393–399

    Article  PubMed  CAS  Google Scholar 

  • Tomaru A, Ishii A, Kishibayashi N, Shimada J, Suzuki F, Karasawa A (1994) Possible physiological role of endogenous adenosine in defecation in rats. Eur J Pharmacol 264:91–94

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Watanabe H (1973) A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J Physiol 231:167–177

    PubMed  CAS  Google Scholar 

  • Tøttrup A, Knudsen M, Gregerson H (1991a) The role of the L-arginine-nitric oxide pathway for lower oesophageal sphincter. Br J Pharmacol 104:113–116

    Google Scholar 

  • Tøttrup A, Svane D, Forman A (1991b) Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol 260:G385–G389

    Google Scholar 

  • Tøttrup A, Ny L, Aim P, Larsson B, Forman A, Andersson KE (1993) The role of the 1-arginine/nitric oxide pathway for relaxation of the human lower oesophageal sphincter. Acta Physiol Scand 149:451–459

    Article  PubMed  Google Scholar 

  • Tøttrup A, Knudsen MA, Hanberg Sorensen F, Glavind EB (1995) Pharmacological identification of different inhibitory mediators involved in the innervation of the internal anal sphincter. Br J Pharmacol 115:158–162

    PubMed  Google Scholar 

  • Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    PubMed  CAS  Google Scholar 

  • Turner JT, Weisman GA, Landon LA, Park M, Camden JM (1998) Salivary gland nucleotide receptors: evidence for functional expression of both P2X and P2Y subtypes. Eur J Morphol 36:170–175

    PubMed  Google Scholar 

  • Ushijima I, Mizuki Y, Yamada M (1985) Development of stress-induced gastric lesions involves central adenosine A1-receptor stimulation. Brain Res 339:351–355

    Article  PubMed  CAS  Google Scholar 

  • Vallejo AI, Bo X, Burnstock G (1996) P2Y-purinoceptors in gastric gland plasma membranes. Eur J Pharmacol 312:209–214

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer C, Snijders PM, Valkenburg PW (1982) The effect of ATP on survival in intestinal ischemia shock, hemorrhagic shock, and endotoxin shock in rats. Circ Shock 9:619–628

    PubMed  Google Scholar 

  • Van Nueten JM, Fontaine J, Helsen L, Janssen PA (1977) Inhibition by purines of peristaltic activity in the guinea-pig ileum. Arch Int Pharmacodyn Ther 227:168–170

    PubMed  CAS  Google Scholar 

  • Vanner S, Surprenant A (1996) Neural reflexes controlling intestinal microcirculation. Am J Physiol 27:G223-G230

    Google Scholar 

  • Venglarik CJ, Singh AK, Wang R, Bridges RJ (1993) Trinitrophenyl-ATP blocks colonic Cl- channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites. J Gen Physiol 101:545–569

    Article  PubMed  CAS  Google Scholar 

  • Venkova K, Krier J (1993) Stimulation of lumbar sympathetic nerves evokes contractions of cat colon circular muscle mediated by ATP and noradrenaline. Br J Pharmacol 110:1260–1270

    PubMed  CAS  Google Scholar 

  • Venkova K, Milne A, Krier J (1994) Contractions mediated by α1-adrenoceptors and P2-purinoceptors in a cat colon circular muscle. Br J Pharmacol 112:1237–1243

    PubMed  CAS  Google Scholar 

  • Vermillion DL, Gillespie JP, Cooke AR, Wood JD (1979) Does 5-hydroxytryptamine influence “purinergic” inhibitory neurons in the intestine? Am J Physiol 237:E198–E202

    PubMed  CAS  Google Scholar 

  • Vidal M, Hicks PE, Langer SZ (1986) Differential effects of α,β-methylene ATP on responses to nerve stimulation in SHR and WKY tail arteries. Naunyn Schmiedebergs Arch Pharmacol 332:384–390

    Article  PubMed  CAS  Google Scholar 

  • Vigne P, Pacaud P, Loirand G, Breittmayer JP (1998) PPADS inhibits P2Y1 purinoceptors in rat brain capillary endothelial cells and in rat ileal myocytes by an indirect mechanism. Biochem Biophys Res Commun 244:332–335

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3 and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973

    PubMed  CAS  Google Scholar 

  • Vizi ES, Knoll J (1976) The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience 1:391–398

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Somogyi GT, Magyar K (1981) Evidence that morphine and opioid peptides do not share a common pathway with adenosine in inhibiting acetylcholine release from isolated intestine. J Auton Pharmacol 1:413–419

    Article  PubMed  CAS  Google Scholar 

  • Vladimirova IA, Shuba MF (1978) Effect of strychnine, hydrastine and apamin on synaptic transmission in smooth muscle cells [in Russian]. Neirofiziologiia 10:295–299

    PubMed  CAS  Google Scholar 

  • Vogalis F, Goyal RK (1997) Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol 502:497–508

    Article  PubMed  CAS  Google Scholar 

  • von Kügelgen I, Starke K (1985) Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery. J Physiol 367:435–455

    Google Scholar 

  • Vongalis F, Bywater RA, Taylor GS (1989) Nerve-mediated contractile and electrical activity of the guinea-pig choledocho-duodenal junction. J Auton Nerv Syst 29:19–28

    Article  PubMed  CAS  Google Scholar 

  • Wager-Srdar S, Levine AS, Morley JE (1984) Food intake: opioid/purine interactions. Pharmacol Biochem Behav 21:33–38

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Wong WC, Ling EA (1996) Localization of nicotinamide adenine dinu-cleotide phosphate diaphorase (NADPH-d) activity in the gastrointestinal sphincters in the guinea pig. J Auton Nerv Syst 58:51–55

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Bradley ME, Buxton IL, Keef K, Westfall DP, Sanders KM (1992) Involvement of cyclic GMP in non-adrenergic, non-cholinergic inhibitory neurotransmission in dog proximal colon. Br J Pharmacol 107:1075–1082

    PubMed  CAS  Google Scholar 

  • Ward SM, Xue C, Sanders KM (1994) Localization of nitric oxide synthase in canine ileocolonic and pyloric sphincters. Cell Tissue Res 275:513–527

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Khoyi MA, Westfall AS, Sanders KM, Westfall DP (1996) Hyperpolarization and inhibition of contraction mediated by nitric oxide released from enteric inhibitory neurones in guinea-pig taenia coli. Br J Pharmacol 118:49–56

    PubMed  CAS  Google Scholar 

  • Watt AH, Lewis DJ, Home JJ, Smith PM (1987) Reproduction of epigastric pain of duodenal ulceration by adenosine. Br Med J 294:10–12

    Article  CAS  Google Scholar 

  • Weiss T, Gheber L, Shoshan Barmatz V, Priel Z (1992) Possible mechanism of ciliary stimulation by extracellular ATP: involvement of calcium-dependent potassium channels and exogenous Ca2+. J Membr Biol 127:185–193

    PubMed  CAS  Google Scholar 

  • Welford LA, Cusack NJ, Hourani SMO (1986) ATP analogues and the guinea-pig taenia coli: a comparison of the structure-activity relationships of ectonucleoti-dases with those of the P2-purinoceptor. Eur J Pharmacol 129:217–224

    Article  PubMed  CAS  Google Scholar 

  • Westerberg VS, Geiger JD (1987) Central effects of adenosine analogs on stress-induced gastric ulcer formation. Life Sci 41:2201–2205

    Article  PubMed  CAS  Google Scholar 

  • Westerberg VS, Geiger JD (1988) Adenosine and gastric function. Trends Pharmacol Sci 9:345–347

    Article  PubMed  CAS  Google Scholar 

  • Westerberg VS, Geiger JD (1989) Adenosine analogs inhibit gastric acid secretion. Eur J Pharmacol 160:275–281

    Article  PubMed  CAS  Google Scholar 

  • Westerberg VS, Glavin GB, Geiger JD (1986) Intracerebroventricular administration of (−)-phenylisopropyladenosine protects rats against stress induced ulcer formation. Proc West Pharmacol Soc 29:425–427

    Google Scholar 

  • Weston AH (1973) The effect of desensitization to adenosine triphosphate on the peristaltic reflex in guinea-pig ileum. Br J Pharmacol 47:606–608

    PubMed  CAS  Google Scholar 

  • Wiklund NP, Gustafsson LE (1987) On the nature of endogenous purines modulating cholinergic neurotransmission in the guinea-pig ileum. Acta Physiol Scand 131:11–18

    Article  PubMed  CAS  Google Scholar 

  • Wiklund NP, Gustafsson LE (1988a) Agonist and antagonist characterization of the P2-purinoceptors in the guinea pig ileum. Acta Physiol Scand 132:15–22

    Article  Google Scholar 

  • Wiklund NP, Gustafsson LE (1988b) Indications for P2-purinoceptor subtypes in guinea pig smooth muscle. Eur J Pharmacol 148:361–370

    Article  Google Scholar 

  • Wiklund NP, Gustafsson LE, Lundin J (1985) Pre- and postjunctional modulation of cholinergic neuroeffector transmission by adenine nucleotides. Experiments with agonist and antagonist. Acta Physiol Scand 125:681–691

    Article  PubMed  CAS  Google Scholar 

  • Will S, Triggle CR, Bieger D (1990) Mastocyte and smooth muscle purinoceptors of the rat oesophagus. In: Abstracts of IUPHAR Satellite Symposium, Noordwijk, July 6–8,1990, p 33

    Google Scholar 

  • Windscheif U, Pfaff O, Ziganshin AU, Hoyle CHV, Baumert HG, Mutschier E, Burnstock G, Lambrecht G (1995) Inhibitory action of PPADS on the relaxant responses to adenine nucleotides or electrical field stimulation in guinea-pig taenia-coli and rat duodenum. Br J Pharmacol 115:1509–1517

    PubMed  CAS  Google Scholar 

  • Wood JD (1981) Physiology of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1–37

    Google Scholar 

  • Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49:227–233

    Article  PubMed  Google Scholar 

  • Wróbel J, Michalska L (1977) The effect of exogenous ATP on intestinal calcium transport. Comp Biochem Physiol 58A:421–425

    Article  Google Scholar 

  • Xia Y, Fertel RH, Wood JD (1997) Suppression of cAMP formation by adenosine in myenteric ganglia from guinea-pig small intestine. Eur J Pharmacol 320:95–101

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Suzuki H (1997) Electrical responses of gastric smooth muscles in streptozo-tocin-induced diabetic rats. Am J Physiol 272:G77–G83

    PubMed  CAS  Google Scholar 

  • Xue L, Fukuta H, Yamamoto Y, Suzuki H (1996) Properties of junction potentials in gastric smooth muscle of the rat. Jpn J Physiol 46:123–130

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Imaeda Y, Suzuki H (1998) Effects of suramin on electrical and mechanical activities in antrum smooth muscle of guinea-pig stomach. J Auton Pharmacol 18:325–331

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Farrugia G, Sarr MG, Szurszewski JH (1999) ATP is a mediator of the fast inhibitory junction in human jejunal circular smooth muscle. Am J Physiol 276:G1373–G1379

    PubMed  CAS  Google Scholar 

  • Yagasaki O, Nabata H, Yanagiya I (1983) Effects of desensitization to adenosine 5′-triphosphate and vasoactive intestinal polypeptide on non-adrenergic inhibitory responses of longitudinal and circular muscles in the rat ileum. J Pharm Pharmacol 35:818–820

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Fujiwara A, Ozaki Y, Harada M (1983) Gastric blood flow responses to autonomic nerve stimulation and related pharmacological studies in rats. J Pharm Pharmacol 35:641–646

    Article  PubMed  CAS  Google Scholar 

  • Young HM, Ciampoli D, Johnson PJ, Stebbing MJ (1996) Inhibitory transmission to the longitudinal muscle of the mouse caecum is mediated largely by nitric oxide acting via soluble guanylyl cyclase. J Auton Nerv Syst 61:103–108

    Article  PubMed  CAS  Google Scholar 

  • Yu HX, Turner JT (1991) Functional studies in the human submandibular duct cell line, HSG-PA, suggest a second salivary gland receptor subtype for nucleotides. J Pharmacol Exp Ther 259:1344–1350

    PubMed  CAS  Google Scholar 

  • Yuan S, Costa M, Brookes SJ (1998) Neuronal pathways and transmission to the lower esophageal sphincter of the guinea pig. Gastroenterology 115:661–671

    Article  PubMed  CAS  Google Scholar 

  • Yunker AM, Galligan JJ (1994) Extrinsic denervation increases NADPH diaphorase staining in myenteric nerves of guinea pig ileum. Neurosci Lett 167:51–54

    Article  PubMed  CAS  Google Scholar 

  • Zafirov DH, Palmer JM, Wood JD (1985) Adenosine inhibits forskolin-induced excitation in myenteric neurons. Eur J Pharmacol 113:143–144

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Maggi CA (1994) Electrophysiological evidence for different release mechanism of ATP and NO as inhibitory NANC transmitters in guinea-pig colon. Br J Pharmacol 112:1077–1082

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Maggi CA (1998) Pharmacological evidence for the existence of multiple P2 receptors in the circular muscle of guinea-pig colon. Br J Pharmacol 123:122–128

    Article  PubMed  CAS  Google Scholar 

  • Zagorodniuk VP, Shuba MF (1986) Nature of non-adrenergic inhibition in the smooth muscles of the human intestine [Russian]. Neirofiziologiia 18:373–381

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Vladimirova IA, Vovk EV, Shuba MF (1989) Studies of the inhibitory non-adrenergic neuromuscular transmission in the smooth muscle of the normal human intestine and from a case of Hirschsprung’s disease. J Auton Nerv Syst 26:51–60

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Hoyle CHV, Burnstock G (1993) An electrophysiological study of developmental changes in the innervation of the guinea-pig taeniacoli. Pflugers Arch 423:427–433

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Santicioli P, Maggi CA, Giachetti A (1996) The possible role of ATP and PACAP as mediators of apamin-sensitive NANC inhibitory junction potentials in circular muscle of guinea-pig colon. Br J Pharmacol 119:779–786

    PubMed  CAS  Google Scholar 

  • Zeng W, Lee MG, Muallem S (1997) Membrane-specific regulation of Cl- channels by purinergic receptors in rat submandibular gland acinar and duct cells. J Biol Chem 272:32956–32965

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Roomans GM (1997) Regulation of ion transport by P2U purinoceptors and α2A adrenoceptors in HT29 cells. Cell Biol Int 4:195-200

    Article  Google Scholar 

  • Zhou X, Galligan JJ (1996) P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol 496:719–729

    PubMed  CAS  Google Scholar 

  • Zhou X, Galligan JJ (1998) Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J Physiol 513:685–697

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Hoyle CHV, Ziganshina LE, Burnstock G (1995) Prejunctional inhibition of cholinergic neuromuscular transmission in the guinea-pig ileum by diadenosine polyphosphates. Br J Pharmacol 114:440P

    Google Scholar 

  • Zsembery A, Spirlì C, Granato A, LaRusso NF, Okolicsanyi L, Crepaldi G, Strazzabosco M (1998) Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. Hepatology 28:914–920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Burnstock, G. (2001). Purinergic Signalling in Gut. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling II. Handbook of Experimental Pharmacology, vol 151 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56921-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56921-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67848-9

  • Online ISBN: 978-3-642-56921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics